Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow

5,097 students have unlocked this exam

  • Select Tags
search iconSearch Question
  • Select Tags

Adapt the Cantor diagonalization argument to show that the set of positive real numbers less than 1 with decimal representations consisting only of 0s and 1s is uncountable.

(Short Answer)
4.9/5
(29)

Verify that an=3na _ { n } = 3 ^ { n } is a solution to the recurrence relation an=4an13an2a _ { n } = 4 a _ { n - 1 } - 3 a _ { n - 2 }

(Short Answer)
4.8/5
(33)

Find i=1+(i,)\bigcap _ { i=1 } ^ { + \infty } ( i , \infty )

(Short Answer)
4.8/5
(38)

suppose A={1,2,3,4,5}. Mark the statement TRUE or FALSE. A = \{ 1,2,3,4,5 \} \text {. Mark the statement TRUE or FALSE. } - {}P(A)\{ \emptyset \} \subseteq \mathcal { P } ( A )

(True/False)
4.8/5
(45)

Suppose B= (6231)\left( \begin{array} { l l } 6 & 2 \\3 & 1\end{array} \right) and C= (2106)\left( \begin{array} { l l } 2 & 1 \\0 & 6\end{array} \right) . Find a matrix A such that AB=C or prove that no such matrix exists.

(Short Answer)
4.9/5
(39)

Let A=(1m01)\mathbf { A } = \left( \begin{array} { c c } 1 & m \\0 & 1\end{array} \right) Find An where n is a positive integer.

(Short Answer)
4.7/5
(38)

Find the sum 2 + 1/2 + 1/8 + 1/32 + 1/128 + · · · .

(Short Answer)
4.8/5
(35)

Give an example of a function f:ZZf : Z \rightarrow Z that is 1-1 and not onto  Z \text { Z }

(Short Answer)
4.9/5
(31)

determine whether the rule describes a function with the given domain and codomain. - F:ZZ where F(x)=1x25F : \mathbf { Z } \rightarrow \mathbf { Z } \text { where } F ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

(Short Answer)
5.0/5
(35)

use a Venn diagram to determine which relationship, ,=, or \subseteq , = \text {, or } \supseteq \text {, } is true for the pair of sets. - A(BC),(AB)C.A \cup ( B \cap C ) , ( A \cup B ) \cap C .

(Short Answer)
4.8/5
(34)

Prove that AB=AˉBˉ\overline { A \cap B } = \bar { A } \cup \bar { B } by giving a containment proof (that is, prove that the left side is a subset of the right side and that the right side is a subset of the left side).

(Essay)
4.7/5
(37)

suppose A={1,2,3,4,5}. Mark the statement TRUE or FALSE. A = \{ 1,2,3,4,5 \} \text {. Mark the statement TRUE or FALSE. } - {1}P(A)\{ 1 \} \in \mathcal { P } ( A )

(True/False)
4.8/5
(43)

mark each statement TRUE or FALSE. Assume that the statement applies to all sets. - AA=AA \oplus A = A \text {. }

(True/False)
4.8/5
(36)

suppose g: A → B and f:BC where A={1,2,3,4},B={a,b,c},C={2,8,10}f : B \rightarrow C \text { where } A = \{ 1,2,3,4 \} , B = \{ a , b , c \} , C = \{ 2,8,10 \} \text {, } -  Find ff1\text { Find } f \circ f ^ { - 1 } \text {. }

(Short Answer)
4.8/5
(37)

Suppose SS ={1,2,3,4,5} . Find P(S)| \mathcal { P } ( S ) | .

(Short Answer)
4.7/5
(37)

suppose A={a,b,c} and B={b,{c}}. Mark the statement TRUE or FALSE. A = \{ a , b , c \} \text { and } B = \{ b , \{ c \} \} \text {. Mark the statement TRUE or FALSE. } - {{{c}}}P(B)\{ \{ \{ c \} \} \} \subseteq \mathcal { P } ( B )

(True/False)
4.8/5
(38)

Give an example of a function f: N → Z that is onto Z and not 1-1.

(Short Answer)
4.9/5
(30)

describe each sequence recursively. Include initial conditions and assume that the sequences begin with a1. -0.1, 0.11, 0.111, 0.1111, . . . .

(Short Answer)
4.8/5
(40)

Give an example of a function f:ZNf : \mathbf { Z } \rightarrow \mathbf { N } that is 1-1 and not onto N\mathbf { N } .

(Short Answer)
4.9/5
(45)

find a formula that generates the following sequence a1, a2, a3 . . . . -3, 3, 3, 3, 3, . . . .

(Short Answer)
4.8/5
(47)
Showing 121 - 140 of 214
close modal

Filters

  • Essay(10)
  • Multiple Choice(0)
  • Short Answer(152)
  • True False(52)
  • Matching(0)