Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

 Find the limit limt(e4t,1t,7t2t2+1)\text { Find the limit } \lim _ { t \rightarrow \infty } \left( e ^ { - 4 t } , \frac { 1 } { t } , \frac { 7 t ^ { 2 } } { t ^ { 2 } + 1 } \right)

(Short Answer)
4.8/5
(34)

If r(t)=t,t9,t11\mathbf { r } ( t ) = \left\langle t , t ^ { 9 } , t ^ { 11 } \right\rangle , find r(t)\mathbf { r } ^ { \prime \prime } ( t )

(Multiple Choice)
4.8/5
(30)

If r(t)=7i+tcosπj+4sinπtk\mathbf { r } ( t ) = 7 \mathbf { i } + t \cos \pi \mathbf { j } + 4 \sin \pi t \mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t

(Multiple Choice)
4.8/5
(35)

 Find r(t) if rt(t)=t10i+5t4jt7k and r(0)=j\text { Find } r ( t ) \text { if } \mathbf { r } ^ { t } ( t ) = t ^ { 10 } \mathbf { i } + 5 t ^ { 4 } \mathbf { j } - t ^ { 7 } \mathbf { k } \text { and } \mathrm { r } ( 0 ) = \mathbf { j }

(Short Answer)
4.8/5
(34)

Find the following limit. limt(arctant,e7t,ln4tt)\lim _ { t \rightarrow \infty } \left( \arctan t , \mathrm { e } ^ { - 7 t } , \frac { \ln 4 t } { t } \right)

(Short Answer)
4.8/5
(36)

Find the velocity and position vectors of an object with acceleration a(t)=4i72j+(72t+4)k\mathbf { a } ( t ) = 4 \mathbf { i } - 72 \mathbf { j } + ( 72 t + 4 ) \mathbf { k } , initial velocity v(0)=i+k\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { k } , and initial position r(0)=j+3kr ( 0 ) = \mathbf { j } + 3 \mathbf { k } .

(Short Answer)
4.8/5
(34)

 What force is required so that a particle of mass m has the following position function? \text { What force is required so that a particle of mass } m \text { has the following position function? } r(t)=5t3i+10t2j+7t3k\mathrm { r } ( t ) = 5 t ^ { 3 } \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

(Multiple Choice)
4.7/5
(37)

Find the length of the curve r(t)=3ti+2tjtk,2t1\mathbf { r } ( t ) = - 3 t \mathbf { i } + 2 t \mathbf { j } - t \mathbf { k } , - 2 \leq t \leq 1 .

(Multiple Choice)
4.7/5
(36)

Find the point of intersection of the tangent lines to the curve r(t)=sinπt,7sinπt,cosπt\mathbf { r } ( t ) = \langle \sin \pi t , 7 \sin \pi t , \cos \pi t \rangle , at the points where t=0t = 0 and t=0.5t = 0.5 .

(Short Answer)
4.8/5
(36)

Find the length of the curve r(t)=2ti+t2j+lntk,1te3\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } , 1 \leq t \leq e ^ { 3 } .

(Multiple Choice)
4.8/5
(31)

A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 30 m30 \mathrm {~m} away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

(Multiple Choice)
4.9/5
(33)

Let r(t)={2t,(et2)t,ln(t+1)}\mathbf { r } ( t ) = \left\{ \sqrt { 2 - t } , \frac { \left( e ^ { t } - 2 \right) } { t } , \ln ( t + 1 ) \right\} Find the domain of rr .

(Multiple Choice)
4.8/5
(39)

Find r(t)\mathbf { r } ( t ) satisfying the conditions for r(t)=6e6ti+7etj+etk,r(0)=ij+5k\mathbf { r } ^ { \prime } ( t ) = 6 e ^ { 6 t } \mathbf { i } + 7 e ^ { - t } \mathbf { j } + e ^ { t } \mathbf { k } , \quad \mathbf { r } ( 0 ) = \mathbf { i } - \mathbf { j } + 5 \mathbf { k }

(Multiple Choice)
5.0/5
(40)

Find a vector function that represents the curve of intersection of the two surfaces: The circular cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 and the parabolic cylinder z=xyz = x y .

(Multiple Choice)
4.9/5
(35)

A particle moves with position function r(t)=42ti+e4tj+e4tk\mathbf { r } ( t ) = 4 \sqrt { 2 } t \mathbf { i } + e ^ { 4 t } \mathbf { j } + e ^ { - 4 t } \mathbf { k } . Find the acceleration of the particle.

(Short Answer)
4.7/5
(47)

The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×rtt)rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right) \cdot \mathbf { r } ^ { ttt } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos5ti+sin5tj+4tk\mathbf { r } ( t ) = \cos 5 t \mathbf { i } + \sin 5 t \mathbf { j } + 4 t \mathbf { k } .

(Multiple Choice)
5.0/5
(46)

Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6k\mathrm { r } ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

(Multiple Choice)
4.9/5
(45)

Find the velocity of a particle with the given position function. r(t)=19e5ti+5e21tj\mathbf { r } ( t ) = 19 e ^ { 5 t } \mathbf { i } + 5 e ^ { - 21 t } \mathbf { j }

(Multiple Choice)
4.9/5
(38)
Showing 41 - 58 of 58
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)