Exam 3: Differentiation Rules

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If f(x)=2bx, find f(10)(x)f ( x ) = - 2 ^ { - b x } , \text { find } f ^ { ( 10 ) } ( x ) where k is a constant.

(Multiple Choice)
4.8/5
(35)

(a) Differentiate e2xe ^ { 2 x } by differentiating exexe ^ { x } \cdot e ^ { x } .(b) Differentiate e3xe ^ { 3 x } by differentiating exe2xe ^ { x } e ^ { 2 x } and using the result of part (a).(c) Continue as above to find ddxe4x and ddxe5x\frac { d } { d x } e ^ { 4 x } \text { and } \frac { d } { d x } e ^ { 5 x } using the results from above.(d) Based upon your answers to parts (a)-(c), make a conjecture about ddxenx\frac { d } { d x } e ^ { n x } .

(Essay)
4.7/5
(49)

Below is a table of the vapor pressure (in kilopascals) of water for various temperatures (in degrees Kelvin): Pressure () 4.6 9.2 17.5 31.8 55.3 92.5 149.4 233.7 355.1 525.8 760 Temperature 273 283 293 303 313 323 333 343 353 363 373 (a) Estimate the rate of change of pressure with respect to temperature on the following intervals: (i) [363, 373] (ii) [333, 343] (iii) [273, 283] (b) Plot the points from the table and fit an appropriate exponential model to these data.(c) From the model in part (b), determine the instantaneous rate of change of pressure with respect to temperature.(d) Is the rate of change of pressure increasing or decreasing with respect to temperature? Justify your answer.

(Essay)
4.7/5
(32)

Show that the curve y=x3+2x+cosxy = x ^ { 3 } + 2 x + \cos x has no tangent line with slope 0.

(Essay)
4.9/5
(41)

Use differentials to approximate the change in the function f(x)=x2+x2f ( x ) = x ^ { 2 } + x - 2 when x varies from 1 to 1.01.

(Essay)
4.9/5
(35)

The position of a particle is given by the function s(t) = 2t39t2+12t2 t ^ { 3 } - 9 t ^ { 2 } + 12 t , where t is measured in seconds and s in meters.(a) Find the velocity at time t.(b) When is the particle at rest? (c) When is the particle moving in the positive direction? (d) Draw a diagram to represent the motion of the particle.(e) Find the total distance traveled by the particle during the time interval [1,3].

(Essay)
4.7/5
(38)

Find the derivative dpdt\frac { d p } { d t } if p=mv1(v2/c2)p = \frac { m v } { \sqrt { 1 - \left( v ^ { 2 } / c ^ { 2 } \right) } } where m and c are constants, v is velocity function.

(Essay)
4.9/5
(47)

If y=x2ex, find f(0)y = x ^ { 2 } e ^ { x } , \text { find } f ^ { \prime \prime } ( 0 )

(Multiple Choice)
4.8/5
(39)

Find an equation of the tangent line to the curve y=ex(x+1)y = e ^ { x } ( x + 1 ) at x=0x = 0 .

(Essay)
4.9/5
(26)

Lake bottoms are frequently mapped using contour lines, which are curves joining points of the same depth. The path of steepest descent is orthogonal to the contour lines. Given the contour map below, sketch the path of steepest descent from starting positions A and B to the deepest point C. Lake bottoms are frequently mapped using contour lines, which are curves joining points of the same depth. The path of steepest descent is orthogonal to the contour lines. Given the contour map below, sketch the path of steepest descent from starting positions A and B to the deepest point C.

(Essay)
4.9/5
(32)

Each of the following is a derivative of a function obtained by using the Quotient Rule. Determine the original function: (a) f(x)=(x+3)(x+1)(x+3)2f ^ { \prime } ( x ) = \frac { ( x + 3 ) - ( x + 1 ) } { ( x + 3 ) ^ { 2 } } (b) g(x)=3x2exx3exe2xg ^ { \prime } ( x ) = \frac { 3 x ^ { 2 } e ^ { x } - x ^ { 3 } e ^ { x } } { e ^ { 2 x } } (c) h(x)=x3ex3x2exx6h ^ { \prime } ( x ) = \frac { x ^ { 3 } e ^ { x } - 3 x ^ { 2 } e ^ { x } } { x ^ { 6 } }

(Essay)
4.9/5
(38)

If f(x)=x2cosx, find f(0)f ( x ) = x ^ { 2 } \cos x , \text { find } f ^ { \prime } ( 0 )

(Multiple Choice)
4.8/5
(42)

If f(x)=ex+xe+exf ( x ) = e ^ { x } + x ^ { e } + e ^ { x } , what are f(x)f ^ { \prime } ( x ) and f(x)f ^ { \prime \prime } ( x ) ?

(Essay)
4.8/5
(28)

Find an equation of the tangent line to the given curve at the given point.(a) y=sinxx+1 at (0,0)y = \frac { \sin x } { x + 1 } \text { at } ( 0,0 ) (b) y=cosxx+1 at (0,12)y = \frac { \cos x } { x + 1 } \text { at } \left( 0 , \frac { 1 } { 2 } \right)

(Essay)
4.9/5
(44)

Let p(t)=1,000(e0.1t+3)e0.1t+9p ( t ) = \frac { 1,000 \left( e ^ { 0.1 t } + 3 \right) } { e ^ { 0.1 t } + 9 } be the population of a bacteria colony at time t hours. Find the growth rate of the bacteria after 10 hours.

(Essay)
4.7/5
(36)

Given f(x)=xf ( x ) = \sqrt { x } (a) Find an equation of the tangent line to the graph of y=f(x)y = f ( x ) at (i) x = 0.(ii) x = 4.(iii) x = 9.(b) Sketch a graph of y=f(x)y = f ( x ) and the tangent lines you found in parts (i), (ii) and (iii) on one set of coordinate axes.

(Essay)
4.9/5
(38)

If f(x)=xtanx, find f(π4)f ( x ) = \frac { x } { \tan x } , \text { find } f ^ { \prime } \left( \frac { \pi } { 4 } \right) .

(Multiple Choice)
4.7/5
(34)

Find dydx\frac { d y } { d x } if xy+e3x=sin(x+y)x y + e ^ { 3 x } = \sin ( x + y ) .

(Essay)
4.8/5
(33)

Find the slope of the tangent to the curve with parametric equations x=t+t2,y=t+etx = t + t ^ { 2 } , y = t + e ^ { t } at the point (0, 1).

(Multiple Choice)
4.8/5
(32)

Find the derivative of f(x)=(x2+1)4, find f(0)f ( x ) = \left( x ^ { 2 } + 1 \right) ^ { 4 } , \text { find } \mathrm { f } ^ { \prime } ( 0 )

(Multiple Choice)
4.9/5
(36)
Showing 101 - 120 of 248
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)