Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the range of the function f(x,y)=xy2f ( x , y ) = \sqrt { x - y ^ { 2 } } .

(Multiple Choice)
4.7/5
(32)

Find the directional derivative of f(x,y)=x23xy+2y2f ( x , y ) = x ^ { 2 } - 3 x y + 2 y ^ { 2 } at (1,2)( - 1,2 ) in the direction of i+3j\mathbf { i } + \sqrt { 3 } \mathbf { j }

(Short Answer)
4.9/5
(37)

Evaluate lim(x,y)(1,2)(x2+2xy)\lim _ { ( x , y ) \rightarrow ( 1,2 ) } \left( x ^ { 2 } + 2 x y \right)

(Multiple Choice)
4.8/5
(39)

Let z=1+2x+xyz = \sqrt { 1 + 2 x + x y } , and let xx and yy be functions of tt with x(1)=2,y(1)=2,x(1)=3x ( 1 ) = 2 , y ( 1 ) = 2 , x ^ { \prime } ( 1 ) = 3 , and y(1)=6y ^ { \prime } ( 1 ) = - 6 . Find dz/dtd z / d t when t=1t = 1 .

(Multiple Choice)
4.8/5
(35)

For each of the following functions, find the critical point, if there is one, and determine if it is a local maximum, local minimum, saddle point, or otherwise.(a) f(x,y)=4x2+3x5y28y+7f ( x , y ) = 4 x ^ { 2 } + 3 x - 5 y ^ { 2 } - 8 y + 7 (b) f(x,y)=2x2+7x7y2+4y+9f ( x , y ) = - 2 x ^ { 2 } + 7 x - 7 y ^ { 2 } + 4 y + 9 (c) f(x,y)=3x25y+4y2+12x11f ( x , y ) = 3 x ^ { 2 } - 5 y + 4 y ^ { 2 } + 12 x - 11 (d) f(x,y)=2y2+7x+17y+12f ( x , y ) = 2 y ^ { 2 } + 7 x + 17 y + 12

(Essay)
4.8/5
(33)

What is the direction of maximal decrease for f(x,y,z)=xy+yz+xzf ( x , y , z ) = x y + y z + x z at (1,1,1)( 1,1,1 ) ?

(Essay)
4.8/5
(33)

If w=x2z+xy2yz2w = x ^ { 2 } z + x y ^ { 2 } - y z ^ { 2 } , find δwδx,δwδy, and δwδz\frac { \delta w } { \delta x } , \frac { \delta w } { \delta y } \text {, and } \frac { \delta w } { \delta z } .

(Essay)
4.9/5
(35)

Find the local maximum and minimum values and saddle points of the function f(x,y)=4xyx4y4+116f ( x , y ) = 4 x y - x ^ { 4 } - y ^ { 4 } + \frac { 1 } { 16 } .

(Essay)
4.9/5
(36)

Find the differential of z=1x+y2z = \frac { 1 } { x + y ^ { 2 } } at the point (x,y)=(1,1)( x , y ) = ( 1,1 ) .

(Multiple Choice)
4.9/5
(31)

Find the directional derivative of the function f(x,y,z)=xexy/zf ( x , y , z ) = x e ^ { x y / z } at the point PP (3,0,1)( 3,0,1 ) in the direction from PP toward the point (2,2,3)( 2,2,3 ) ..

(Multiple Choice)
4.8/5
(29)

Find the minimum value of the function f(x,y,z)=2x+y2zf ( x , y , z ) = 2 x + y - 2 z subject to the constraint that x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .

(Multiple Choice)
4.8/5
(33)

Compare the minimum value of ZZ and sketch a portion of the graph of z=3x2+6x+2y28yz = 3 x ^ { 2 } + 6 x + 2 y ^ { 2 } - 8 y near its lowest point.  Compare the minimum value of  Z  and sketch a portion of the graph of  z = 3 x ^ { 2 } + 6 x + 2 y ^ { 2 } - 8 y  near its lowest point.

(Essay)
4.8/5
(37)

Let f(x,y)=0xysin(t2)dtf ( x , y ) = \int _ { 0 } ^ { x y } \sin \left( t ^ { 2 } \right) d t . Find fx(1,π2)f _ { x } \left( 1 , \sqrt { \frac { \pi } { 2 } } \right) .

(Multiple Choice)
4.7/5
(36)

Let f(x,y,z)=3x2+4y2+z2f ( x , y , z ) = 3 \sqrt { x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } } . Find fz(2,1,1)f _ { z } ( 2,1,1 ) .

(Multiple Choice)
4.8/5
(40)

Consider f(x,y,z)=x3y2z+1x2+y2z2f ( x , y , z ) = \frac { x ^ { 3 } y ^ { 2 } z + 1 } { x ^ { 2 } + y ^ { 2 } - z ^ { 2 } } . Where ff is continuous?

(Essay)
4.9/5
(38)

Find the second directional derivative of f(x,y)=x2eyf ( x , y ) = x ^ { 2 } e ^ { y } at the point (2,0)( 2,0 ) in the direction (3,4)(3 , - 4 ) .

(Multiple Choice)
4.8/5
(36)

Let f(x,y,z)=4x2y2f ( x , y , z ) = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } .(a) Evaluate f(1,1,2)f ( 1 , - 1,2 ) .(b) Sketch the domain of ff .(c) What is the range of the function ff ?

(Essay)
4.7/5
(35)

Let z=exsinyz = e ^ { x } \sin y , and let xx and yy be functions of SS and tt with x(0,0)=0,y(0,0)=0x ( 0,0 ) = 0 , y ( 0,0 ) = 0 , δx/δs=3\delta x / \delta s = 3 , and δy/δs=4\delta y / \delta s = 4 at (s,t)=(0,0)( s , t ) = ( 0,0 ) . Find δz/δ s \delta z /\delta\text { s } when (s,t)=(0,0)( s , t ) = ( 0,0 ) .

(Multiple Choice)
4.9/5
(43)

Find the domain of the function f(x,y)=ln(xy2)f ( x , y ) = \ln \left( x - y ^ { 2 } \right) .

(Multiple Choice)
4.9/5
(40)

Let f(x,y)=xey/xf ( x , y ) = x e ^ { y / x } . Find the value of the partial derivative fx(2,4)f _ { x } ( 2,4 ) .

(Multiple Choice)
4.7/5
(44)
Showing 241 - 260 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)