Deck 10: Production and Cost Estimation

Full screen (f)
exit full mode
Question
When estimating a short-run average variable cost function,

A) the intercept must be forced to equal zero.
B) the cost data must be deflated.
C) at least one input must have been constant during the period in which the data were collected.
D) both b and c
E) all of the above
Use Space or
up arrow
down arrow
to flip the card.
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 20 units of labor, what is total product?

A) 48
B) 96
C) 20
D) 62
E) 41
Question
Which of the following represents a short-run cubic production function?

A) Q=aK3L3+bK2L2Q = a K ^ { 3 } L ^ { 3 } + b K ^ { 2 } L ^ { 2 }
B) Q=3AL2+2BL( where A=aKˉ3,B=bKˉ2)Q = 3 A L ^ { 2 } + 2 B L \left( \text { where } A = a \bar { K } ^ { 3 } , B = b \bar { K } ^ { 2 } \right)
C) Q=AL3+BL2( where A=aKˉ3,B=bKˉ2)Q = A L ^ { 3 } + B L ^ { 2 } \left( \text { where } A = a \bar { K } ^ { 3 } , B = b \bar { K } ^ { 2 } \right)
D) Q=AL2+BL( where A=aKˉ3,B=bKˉ2)Q = A L ^ { 2 } + B L \left( \text { where } A = a \bar { K } ^ { 3 } , B = b \bar { K } ^ { 2 } \right)
E) all of the above
Question
When estimating a short-run production function of the form Q=AL3+BL2Q = A L ^ { 3 } + B L ^ { 2 } , it is necessary to specify in the computer routine that

A) A < 0.
B) B > 0.
C) the intercept term is forced to equal zero.
D) a and b
E) all of the above
Question
Which of the following is an estimable form of a production function?

A) Q = f(L,K)
B) Q = f(L Kˉ\bar { K } )
C) Q=aK3L3+bK2L2Q = a K ^ { 3 } L ^ { 3 } + b K ^ { 2 } L ^ { 2 }
D) all of the above
E) none of the above
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-What is total product when average product is at its maximum level?

A) 94
B) 86
C) 100
D) 128
E) 150
Question
The opportunity cost of capital owned by the firm should reflect

A) acquisition cost.
B) the return foregone by using the capital rather than renting it to another firm.
C) wage rate differences.
D) both a and b
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 20 units of labor, what is marginal product?

A) 6.0
B) 1.9
C) 6.3
D) 4.0
E) 2.4
Question
A potential problem with cross-section cost data is that

A) nominal cost data include the effect of inflation.
B) different firms face different input prices.
C) at least one input is fixed over time.
D) both a and b
E) none of the above
Question
A theoretical restriction on the short-run cubic cost equation, TVC = aQ + bQ + cQ2, is

A) a > 0, b > 0, c > 0
B) a > 0, b < 0, c > 0
C) a > 0, b > 0, c < 0
D) a > 0, b < 0, c < 0
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 60 units of labor, what is marginal product?

A) 4.1
B) 1.2
C) 6.3
D) 2.4
E) -2.4
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-What is average product when it is at its maximum level?

A) 3.20
B) 8.75
C) 6.92
D) 6.00
E) 9.40
Question
An estimated short-run cost function

A) can be used to make price and output decisions.
B) holds the capital stock constant.
C) can be estimated using time-series data.
D) both a and c
E) all of the above
Question
A linear specification, Q = aK + bL, is not appropriate for estimating a production function because

A) the marginal products of the inputs are constant.
B) it does not allow the firm to substitute capital for labor.
C) the firm could produce positive levels of output at zero cost.
D) both b and c
E) all of the above
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 60 units of labor, what is average product?

A) 9.4
B) 8.6
C) 3.7
D) 2.4
E) 6.4
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 20 units of labor, what is average product?

A) 6.0
B) 1.9
C) 6.3
D) 4.0
E) 2.4
Question
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At what level of labor usage does the maximum average product occur?

A) 20
B) 30
C) 40
D) 50
E) 60
Question
What is a problem with using a production function of the form Q = aK + bL (a > 0, b > 0)?

A) MRTS is constant.
B) A positive output can be produced when one input is not used.
C) The marginal products of the inputs do not have diminishing marginal returns.
D) both a and b
E) all of the above
Question
With a cubic production function of the form Q=aK3L3+bK2L2Q = a K ^ { 3 } L ^ { 3 } + b K ^ { 2 } L ^ { 2 } , in order for the average and marginal product functions to have their theoretical properties, it must be the case that

A) a < 0, b > 0
B) a > 0, b < 0
C) a < 0, b < 0
D) a > 0, b > 0
Question
An average variable cost function is estimated as AVC=962Q+0.05Q2A V C = 96 - 2 Q + 0.05 Q ^ { 2 } Which of the following cost functions is associated with this estimate?

A) SMC = 96 - 4Q + 0.1Q2
B) TVC = 96Q - 2Q2 + 0.05Q3
C) TVC = 96Q + 4Q2 + 0.15Q3
D) SMC = 96 - 4Q + 0.15Q2
E) both b and d
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated total variable cost (TVC)?

A) $1,348
B) $1,498
C) $2,348
D) $4,428
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated total variable cost (TVC)?

A) $171.40
B) $463.20
C) $1,348
D) $2,348
Question
For the short-run cost function AVC = a + bQ + cQ2,

A) the AVC curve is \cup -shaped when a < 0, b > 0, and c < 0.
B) the AVC curve is \cup -shaped when a > 0, b < 0, and c > 0.
C) the corresponding SMC function is SMC=aQ+2bQ2+3cQ3S M C = a Q + 2 b Q ^ { 2 } + 3 c Q ^ { 3 } .
D) both a and c
E) all of the above
Question
When estimating a cubic short-run production function Q=AI3+BL2Q = A I ^ { 3 } + B L ^ { 2 } using linear regression analysis, you must

A) transform the equation into linear form by defining L3 and L2 as L3 and L2, respectively.
B) suppress the intercept term (regress through the origin).
C) convert to logarithms.
D) both a and b
E) both b and c
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated total cost (TC)?

A) $1,348
B) $1,498
C) $2,348
D) $4,428
Question
The empirical specification Q=AI3+BL2Q = A I ^ { 3 } + B L ^ { 2 } can be used to estimate

A) a short-run cubic production function.
B) short-run cubic cost function.
C) a family of U-shaped product curves.
D) both a and c
E) none of the above
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated average variable cost (AVC)?

A) $19.40
B) $67.40
C) $171.40
D) $179.40
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated short-run marginal cost (SMC)?

A) $171.40
B) $463.20
C) $1,348
D) $2,348
Question
The empirical specification TVC=aQ+bQ2+cQ3T V C = a Q + b Q ^ { 2 } + c Q ^ { 3 } can be used to estimate

A) a short-run cubic production function.
B) short-run cubic cost function.
C) a  <strong>The empirical specification  T V C = a Q + b Q ^ { 2 } + c Q ^ { 3 }  can be used to estimate</strong> A) a short-run cubic production function. B) short-run cubic cost function. C) a   -shaped TVC curve. D) both b and c E) none of the above <div style=padding-top: 35px>  -shaped TVC curve.
D) both b and c
E) none of the above
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-At Straker Industries, average variable cost (AVC) reaches its minimum value at $________.

A) $24.50
B) $33.60
C) $72.80
D) $121.80
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated average total cost (ATC)?

A) $121.93
B) $171.40
C) $463.20
D) $1,348
Question
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-At _______ units of labor, marginal product of labor begins to diminish.

A) 32.21
B) 44.44
C) 66.67
D) 76.66
E) 82.27
Question
A cubic specification for a short-run production function is appropriate when the scatter diagram indicates

A) an S-shaped total product curve.
B) marginal product of labor falls throughout the range of labor usage.
C) total product is decreasing throughout the range of labor usage.
D) an S-shaped marginal product of labor curve.
E) a <strong>A cubic specification for a short-run production function is appropriate when the scatter diagram indicates</strong> A) an S-shaped total product curve. B) marginal product of labor falls throughout the range of labor usage. C) total product is decreasing throughout the range of labor usage. D) an S-shaped marginal product of labor curve. E) a   -shaped marginal product of labor curve (MP first falls and then rises as labor usage increases. <div style=padding-top: 35px> -shaped marginal product of labor curve (MP first falls and then rises as labor usage increases.
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-The estimated short-run marginal cost function (SMC) at Straker Industries is:

A) SMC=43.4Q1.4Q2+0.07Q3S M C = 43.4 Q - 1.4 Q ^ { 2 } + 0.07 Q ^ { 3 }
B) SMC=43.41.4Q+0.07Q2S M C = 43.4 - 1.4 Q + 0.07 Q ^ { 2 }
C) SMC=43.4Q5.6Q2+0.6Q3S M C = 43.4 Q - 5.6 Q ^ { 2 } + 0.6 Q ^ { 3 }
D) SMC=43.45.6Q+0.6Q2SM C = 43.4 - 5.6 Q + 0.6 Q ^ { 2 }
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated average variable cost (AVC)?

A) $28.04
B) $32.40
C) $33.33
D) $38.60
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated average total cost (ATC)?

A) $19.40
B) $67.40
C) $117.40
D) $1,348
Question
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-The product curve(s) in the short-run are

A) TP = -12.96 L3 + 1,728L2.
B) AP = -12.96 L3 + 1,728L2.
C) MP = -38.88 L2 + 3,456L.
D) both a and b
E) both a and c
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated short-run marginal cost (SMC)?

A) $28.04
B) $32.40
C) $33.33
D) $62.60
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-At what level of output is average variable cost (AVC) at its minimum point for Straker Industries?

A) 0.14
B) 4.7
C) 7
D) 14
E) 28
Question
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated total cost (TC)?

A) $1,000
B) $1,463.20
C) $2,348
D) $4,428
Question
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-Marginal product when 10 units of labor are employed is

A) 12,248
B) 13,142
C) 14,287
D) 15,984
E) 30,672
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, average variable cost (AVC) is

A) rising
B) falling
C) greater than short-run marginal cost
D) less than short-run marginal cost
E) both b and c
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, what is total cost (TC)?

A) $144,000
B) $396,000
C) $444,000
D) $642,000
E) $846,000
Question
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-Average product when 10 units of labor are employed is

A) 12,248
B) 13,142
C) 14,287
D) 15,984
E) 30,672
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 6,000 units, average variable cost (AVC) is

A) rising
B) falling
C) greater than short-run marginal cost
D) less than short-run marginal cost
E) both a and d
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-If Greene Enterprises produces 6,000 units of output, what is estimated average total cost (ATC)?

A) $40
B) $75.25
C) $80
D) $90
E) $168.42
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, what is short-run marginal cost (SMC)?

A) $20
B) $42
C) $72
D) $90
E) $100
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-If Greene Enterprises produces 6,000 units of output, what is estimated short-run marginal cost (SMC)?

A) $45.60
B) $62.40
C) $83
D) $92
E) $100
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, what is average variable cost (AVC)?

A) $20
B) $48
C) $62
D) $72
E) $85
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-At Greene Enterprises, average variable cost (AVC) reaches its minimum value at $________.

A) $28.00
B) $31.67
C) $39.64
D) $43.33
E) $82.00
Question
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-At ________ units of labor, average product of labor begins to diminish.

A) 32.21
B) 44.44
C) 66.67
D) 76.66
E) 82.27
Question
A short-run marginal cost function is estimated as SMC=964Q+0.15Q2S M C = 96 - 4 Q + 0.15 Q ^ { 2 } . Which of the following cost functions is associated with this estimated SMC equation?

A) TVC = 96Q - 2Q2 + 0.05Q3
B) SMC = 96 - 4Q + 0.1Q2
C) TVC = 96Q + 4Q2 + 0.15Q3
D) AVC = 96 - 2Q + 0.05Q2
E) a and d
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-At what level of output does average variable cost (AVC) reach its minimum value for Greene Enterprises?

A) 800
B) 3,144
C) 3,800
D) 4,333
E) 51,672
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene Enterprises produces 6,000 units, average variable cost (AVC) is $_________.

A) $40
B) $49.62
C) $55
D) $60
E) $72.46
Question
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-What is total variable cost (TVC) at Greene Enterprises when average variable cost (AVC) is at its minimum?

A) $48,000
B) $101,101
C) $137,222
D) $190,476
E) $437,212
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/55
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Production and Cost Estimation
1
When estimating a short-run average variable cost function,

A) the intercept must be forced to equal zero.
B) the cost data must be deflated.
C) at least one input must have been constant during the period in which the data were collected.
D) both b and c
E) all of the above
both b and c
2
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 20 units of labor, what is total product?

A) 48
B) 96
C) 20
D) 62
E) 41
48
3
Which of the following represents a short-run cubic production function?

A) Q=aK3L3+bK2L2Q = a K ^ { 3 } L ^ { 3 } + b K ^ { 2 } L ^ { 2 }
B) Q=3AL2+2BL( where A=aKˉ3,B=bKˉ2)Q = 3 A L ^ { 2 } + 2 B L \left( \text { where } A = a \bar { K } ^ { 3 } , B = b \bar { K } ^ { 2 } \right)
C) Q=AL3+BL2( where A=aKˉ3,B=bKˉ2)Q = A L ^ { 3 } + B L ^ { 2 } \left( \text { where } A = a \bar { K } ^ { 3 } , B = b \bar { K } ^ { 2 } \right)
D) Q=AL2+BL( where A=aKˉ3,B=bKˉ2)Q = A L ^ { 2 } + B L \left( \text { where } A = a \bar { K } ^ { 3 } , B = b \bar { K } ^ { 2 } \right)
E) all of the above
Q=AL3+BL2( where A=aKˉ3,B=bKˉ2)Q = A L ^ { 3 } + B L ^ { 2 } \left( \text { where } A = a \bar { K } ^ { 3 } , B = b \bar { K } ^ { 2 } \right)
4
When estimating a short-run production function of the form Q=AL3+BL2Q = A L ^ { 3 } + B L ^ { 2 } , it is necessary to specify in the computer routine that

A) A < 0.
B) B > 0.
C) the intercept term is forced to equal zero.
D) a and b
E) all of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
5
Which of the following is an estimable form of a production function?

A) Q = f(L,K)
B) Q = f(L Kˉ\bar { K } )
C) Q=aK3L3+bK2L2Q = a K ^ { 3 } L ^ { 3 } + b K ^ { 2 } L ^ { 2 }
D) all of the above
E) none of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
6
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-What is total product when average product is at its maximum level?

A) 94
B) 86
C) 100
D) 128
E) 150
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
7
The opportunity cost of capital owned by the firm should reflect

A) acquisition cost.
B) the return foregone by using the capital rather than renting it to another firm.
C) wage rate differences.
D) both a and b
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
8
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 20 units of labor, what is marginal product?

A) 6.0
B) 1.9
C) 6.3
D) 4.0
E) 2.4
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
9
A potential problem with cross-section cost data is that

A) nominal cost data include the effect of inflation.
B) different firms face different input prices.
C) at least one input is fixed over time.
D) both a and b
E) none of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
10
A theoretical restriction on the short-run cubic cost equation, TVC = aQ + bQ + cQ2, is

A) a > 0, b > 0, c > 0
B) a > 0, b < 0, c > 0
C) a > 0, b > 0, c < 0
D) a > 0, b < 0, c < 0
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
11
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 60 units of labor, what is marginal product?

A) 4.1
B) 1.2
C) 6.3
D) 2.4
E) -2.4
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
12
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-What is average product when it is at its maximum level?

A) 3.20
B) 8.75
C) 6.92
D) 6.00
E) 9.40
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
13
An estimated short-run cost function

A) can be used to make price and output decisions.
B) holds the capital stock constant.
C) can be estimated using time-series data.
D) both a and c
E) all of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
14
A linear specification, Q = aK + bL, is not appropriate for estimating a production function because

A) the marginal products of the inputs are constant.
B) it does not allow the firm to substitute capital for labor.
C) the firm could produce positive levels of output at zero cost.
D) both b and c
E) all of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
15
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 60 units of labor, what is average product?

A) 9.4
B) 8.6
C) 3.7
D) 2.4
E) 6.4
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
16
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At 20 units of labor, what is average product?

A) 6.0
B) 1.9
C) 6.3
D) 4.0
E) 2.4
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
17
Refer to the following:
A short-run production function was estimated as

Q=0.002L3+0.16L2Q = - 0.002 L ^ { 3 } + 0.16 L ^ { 2 }

-At what level of labor usage does the maximum average product occur?

A) 20
B) 30
C) 40
D) 50
E) 60
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
18
What is a problem with using a production function of the form Q = aK + bL (a > 0, b > 0)?

A) MRTS is constant.
B) A positive output can be produced when one input is not used.
C) The marginal products of the inputs do not have diminishing marginal returns.
D) both a and b
E) all of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
19
With a cubic production function of the form Q=aK3L3+bK2L2Q = a K ^ { 3 } L ^ { 3 } + b K ^ { 2 } L ^ { 2 } , in order for the average and marginal product functions to have their theoretical properties, it must be the case that

A) a < 0, b > 0
B) a > 0, b < 0
C) a < 0, b < 0
D) a > 0, b > 0
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
20
An average variable cost function is estimated as AVC=962Q+0.05Q2A V C = 96 - 2 Q + 0.05 Q ^ { 2 } Which of the following cost functions is associated with this estimate?

A) SMC = 96 - 4Q + 0.1Q2
B) TVC = 96Q - 2Q2 + 0.05Q3
C) TVC = 96Q + 4Q2 + 0.15Q3
D) SMC = 96 - 4Q + 0.15Q2
E) both b and d
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
21
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated total variable cost (TVC)?

A) $1,348
B) $1,498
C) $2,348
D) $4,428
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
22
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated total variable cost (TVC)?

A) $171.40
B) $463.20
C) $1,348
D) $2,348
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
23
For the short-run cost function AVC = a + bQ + cQ2,

A) the AVC curve is \cup -shaped when a < 0, b > 0, and c < 0.
B) the AVC curve is \cup -shaped when a > 0, b < 0, and c > 0.
C) the corresponding SMC function is SMC=aQ+2bQ2+3cQ3S M C = a Q + 2 b Q ^ { 2 } + 3 c Q ^ { 3 } .
D) both a and c
E) all of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
24
When estimating a cubic short-run production function Q=AI3+BL2Q = A I ^ { 3 } + B L ^ { 2 } using linear regression analysis, you must

A) transform the equation into linear form by defining L3 and L2 as L3 and L2, respectively.
B) suppress the intercept term (regress through the origin).
C) convert to logarithms.
D) both a and b
E) both b and c
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
25
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated total cost (TC)?

A) $1,348
B) $1,498
C) $2,348
D) $4,428
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
26
The empirical specification Q=AI3+BL2Q = A I ^ { 3 } + B L ^ { 2 } can be used to estimate

A) a short-run cubic production function.
B) short-run cubic cost function.
C) a family of U-shaped product curves.
D) both a and c
E) none of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
27
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated average variable cost (AVC)?

A) $19.40
B) $67.40
C) $171.40
D) $179.40
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
28
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated short-run marginal cost (SMC)?

A) $171.40
B) $463.20
C) $1,348
D) $2,348
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
29
The empirical specification TVC=aQ+bQ2+cQ3T V C = a Q + b Q ^ { 2 } + c Q ^ { 3 } can be used to estimate

A) a short-run cubic production function.
B) short-run cubic cost function.
C) a  <strong>The empirical specification  T V C = a Q + b Q ^ { 2 } + c Q ^ { 3 }  can be used to estimate</strong> A) a short-run cubic production function. B) short-run cubic cost function. C) a   -shaped TVC curve. D) both b and c E) none of the above  -shaped TVC curve.
D) both b and c
E) none of the above
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
30
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-At Straker Industries, average variable cost (AVC) reaches its minimum value at $________.

A) $24.50
B) $33.60
C) $72.80
D) $121.80
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
31
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated average total cost (ATC)?

A) $121.93
B) $171.40
C) $463.20
D) $1,348
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
32
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-At _______ units of labor, marginal product of labor begins to diminish.

A) 32.21
B) 44.44
C) 66.67
D) 76.66
E) 82.27
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
33
A cubic specification for a short-run production function is appropriate when the scatter diagram indicates

A) an S-shaped total product curve.
B) marginal product of labor falls throughout the range of labor usage.
C) total product is decreasing throughout the range of labor usage.
D) an S-shaped marginal product of labor curve.
E) a <strong>A cubic specification for a short-run production function is appropriate when the scatter diagram indicates</strong> A) an S-shaped total product curve. B) marginal product of labor falls throughout the range of labor usage. C) total product is decreasing throughout the range of labor usage. D) an S-shaped marginal product of labor curve. E) a   -shaped marginal product of labor curve (MP first falls and then rises as labor usage increases. -shaped marginal product of labor curve (MP first falls and then rises as labor usage increases.
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
34
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-The estimated short-run marginal cost function (SMC) at Straker Industries is:

A) SMC=43.4Q1.4Q2+0.07Q3S M C = 43.4 Q - 1.4 Q ^ { 2 } + 0.07 Q ^ { 3 }
B) SMC=43.41.4Q+0.07Q2S M C = 43.4 - 1.4 Q + 0.07 Q ^ { 2 }
C) SMC=43.4Q5.6Q2+0.6Q3S M C = 43.4 Q - 5.6 Q ^ { 2 } + 0.6 Q ^ { 3 }
D) SMC=43.45.6Q+0.6Q2SM C = 43.4 - 5.6 Q + 0.6 Q ^ { 2 }
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
35
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated average variable cost (AVC)?

A) $28.04
B) $32.40
C) $33.33
D) $38.60
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
36
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 20 units of output, what is estimated average total cost (ATC)?

A) $19.40
B) $67.40
C) $117.40
D) $1,348
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
37
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-The product curve(s) in the short-run are

A) TP = -12.96 L3 + 1,728L2.
B) AP = -12.96 L3 + 1,728L2.
C) MP = -38.88 L2 + 3,456L.
D) both a and b
E) both a and c
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
38
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated short-run marginal cost (SMC)?

A) $28.04
B) $32.40
C) $33.33
D) $62.60
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
39
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-At what level of output is average variable cost (AVC) at its minimum point for Straker Industries?

A) 0.14
B) 4.7
C) 7
D) 14
E) 28
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
40
Refer to the cost regression for Straker Industries shown below.
Straker Industries estimated its short-run costs using a U-shaped average variable cost function of the form

AVC=a+bQ+cQ2A V C = a + b Q + c Q ^ { 2 }
and obtained the following results. Total fixed cost (TFC) at Straker Industries is $1,000.
 DEPENDENTVARIAELE:  AVC  R-SQUARE  F-RATIO  P-VALUE ON F  OESERVATIONS:  35 0.8713108.30.0001 PARAMETER  STANDARD  VARIAELE  ESTIMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 43.4013.803.140.0036 Q 2.800.903.110.0039 Q2 0.200.054.000.0004\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { AVC } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OESERVATIONS: } & \text { 35 } & \mathbf { 0 . 8 7 1 3 } & 108.3 & \mathbf { 0 . 0 0 0 1 } & \\& & \begin{array} { l } \text { PARAMETER }\end{array} & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTIMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 43.40 & 13.80 & \mathbf { 3 . 1 4 } & \mathbf { 0 . 0 0 3 6 } \\\text { Q } & & - \mathbf { 2 . 8 0 } & \mathbf { 0 . 9 0 } & - \mathbf { 3 . 1 1 } & \mathbf { 0 . 0 0 3 9 } \\\text { Q2 } & & \mathbf { 0 . 2 0 } & \mathbf { 0 . 0 5 } & 4.00 & \mathbf { 0 . 0 0 0 4 }\end{array}

-If Straker Industries produces 12 units of output, what is estimated total cost (TC)?

A) $1,000
B) $1,463.20
C) $2,348
D) $4,428
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
41
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-Marginal product when 10 units of labor are employed is

A) 12,248
B) 13,142
C) 14,287
D) 15,984
E) 30,672
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
42
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, average variable cost (AVC) is

A) rising
B) falling
C) greater than short-run marginal cost
D) less than short-run marginal cost
E) both b and c
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
43
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, what is total cost (TC)?

A) $144,000
B) $396,000
C) $444,000
D) $642,000
E) $846,000
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
44
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-Average product when 10 units of labor are employed is

A) 12,248
B) 13,142
C) 14,287
D) 15,984
E) 30,672
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
45
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 6,000 units, average variable cost (AVC) is

A) rising
B) falling
C) greater than short-run marginal cost
D) less than short-run marginal cost
E) both a and d
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
46
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-If Greene Enterprises produces 6,000 units of output, what is estimated average total cost (ATC)?

A) $40
B) $75.25
C) $80
D) $90
E) $168.42
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
47
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, what is short-run marginal cost (SMC)?

A) $20
B) $42
C) $72
D) $90
E) $100
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
48
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-If Greene Enterprises produces 6,000 units of output, what is estimated short-run marginal cost (SMC)?

A) $45.60
B) $62.40
C) $83
D) $92
E) $100
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
49
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene's output is 2,000 units, what is average variable cost (AVC)?

A) $20
B) $48
C) $62
D) $72
E) $85
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
50
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-At Greene Enterprises, average variable cost (AVC) reaches its minimum value at $________.

A) $28.00
B) $31.67
C) $39.64
D) $43.33
E) $82.00
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
51
Refer to the following:
A firm estimates its long-run production function to be

Q=0.0075K3L3+12K2L2Q = - 0.0075 K ^ { - 3 } L ^ { 3 } + 12 K ^ { 2 } L ^ { 2 }
Suppose the firm employs 12 units of capital.

-At ________ units of labor, average product of labor begins to diminish.

A) 32.21
B) 44.44
C) 66.67
D) 76.66
E) 82.27
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
52
A short-run marginal cost function is estimated as SMC=964Q+0.15Q2S M C = 96 - 4 Q + 0.15 Q ^ { 2 } . Which of the following cost functions is associated with this estimated SMC equation?

A) TVC = 96Q - 2Q2 + 0.05Q3
B) SMC = 96 - 4Q + 0.1Q2
C) TVC = 96Q + 4Q2 + 0.15Q3
D) AVC = 96 - 2Q + 0.05Q2
E) a and d
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
53
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-At what level of output does average variable cost (AVC) reach its minimum value for Greene Enterprises?

A) 800
B) 3,144
C) 3,800
D) 4,333
E) 51,672
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
54
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-When Greene Enterprises produces 6,000 units, average variable cost (AVC) is $_________.

A) $40
B) $49.62
C) $55
D) $60
E) $72.46
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
55
Refer to Greene Enterprises, Inc., whose manager recently estimated its average variable cost (AVC) function to be

AVC=880.026Q+0.000003Q2A V C = 88 - 0.026 Q + 0.000003 Q ^ { 2 }
Greene Enterprises faces total fixed costs (TFC) of $300,000.

-What is total variable cost (TVC) at Greene Enterprises when average variable cost (AVC) is at its minimum?

A) $48,000
B) $101,101
C) $137,222
D) $190,476
E) $437,212
Unlock Deck
Unlock for access to all 55 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 55 flashcards in this deck.