Deck 5: Analytic Trigonometry

Full screen (f)
exit full mode
Question
Use the figure to find the exact value of the trigonometric function.
Sec 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Sec 2 \theta    a = 1, b = 8 </strong> A)   \frac { 63 } { 64 }  B)  \frac { 63 } { 65 }  C)   \frac { 64 } { 65 }  D)   \frac { 65 } { 63 }  E)  \frac { 65 } { 64 }  <div style=padding-top: 35px>
a = 1, b = 8

A) 6364\frac { 63 } { 64 }
B) 6365\frac { 63 } { 65 }
C) 6465\frac { 64 } { 65 }
D) 6563\frac { 65 } { 63 }
E) 6564\frac { 65 } { 64 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the half-angle formulas to simplify the expression.
1cos10x2\sqrt { \frac { 1 - \cos 10 x } { 2 } }

A)|sin 5x|
B)- |sin x|
C)|sin 10x|
D)- |sin 5x|
E)|sin x|
Question
Use the figure to find the exact value of the trigonometric function.
Sin 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Sin 2 \theta    A = 1, b = 2 </strong> A)  \frac { 4 } { 5 }  B)  \frac { 4 } { 5 }   .. C)  \frac { 5 } { 4 }  D)  \frac { 5 } { 5 }  E)  \frac { 5 } { 5 }   .. <div style=padding-top: 35px>
A = 1, b = 2

A) 45\frac { 4 } { 5 }
B) 45\frac { 4 } { 5 } ..
C) 54\frac { 5 } { 4 }
D) 55\frac { 5 } { 5 }
E) 55\frac { 5 } { 5 } ..
Question
Use the figure to find the exact value of the trigonometric function.
Cot 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Cot 2 \theta    a = 1, b = 6 </strong> A)   \frac { 12 } { 35 }  B)  \frac { 35 } { 37 }  C)  \frac { 12 } { 37 }  D)   \frac { 37 } { 35 }  E)  \frac { 35 } { 12 }  <div style=padding-top: 35px>
a = 1, b = 6

A) 1235\frac { 12 } { 35 }
B) 3537\frac { 35 } { 37 }
C) 1237\frac { 12 } { 37 }
D) 3735\frac { 37 } { 35 }
E) 3512\frac { 35 } { 12 }
Question
Use a double-angle formula to rewrite the expression. ​
3 - 6 sin2 x

A)6 cos x
B)​3 sin 2x
C)​3 sin x
D)​3 cos 2x
E)​6 cos 2x
Question
Use the half-angle formulas to simplify the expression. 1+cos6x1cos6x- \sqrt { \frac { 1 + \cos 6 x } { 1 - \cos 6 x } }

A) - |cot x|
B) - |3 tan x|
C) - |3 tan 6x|
D) - |3 cot 3x|
E) - |cot 3x|
Question
Use the figure to find the exact value of the trigonometric function.
Tan 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Tan 2 \theta    a = 1, b = 6 </strong> A)  \frac { 35 } { 12 }  B)  \frac { 12 } { 35 }  C)   \frac { 12 } { 37 }  D)   \frac { 35 } { 37 }  E)   \frac { 37 } { 35 }  <div style=padding-top: 35px>
a = 1, b = 6

A) 3512\frac { 35 } { 12 }
B) 1235\frac { 12 } { 35 }
C) 1237\frac { 12 } { 37 }
D) 3537\frac { 35 } { 37 }
E) 3735\frac { 37 } { 35 }
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product. sin3θsinθ\sin 3 \theta - \sin \theta

A) 2sin3θcosθ2 \sin 3 \theta \cos \theta
B) 2sin2θcosθ2 \sin 2 \theta \cos \theta
C) 2cos2θcosθ2 \cos 2 \theta \cos \theta
D) 2sin2θsinθ2 \sin 2 \theta \sin \theta
E) 2cos2θsinθ2 \cos 2 \theta \sin \theta
Question
Use a double-angle formula to rewrite the expression. ​
2 sin2 x - 1

A)cos x
B)cos 2x​
C)-2 cos x​
D)2 cos 2x​
E)- cos 2x​
Question
Use the figure to find the exact value of the trigonometric function.
Csc 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Csc 2 \theta    a = 1, b = 6 </strong> A)   \frac { 37 } { 12 }  B)   \frac { 13 } { 37 }  C)  \frac { 37 } { 13 }  D)   \frac { 12 } { 13 }  E)  \frac { 12 } { 37 }  <div style=padding-top: 35px>
a = 1, b = 6

A) 3712\frac { 37 } { 12 }
B) 1337\frac { 13 } { 37 }
C) 3713\frac { 37 } { 13 }
D) 1213\frac { 12 } { 13 }
E) 1237\frac { 12 } { 37 }
Question
Use the half-angle formulas to simplify the expression. 1cos(x3)2- \sqrt { \frac { 1 - \cos ( x - 3 ) } { 2 } }

A) sin(x32)- \left| \sin \left( \frac { x - 3 } { 2 } \right) \right|
B) sin1(x+32)- \left| \sin ^ { - 1 } \left( \frac { x + 3 } { 2 } \right) \right|
C) sin(x3)- | \sin ( x - 3 ) |
D) sin1(x32)- \left| \sin ^ { - 1 } \left( \frac { x - 3 } { 2 } \right) \right|
E) sin(x+32)- \left| \sin \left( \frac { x + 3 } { 2 } \right) \right|
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference. 10cos45cos2010 \cos 45 ^ { \circ } \cos 20 ^ { \circ }

A) 10(cos25+cos65)10 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
B) cos25+cos65\cos 25 ^ { \circ } + \cos 65 ^ { \circ }
C) 5(cos65cos25)5 \left( \cos 65 ^ { \circ } - \cos 25 ^ { \circ } \right)
D) 5(cos25+cos65)5 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
E) 5(cos65+sin25)5 \left( \cos 65 ^ { \circ } + \sin 25 ^ { \circ } \right)
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference. sinπ3cosπ6\sin \frac { \pi } { 3 } \cos \frac { \pi } { 6 }

A) 12(sinπ2+cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
B) 12(sinπ2+sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \sin \frac { \pi } { 6 } \right)
C) 12(sinπ2cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \cos \frac { \pi } { 6 } \right)
D) 12(sinπ2sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \sin \frac { \pi } { 6 } \right)
E) (sinπ2+cosπ6)\left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product. sin9θ+sin7θ\sin 9 \theta + \sin 7 \theta

A) 2sin8θsinθ2 \sin 8 \theta \sin \theta
B) 2cos8θcosθ2 \cos 8 \theta \cos \theta
C) 2sin8θcosθ2 \sin 8 \theta \cos \theta
D) 2cos8θsinθ2 \cos 8 \theta \sin \theta
E) 2sin9θcos7θ2 \sin 9 \theta \cos 7 \theta
Question
Use a double-angle formula to rewrite the expression. ​
10 cos2 x - 5

A)5 cos x
B)​cos 5x
C)​10 cos 2x
D)​10 cos x
E)​5 cos 2x
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference. 8sin65cos258 \sin 65 ^ { \circ } \cos 25 ^ { \circ }

A) 8(sin90+sin40)8 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
B) 4(cos90+cos40)4 \left( \cos 90 ^ { \circ } + \cos 40 ^ { \circ } \right)
C) 4(cos90cos40)4 \left( \cos 90 ^ { \circ } - \cos 40 ^ { \circ } \right)
D) (sin90+sin40)\left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
E) 4(sin90+sin40)4 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
Question
Use the figure to find the exact value of the trigonometric function.
Cos 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Cos 2 \theta    a = 1, b = 2 </strong> A)   \frac { 3 } { 4 }  B)  \frac { 3 } { 5 }  C)   \frac { 5 } { 3 }  D)   \frac { 4 } { 5 }  E)   \frac { 5 } { 4 }  <div style=padding-top: 35px>
a = 1, b = 2

A) 34\frac { 3 } { 4 }
B) 35\frac { 3 } { 5 }
C) 53\frac { 5 } { 3 }
D) 45\frac { 4 } { 5 }
E) 54\frac { 5 } { 4 }
Question
Use a double-angle formula to rewrite the expression.
2sinxcosx2 \sin x \cos x

A) sin x
B) 2 sin x
C) 2 sin 2x.
D) sin x..
E) sin 2x
Question
Use the half-angle formulas to simplify the expression.
1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A) - |cos x|
B) |cos x|
C) |cos 4x|
D)- |cos 4x|
E) - |cos 8x|
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference. 4cosπ2sin5π44 \cos \frac { \pi } { 2 } \sin \frac { 5 \pi } { 4 }

A) 2(sin7π4sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } - \sin \frac { 3 \pi } { 4 } \right)
B) 2(cos7π4cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } - \cos \frac { 3 \pi } { 4 } \right)
C) 2(sin7π4+cos3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
D) 2(sin7π4+sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \sin \frac { 3 \pi } { 4 } \right)
E) 2(cos7π4+cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
Question
Find the exact solutions of the given equation in the interval [0, 2 π\pi ).
2sin2x+3sinx=12 \sin ^ { 2 } x + 3 \sin x = - 1

A) x=π,7π4,3π2,11π6x = \pi , \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
B) x=7π4,3π2,11π4x = \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 4 }
C) x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
D) x=π4,7π6,3π2,11π2x = \frac { \pi } { 4 } , \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
E) x=0,7π2,3π2,11π2x = 0 , \frac { 7 \pi } { 2 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
Question
Use the figure below to determine the exact value of the given function. csc2θ\csc 2 \theta  <strong>Use the figure below to determine the exact value of the given function.    \csc 2 \theta   </strong> A)   \csc 2 \theta = \frac { 13 } { 5 }  B)   \csc 2 \theta = \frac { 13 } { 7 }  C)   \csc 2 \theta = \frac { 13 } { 5 } . D)   \csc 2 \theta = \frac { 13 } { 9 }  E)   \csc 2 \theta = \frac { 13 } { 12 }  <div style=padding-top: 35px>

A) csc2θ=135\csc 2 \theta = \frac { 13 } { 5 }
B) csc2θ=137\csc 2 \theta = \frac { 13 } { 7 }
C) csc2θ=135\csc 2 \theta = \frac { 13 } { 5 } .
D) csc2θ=139\csc 2 \theta = \frac { 13 } { 9 }
E) csc2θ=1312\csc 2 \theta = \frac { 13 } { 12 }
Question
Convert the expression.
(2sinx+2cosx)2( 2 \sin x + 2 \cos x ) ^ { 2 }

A) 44sin2x4 - 4 \sin 2 x
B) 2+4sinx2 + 4 \sin x
C) 4+4sinx4 + 4 \sin x
D) 44sinx4 - 4 \sin x
E) 4+4sin2x4 + 4 \sin 2 x
Question
Convert the expression. tana2\tan \frac { a } { 2 }

A) cscatana\csc a - \tan a
B) csca+cota\csc a + \cot a
C) cosacota\cos a - \cot a
D) cosa+cota\cos a + \cot a
E) cscacota\csc a - \cot a
Question
Convert the expression. cos4α\cos 4 \alpha

A) cos22αsin22α\cos ^ { 2 } 2 \alpha - \sin ^ { 2 } 2 \alpha
B) cos22α+sin22α\cos ^ { 2 } 2 \alpha + \sin ^ { 2 } 2 \alpha
C) cos42α+sin42α\cos ^ { 4 } 2 \alpha + \sin ^ { 4 } 2 \alpha
D) cos42αsin42α\cos ^ { 4 } 2 \alpha - \sin ^ { 4 } 2 \alpha
E) cos42αsin22α\cos ^ { 4 } 2 \alpha - \sin ^ { 2 } 2 \alpha
Question
Convert the expression. 3csc2θ3 \csc 2 \theta

A) 3cscθ2sinθ\frac { 3 \csc \theta } { 2 \sin \theta }
B) 3cscθ2secθ\frac { 3 \csc \theta } { 2 \sec \theta }
C) 3cscθcosθ\frac { 3 \csc \theta } { \cos \theta }
D) 3cscθ2cosθ\frac { 3 \csc \theta } { 2 \cos \theta }
E) 3secθ2cosθ\frac { 3 \sec \theta } { 2 \cos \theta }
Question
Use a double-angle formula to find the exact value of cos2u when sinu=725, where π2<u<π\sin u = \frac { 7 } { 25 } \text {, where } \frac { \pi } { 2 } < u < \pi

A) cos2u=527625\cos 2 u = \frac { 527 } { 625 }
B) cos2u=1152625\cos 2 u = - \frac { 1152 } { 625 }
C) cos2u=336625\cos 2 u = \frac { 336 } { 625 }
D) cos2u=168625\cos 2 u = \frac { 168 } { 625 }
E) cos2u=478625\cos 2 u = - \frac { 478 } { 625 }
Question
Convert the expression.
1+cos4y1 + \cos 4 y

A) 2cos22y2 \cos ^ { 2 } 2 y
B) cos24y\cos ^ { 2 } 4 y
C) cos22y\cos ^ { 2 } 2 y
D) 4cos24y4 \cos ^ { 2 } 4 y
E) 2cos24y2 \cos ^ { 2 } 4 y
Question
Use the figure to find the exact value of the trigonometric function.  <strong>Use the figure to find the exact value of the trigonometric function.      \begin{array} { l } a = 12 , b = 3 \\ c = 5 , d = 4 \end{array}  Cos 2 \beta  </strong> A)   \frac { 41 } { 5 }  B)   \frac { 3 } { 10 }  C)  \frac { 9 } { 41 }  D)   \frac { 12 } { 13 }  E)   \frac { 41 } { 9 }  <div style=padding-top: 35px>  a=12,b=3c=5,d=4\begin{array} { l } a = 12 , b = 3 \\c = 5 , d = 4\end{array}
Cos 2 β\beta

A) 415\frac { 41 } { 5 }
B) 310\frac { 3 } { 10 }
C) 941\frac { 9 } { 41 }
D) 1213\frac { 12 } { 13 }
E) 419\frac { 41 } { 9 }
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product. cos12θ+cos8θ\cos 12 \theta + \cos 8 \theta

A) 2sin10θcos2θ2 \sin 10 \theta \cos 2 \theta
B) 2cos10θsin2θ2 \cos 10 \theta \sin 2 \theta
C) 2sin12θcos8θ2 \sin 12 \theta \cos 8 \theta
D) 2cos10θcos2θ2 \cos 10 \theta \cos 2 \theta
E) 2sin10θsin2θ2 \sin 10 \theta \sin 2 \theta
Question
Use a double angle formula to rewrite the given expression. 10cos2x510 \cos ^ { 2 } x - 5

A) 5cos5x5 \cos 5 x
B) 5cos2x5 \cos 2 x
C) 10cos2x10 \cos 2 x
D) 2cos10x2 \cos 10 x
E) 2cos5x2 \cos 5 x
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product.
Cos 3 θ\theta + cos 8 θ\theta

A) cos11θ2cos5θ2\cos \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
B) 2cos11θ2sin5θ22 \cos \frac { 11 \theta } { 2 } \sin - \frac { 5 \theta } { 2 }
C) 2sin11θ2sin5θ22 \sin \frac { 11 \theta } { 2 } \sin \frac { 5 \theta } { 2 }
D) cos11θ2cos5θ2\cos - \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
E) 2cos11θ2cos5θ22 \cos \frac { 11 \theta } { 2 } \cos - \frac { 5 \theta } { 2 }
Question
Convert the expression. cos4bsin4b\cos ^ { 4 } b - \sin ^ { 4 } b

A)2 cos b
B) cos 2b
C) cos b
D)2 cos 2b
E) 4 cos b
Question
When two railroad tracks merge, the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet) and the angle θ\theta are related by
x2=2rsin2θ2\frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 }
Write a formula for x in terms of cos θ\theta .
 <strong>When two railroad tracks merge, the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet) and the angle  \theta  are related by  \frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 }  Write a formula for x in terms of cos  \theta .    </strong> A)   x = r \left( 1 - \cos \frac { \theta } { 2 } \right)  B)   x = r ( 1 - \cos \theta )  C)  x = 2 r ( 1 - \cos \theta )  D)  x = 2 r ( 1 + \cos \theta )  E)  x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)  <div style=padding-top: 35px>

A) x=r(1cosθ2)x = r \left( 1 - \cos \frac { \theta } { 2 } \right)
B) x=r(1cosθ)x = r ( 1 - \cos \theta )
C) x=2r(1cosθ)x = 2 r ( 1 - \cos \theta )
D) x=2r(1+cosθ)x = 2 r ( 1 + \cos \theta )
E) x=2r(1cosθ2)x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)
Question
Use the sum-to-product formulas to select the sum or difference as a product. cos(5ϕ+2π)+cos5ϕ\cos ( 5 \phi + 2 \pi ) + \cos 5 \phi

A) 2cos5ϕcosπ- 2 \cos 5 \phi \cos \pi
B) 2cos5π- 2 \cos 5 \pi
C) 2cos(5ϕ+π)cosπ2 \cos ( 5 \phi + \pi ) \cos \pi
D) 2cos(ϕ+π)cosπ2 \cos ( \phi + \pi ) \cos \pi
E) 2cos(5ϕ+π)2 \cos ( 5 \phi + \pi )
Question
Convert the expression. secb2\sec \frac { b } { 2 }

A) ±2tanbtanb+sinb\pm \sqrt { \frac { 2 \tan b } { \tan b + \sin b } }
B) ±2tanbtanb+cscb\pm \sqrt { \frac { 2 \tan b } { \tan b + \csc b } }
C) ±tanbtanbsinb\pm \sqrt { \frac { \tan b } { \tan b - \sin b } }
D) ±tanbtanb+sinb\pm \sqrt { \frac { \tan b } { \tan b + \sin b } }
E) ±2tanbtanbsinb\pm \sqrt { \frac { 2 \tan b } { \tan b - \sin b } }
Question
Find the exact solutions of the given equation in the interval [0, 2 π\pi ). cos2x+3cosx+2=0\cos 2 x + 3 \cos x + 2 = 0

A) x=0,π,2π3,5π3x = 0 , \pi , \frac { 2 \pi } { 3 } , \frac { 5 \pi } { 3 }
B) x=π,π3,5π3x = \pi , \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
C) x=π,2π3,4π3x = \pi , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 }
D) x = 0
E) x=0,π,π3,4π3x = 0 , \pi , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 }
Question
The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound, the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle θ\theta of the cone by sin(θ/5)=1/M\sin ( \theta / 5 ) = 1 / M .  <strong>The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound, the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle  \theta   of the cone by  \sin ( \theta / 5 ) = 1 / M  .     Rewrite the equation in terms of  \theta . </strong> A)   \theta = 5 \sin \left( \frac { 1 } { M } \right)  B)   \theta = \sin \left( \frac { 1 } { M } \right)  C)   \theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)  D)   \theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)  E)  \theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)  <div style=padding-top: 35px>
Rewrite the equation in terms of θ\theta .

A) θ=5sin(1M)\theta = 5 \sin \left( \frac { 1 } { M } \right)
B) θ=sin(1M)\theta = \sin \left( \frac { 1 } { M } \right)
C) θ=sin1(1M)\theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
D) θ=5sin1(5M)\theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)
E) θ=5sin1(1M)\theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
Question
Use the figure to find the exact value of the trigonometric function.  <strong>Use the figure to find the exact value of the trigonometric function.      \begin{array} { l } a = 8 , b = 9 \\ c = 2 , d = 5 \end{array}  Sin 2 \alpha  </strong> A)   \frac { 8 } { 145 }  B)   \frac { 9 } { 145 }  C)   \frac { 145 } { 2 }  D)   \frac { 145 } { 144 }  E)  \frac { 144 } { 145 }  <div style=padding-top: 35px>  a=8,b=9c=2,d=5\begin{array} { l } a = 8 , b = 9 \\c = 2 , d = 5\end{array}
Sin 2 α\alpha

A) 8145\frac { 8 } { 145 }
B) 9145\frac { 9 } { 145 }
C) 1452\frac { 145 } { 2 }
D) 145144\frac { 145 } { 144 }
E) 144145\frac { 144 } { 145 }
Question
Convert the expression. 7sec2θ7 \sec 2 \theta

A) 7sec2θ2+sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 + \sec ^ { 2 } \theta }
B) sec2θ2sec2θ\frac { \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
C) 7sec2θ2sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
D) 7sec2θ2cos2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
E) 7cos2θ2cos2θ\frac { 7 \cos ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
Question
The range of a projectile fired at an angle θ\theta with the horizontal and with an initial velocity of v0 feet per second is r=132v02sin2θr = \frac { 1 } { 32 } v _ { 0 } ^ { 2 } \sin 2 \theta where r is measured in feet.A golfer strikes a golf ball at 90 feet per second.Ignoring the effects of air resistance, at what angle must the golfer hit the ball so that it travels 150 feet? (Round your answer to the nearest degree.)

A)14°
B)36°
C)18°
D)27°
E)41°
Question
Use the figure below to find the exact value of the given trigonometric expression. cosθ2\cos \frac { \theta } { 2 }  <strong>Use the figure below to find the exact value of the given trigonometric expression.  \cos \frac { \theta } { 2 }   </strong> A)   \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }  B)   \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }  C)   \cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }  D)   \cos \frac { \theta } { 2 } = 7  E)   \cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }  <div style=padding-top: 35px>

A) cosθ2=7210\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }
B) cosθ2=727\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }
C) cosθ2=210\cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }
D) cosθ2=7\cos \frac { \theta } { 2 } = 7
E) cosx2=7212\cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }
Question
Find the expression as the sine of an angle.
sin55cos5+cos55sin5\sin 55 ^ { \circ } \cos 5 ^ { \circ } + \cos 55 ^ { \circ } \sin 5 ^ { \circ }

A) sin55\sin 55 ^ { \circ }
B) cos60\cos 60 ^ { \circ }
C) cos50\cos 50 ^ { \circ }
D) sin60\sin 60 ^ { \circ }
E) sin50\sin 50 ^ { \circ }
Question
Simplify the expression algebraically.
3sin(π2x)3 \sin \left( \frac { \pi } { 2 } - x \right)

A) 13cosx\frac { 1 } { 3 } \cos x
B) 3cosx3 \cos x
C) 13cosx- \frac { 1 } { 3 } \cos x
D) 3cosx- 3 \cos x
E) 3sinx3 \sin x
Question
Find all solutions of the given equation in the interval [0, 2 π\pi ).
cos3x=cosx\cos 3 x = \cos x

A) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
B) x=π4,π2,3π2x = \frac { \pi } { 4 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
C) x=0,π4,π2,πx = 0 , \frac { \pi } { 4 } , \frac { \pi } { 2 } , \pi
D) x=0,π4,π,3π4x = 0 , \frac { \pi } { 4 } , \pi , \frac { 3 \pi } { 4 }
E) x=π8,2π8,π2,3π8,π,3π2x = \frac { \pi } { 8 } , \frac { 2 \pi } { 8 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 8 } , \pi , \frac { 3 \pi } { 2 }
Question
Find the expression as the tangent of an angle. tan3x+tanx1tan3xtanx\frac { \tan 3 x + \tan x } { 1 - \tan 3 x \tan x }

A) tan2x\tan 2 x
B) tan3x\tan 3 x
C) tan4x\tan 4 x
D) tan14x\tan ^ { - 1 } 4 x
E) tan12x\tan ^ { - 1 } 2 x
Question
Use the sum-to-product formulas to find the exact value of the given expression.
cos150+cos30\cos 150 ^ { \circ } + \cos 30 ^ { \circ }

A) 32\frac { - \sqrt { 3 } } { 2 }
B) 1
C) 32\frac { \sqrt { 3 } } { 2 }
D)-1
E)0
Question
Use the half-angle formula to simplify the given expression.
1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A) cos |2x|
B) cos |8x|
C) cos |16x|
D) cos |32x|
E) cos |4x|
Question
Find the expression as the tangent of an angle.
tan60tan201+tan60tan20\frac { \tan 60 ^ { \circ } - \tan 20 ^ { \circ } } { 1 + \tan 60 ^ { \circ } \tan 20 ^ { \circ } }

A) tan40\tan 40 ^ { \circ }
B) tan60\tan 60 ^ { \circ }
C) tan180\tan ^ { - 1 } 80 ^ { \circ }
D) tan20\tan 20 ^ { \circ }
E) tan140\tan ^ { - 1 } 40 ^ { \circ }
Question
Simplify the expression algebraically. 5sin(π6+x)5 \sin \left( \frac { \pi } { 6 } + x \right)

A) 52\frac { 5 } { 2 } (cosx3sinx)( \cos x - \sqrt { 3 } \sin x )
B) 52\frac { 5 } { 2 } (cosx+3sinx)( \cos x + \sqrt { 3 } \sin x )
C) 52\frac { 5 } { 2 } (sinx3cosx)( \sin x - \sqrt { 3 } \cos x )
D) 52\frac { 5 } { 2 } (cosx+sinx)( \cos x + \sin x )
E) 52\frac { 5 } { 2 } (sinx+3cosx)( \sin x + \sqrt { 3 } \cos x )
Question
Find the expression as the sine of an angle.
sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

A) sin3.4\sin 3.4
B) sin3.3\sin 3.3
C) sin3.5\sin 3.5
D) sin3.7\sin 3.7
E) sin3.6\sin 3.6
Question
Find all solutions of the given equation in the interval [0, 2 π\pi ).
12sin2x=cosx\frac { 1 } { 2 } \sin 2 x = \cos x

A) x=π2,3π2x = \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
B) x=0,π2,πx = 0 , \frac { \pi } { 2 } , \pi
C) x=0,π,π2,3π4x = 0 , \pi , \frac { \pi } { 2 } , \frac { 3 \pi } { 4 }
D) x=0,πx = 0 , \pi
E) x = 0
Question
Find the expression as the sine or cosine of an angle.
cos100cos60sin100sin60\cos 100 ^ { \circ } \cos 60 ^ { \circ } - \sin 100 ^ { \circ } \sin 60 ^ { \circ }

A) cos40\cos 40 ^ { \circ }
B) sin40\sin 40 ^ { \circ }
C) sin160\sin 160 ^ { \circ }
D) cos160\cos 160 ^ { \circ }
E) cos100\cos 100 ^ { \circ }
Question
Simplify the expression algebraically.
6sin(π2+x)6 \sin \left( \frac { \pi } { 2 } + x \right)

A) 6cosx6 \cos x
B) 6cosx- 6 \cos x
C) 6sinx6 \sin x
D) 16cosx- \frac { 1 } { 6 } \cos x
E) 16cosx\frac { 1 } { 6 } \cos x
Question
Find the expression as the cosine of an angle.
cosπ5cosπ3sinπ5sinπ3\cos \frac { \pi } { 5 } \cos \frac { \pi } { 3 } - \sin \frac { \pi } { 5 } \sin \frac { \pi } { 3 }

A) sin15π8\sin \frac { 15 \pi } { 8 }
B) cos15π8\cos \frac { 15 \pi } { 8 }
C) cos8π15\cos \frac { 8 \pi } { 15 }
D) cosπ15\cos \frac { \pi } { 15 }
E) sin8π15\sin \frac { 8 \pi } { 15 }
Question
Use the sum-to-product formulas to write the given expression as a product.
sin5θsin3θ\sin 5 \theta - \sin 3 \theta

A) 2 sin 4 θ\theta cos θ\theta
B) -2 sin 4 θ\theta sin θ\theta
C)- 2 cos 4 θ\theta cos θ\theta
D) 2 cos 4 θ\theta sin θ\theta
E) 2 cos 4 θ\theta cos θ\theta
Question
Use the half-angle formulas to determine the exact value of the given trigonometric expression.
tan3π8\tan \frac { 3 \pi } { 8 }

A) tan3π8=21\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } - 1
B) tan3π8=224\tan \frac { 3 \pi } { 8 } = \frac { \sqrt { 2 - \sqrt { 2 } } } { 4 }
C) tan3π8=2+2\tan \frac { 3 \pi } { 8 } = \sqrt { 2 + \sqrt { 2 } }
D) tan3π8=2+1\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } + 1
E) tan3π8=2+24\tan \frac { 3 \pi } { 8 } = - \frac { \sqrt { 2 + \sqrt { 2 } } } { 4 }
Question
Use the product-to-sum formula to write the given product as a sum or difference. 12sinπ6cosπ612 \sin \frac { \pi } { 6 } \cos \frac { \pi } { 6 }

A) 66cosπ126 - 6 \cos \frac { \pi } { 12 }
B) 6sinπ6+6cosπ66 \sin \frac { \pi } { 6 } + 6 \cos \frac { \pi } { 6 }
C) 6sinπ3+6sin06 \sin \frac { \pi } { 3 } + 6 \sin 0
D) 6+6cosπ126 + 6 \cos \frac { \pi } { 12 }
E) 6sinπ12- 6 \sin \frac { \pi } { 12 }
Question
Find the expression as the sine or cosine of an angle.
cos9xcos5y+sin9xsin5y\cos 9 x \cos 5 y + \sin 9 x \sin 5 y

A) sin(5x9y)\sin ( 5 x - 9 y )
B) sin(9x5y)\sin ( 9 x - 5 y )
C) cos(5x9y)\cos ( 5 x - 9 y )
D) cos(9x5y)\cos ( 9 x - 5 y )
E) cos(9x+5y)\cos ( 9 x + 5 y )
Question
Find the expression as the tangent of an angle. tan130tan301+tan130tan30\frac { \tan 130 ^ { \circ } - \tan 30 ^ { \circ } } { 1 + \tan 130 ^ { \circ } \tan 30 ^ { \circ } }

A) tan1100\tan ^ { - 1 } 100 ^ { \circ }
B) tan1130\tan ^ { - 1 } 130 ^ { \circ }
C) tan160\tan 160 ^ { \circ }
D) tan100\tan 100 ^ { \circ }
E) tan30\tan 30 ^ { \circ }
Question
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system, the weight moves vertically from its equilibrium position, and this motion is modeled by
y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t where y is the distance from equilibrium (in feet) and t is the time (in seconds).
Find the amplitude of the oscillations of the weight.

A) 124ft\frac { 1 } { 24 } \mathrm { ft }
B) 110ft\frac { 1 } { 10 } \mathrm { ft }
C) 524ft\frac { 5 } { 24 } \mathrm { ft }
D) 15ft\frac { 1 } { 5 } \mathrm { ft }
E) 245ft\frac { 24 } { 5 } \mathrm { ft }
Question
Simplify the expression algebraically.
92cos(5π4x)\frac { 9 } { \sqrt { 2 } } \cos \left( \frac { 5 \pi } { 4 } - x \right)

A)- 92\frac { 9 } { 2 } (cosx+sinx)( \cos x + \sin x )
B) 92\frac { 9 } { 2 } (cosxsinx)( \cos x - \sin x )
C) 92\frac { 9 } { 2 } (cos5x4+sin5x4)\left( \cos \frac { 5 x } { 4 } + \sin \frac { 5 x } { 4 } \right)
D) 92\frac { 9 } { 2 } (sinxcosx)( \sin x - \cos x )
E) 92\frac { 9 } { 2 } (cos5x4sin5x4)\left( \cos \frac { 5 x } { 4 } - \sin \frac { 5 x } { 4 } \right)
Question
Simplify the expression algebraically.
sin(9x+9y)sin(9x9y)\sin ( 9 x + 9 y ) \sin ( 9 x - 9 y )

A) sin2xsin29y\sin ^ { 2 } x - \sin ^ { 2 } 9 y
B) sin29x+sin29y\sin ^ { 2 } 9 x + \sin ^ { 2 } 9 y
C) sin29xsin29y\sin ^ { 2 } 9 x - \sin ^ { 2 } 9 y
D) sin2x+sin2y\sin ^ { 2 } x + \sin ^ { 2 } y
E) sin29xsin2y\sin ^ { 2 } 9 x - \sin ^ { 2 } y
Question
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system, the weight moves vertically from its equilibrium position, and this motion is modeled by
y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t
Where y is the distance from equilibrium (in feet) and t is the time (in seconds).

Use the identity asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where C=arctan(b/a),a>0C = \arctan ( b / a ) , a > 0 , to write the model in the form y=a2+b2sin(Bt+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B t + C ) .

A) y=sin(2t+0.9273)y = \sin ( 2 t + 0.9273 )
B) y=245sin(2t+0.9273)y = \frac { 24 } { 5 } \sin ( 2 t + 0.9273 )
C) y=245sin(2t0.9273)y = \frac { 24 } { 5 } \sin ( 2 t - 0.9273 )
D) y=sin(2t0.9273)y = \sin ( 2 t - 0.9273 )
E) y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
Question
Simplify the expression algebraically.
cos(6x+9y)+cos(6x9y)\cos ( 6 x + 9 y ) + \cos ( 6 x - 9 y )

A) cos6x\cos 6 x
B) cos6xcos9y\cos 6 x \cos 9 y
C) 2cos6xcos9y2 \cos 6 x \cos 9 y
D) 2cos6x2 \cos 6 x
E) 2cosxcosy2 \cos x \cos y
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 , to rewrite the trigonometric expression in the form.
6sin(θ+π4)\sqrt { 6 } \sin \left( \theta + \frac { \pi } { 4 } \right)

A) 3sinθ3cosθ\sqrt { 3 } \sin \theta - \sqrt { 3 } \cos \theta
B) 3sinθ+cosθ\sqrt { 3 } \sin \theta + \cos \theta
C) sinθ3cosθ\sin \theta - \sqrt { 3 } \cos \theta
D) 3sinθ+3cosθ\sqrt { 3 } \sin \theta + \sqrt { 3 } \cos \theta
E) sinθ+cosθ\sin \theta + \cos \theta
Question
Simplify the expression algebraically.
sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

A) sin(7x2+7y2)\sin \left( 7 x ^ { 2 } + 7 y ^ { 2 } \right)
B) 2sin7x2 \sin 7 x
C) sin(7x27y2)\sin \left( 7 x ^ { 2 } - 7 y ^ { 2 } \right)
D) sin7xcos7y\sin 7 x \cos 7 y
E) 2sin7xcos7y2 \sin 7 x \cos 7 y
Question
Simplify the expression algebraically.
cos(7x+4y)cos(7x4y)\cos ( 7 x + 4 y ) \cos ( 7 x - 4 y )

A) cos27xsin2y\cos ^ { 2 } 7 x - \sin ^ { 2 } y
B) cos27x+sin24y\cos ^ { 2 } 7 x + \sin ^ { 2 } 4 y
C) cos27xsin24y\cos ^ { 2 } 7 x - \sin ^ { 2 } 4 y
D) cos2xsin24y\cos ^ { 2 } x - \sin ^ { 2 } 4 y
E) cos2xsin2y\cos ^ { 2 } x - \sin ^ { 2 } y
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=3,b=,B=1C = \arctan ( b / a ) , a = 3 , b = , B = 1 to rewrite the trigonometric expression in the following form.
y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) sin(θ+0.3218)\sin ( \theta + 0.3218 )
B) sin(θ0.3218)\sin ( \theta - 0.3218 )
C)3 sin(θ+0.3218)\sin ( \theta + 0.3218 )
D) 10\sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
E) 10\sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 , to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

A) 922cosθ\frac { 9 \sqrt { 2 } } { 2 } \cos \theta
B) 922sinθ922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
C) 922sinθ+922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
D) 922sinθ+922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
E) 922sinθ922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=9,b=2,B=2C = \arctan ( a / b ) , a = 9 , b = 2 , B = 2 to rewrite the trigonometric expression in the following form.
y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 85\sqrt { 85 } cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
B)9 cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
C)9 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
D) 85\sqrt { 85 } cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
E)2 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=1,b=3,B=2C = \arctan ( b / a ) , a = 1 , b = 3 , B = 2 , to rewrite the trigonometric expression in the following form. y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 10\sqrt { 10 } sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
B) 10\sqrt { 10 } sin(θ1.249)\sin ( \theta - 1.249 )
C) 10\sqrt { 10 } sin(2θ1.249)\sin ( 2 \theta - 1.249 )
D) 10\sqrt { 10 } sin(θ+1.249)\sin ( \theta + 1.249 )
E) sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) , where C=arctan(a/b),a=2,b=8,B=1C = \arctan ( a / b ) , a = 2 , b = 8 , B = 1 , to rewrite the trigonometric expression in the following form.
y=a2+b2sin(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)2 cos(θ+0.245)\cos ( \theta + 0.245 )
B) 2172 \sqrt { 17 } cos(θ0.245)\cos ( \theta - 0.245 )
C) 2172 \sqrt { 17 } cos(θ+0.245)\cos ( \theta + 0.245 )
D)2 cos(θ0.245)\cos ( \theta - 0.245 )
E)8 cos(θ0.245)\cos ( \theta - 0.245 )
Question
Simplify the expression algebraically.
3cos(πθ)+3sin(π2+θ)3 \cos ( \pi - \theta ) + 3 \sin \left( \frac { \pi } { 2 } + \theta \right)

A) 3cos(θ)3sin(θ)3 \cos ( \theta ) - 3 \sin ( \theta )
B)0
C) 3cos(θ)+3sin(θ)3 \cos ( \theta ) + 3 \sin ( \theta )
D)1
E)6
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 , to rewrite the trigonometric expression in the following form.
y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 6106 \sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
B) 6106 \sqrt { 10 } sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
C) sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
D) 6106 \sqrt { 10 } sin(3θ0.3218)\sin ( 3 \theta - 0.3218 )
E) 6106 \sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.
y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 58\sqrt { 58 } cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
B) 58\sqrt { 58 } cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
C)7 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
D)3 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
E)3 cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
Question
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.
y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)6 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
B) 205\sqrt { 205 } cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
C) 205\sqrt { 205 } cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
D)13 cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
E)13 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
Question
Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

A) 44tanθ1+tanθ\frac { 4 - 4 \tan \theta } { 1 + \tan \theta }
B) 44tanθtanθ\frac { 4 - 4 \tan \theta } { \tan \theta }
C) tanθ4tanθ\frac { \tan \theta } { 4 - \tan \theta }
D) 4+4tanθ1tanθ\frac { 4 + 4 \tan \theta } { 1 - \tan \theta }
E) 4+4tanθtanθ\frac { 4 + 4 \tan \theta } { \tan \theta }
Question
Use a graphing utility to select correct graph of y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.
y1=sin(x+6),y2=sin(x)+sin(6)y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )

A)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
B)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
C)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
D)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
E)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different. <div style=padding-top: 35px>  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
Question
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 , to rewrite the trigonometric expression in the following form.
y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 89\sqrt { 89 } sin(θ+1.0122)\sin ( \theta + 1.0122 )
B) 89\sqrt { 89 } sin(θ1.0122)\sin ( \theta - 1.0122 )
C) 89\sqrt { 89 } sin(2θ1.0122)\sin ( 2 \theta - 1.0122 )
D) 89\sqrt { 89 } sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
E) sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/265
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Analytic Trigonometry
1
Use the figure to find the exact value of the trigonometric function.
Sec 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Sec 2 \theta    a = 1, b = 8 </strong> A)   \frac { 63 } { 64 }  B)  \frac { 63 } { 65 }  C)   \frac { 64 } { 65 }  D)   \frac { 65 } { 63 }  E)  \frac { 65 } { 64 }
a = 1, b = 8

A) 6364\frac { 63 } { 64 }
B) 6365\frac { 63 } { 65 }
C) 6465\frac { 64 } { 65 }
D) 6563\frac { 65 } { 63 }
E) 6564\frac { 65 } { 64 }
6563\frac { 65 } { 63 }
2
Use the half-angle formulas to simplify the expression.
1cos10x2\sqrt { \frac { 1 - \cos 10 x } { 2 } }

A)|sin 5x|
B)- |sin x|
C)|sin 10x|
D)- |sin 5x|
E)|sin x|
|sin 5x|
3
Use the figure to find the exact value of the trigonometric function.
Sin 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Sin 2 \theta    A = 1, b = 2 </strong> A)  \frac { 4 } { 5 }  B)  \frac { 4 } { 5 }   .. C)  \frac { 5 } { 4 }  D)  \frac { 5 } { 5 }  E)  \frac { 5 } { 5 }   ..
A = 1, b = 2

A) 45\frac { 4 } { 5 }
B) 45\frac { 4 } { 5 } ..
C) 54\frac { 5 } { 4 }
D) 55\frac { 5 } { 5 }
E) 55\frac { 5 } { 5 } ..
45\frac { 4 } { 5 } ..
4
Use the figure to find the exact value of the trigonometric function.
Cot 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Cot 2 \theta    a = 1, b = 6 </strong> A)   \frac { 12 } { 35 }  B)  \frac { 35 } { 37 }  C)  \frac { 12 } { 37 }  D)   \frac { 37 } { 35 }  E)  \frac { 35 } { 12 }
a = 1, b = 6

A) 1235\frac { 12 } { 35 }
B) 3537\frac { 35 } { 37 }
C) 1237\frac { 12 } { 37 }
D) 3735\frac { 37 } { 35 }
E) 3512\frac { 35 } { 12 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
5
Use a double-angle formula to rewrite the expression. ​
3 - 6 sin2 x

A)6 cos x
B)​3 sin 2x
C)​3 sin x
D)​3 cos 2x
E)​6 cos 2x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
6
Use the half-angle formulas to simplify the expression. 1+cos6x1cos6x- \sqrt { \frac { 1 + \cos 6 x } { 1 - \cos 6 x } }

A) - |cot x|
B) - |3 tan x|
C) - |3 tan 6x|
D) - |3 cot 3x|
E) - |cot 3x|
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
7
Use the figure to find the exact value of the trigonometric function.
Tan 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Tan 2 \theta    a = 1, b = 6 </strong> A)  \frac { 35 } { 12 }  B)  \frac { 12 } { 35 }  C)   \frac { 12 } { 37 }  D)   \frac { 35 } { 37 }  E)   \frac { 37 } { 35 }
a = 1, b = 6

A) 3512\frac { 35 } { 12 }
B) 1235\frac { 12 } { 35 }
C) 1237\frac { 12 } { 37 }
D) 3537\frac { 35 } { 37 }
E) 3735\frac { 37 } { 35 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
8
Use the sum-to-product formulas to rewrite the sum or difference as a product. sin3θsinθ\sin 3 \theta - \sin \theta

A) 2sin3θcosθ2 \sin 3 \theta \cos \theta
B) 2sin2θcosθ2 \sin 2 \theta \cos \theta
C) 2cos2θcosθ2 \cos 2 \theta \cos \theta
D) 2sin2θsinθ2 \sin 2 \theta \sin \theta
E) 2cos2θsinθ2 \cos 2 \theta \sin \theta
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
9
Use a double-angle formula to rewrite the expression. ​
2 sin2 x - 1

A)cos x
B)cos 2x​
C)-2 cos x​
D)2 cos 2x​
E)- cos 2x​
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
10
Use the figure to find the exact value of the trigonometric function.
Csc 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Csc 2 \theta    a = 1, b = 6 </strong> A)   \frac { 37 } { 12 }  B)   \frac { 13 } { 37 }  C)  \frac { 37 } { 13 }  D)   \frac { 12 } { 13 }  E)  \frac { 12 } { 37 }
a = 1, b = 6

A) 3712\frac { 37 } { 12 }
B) 1337\frac { 13 } { 37 }
C) 3713\frac { 37 } { 13 }
D) 1213\frac { 12 } { 13 }
E) 1237\frac { 12 } { 37 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
11
Use the half-angle formulas to simplify the expression. 1cos(x3)2- \sqrt { \frac { 1 - \cos ( x - 3 ) } { 2 } }

A) sin(x32)- \left| \sin \left( \frac { x - 3 } { 2 } \right) \right|
B) sin1(x+32)- \left| \sin ^ { - 1 } \left( \frac { x + 3 } { 2 } \right) \right|
C) sin(x3)- | \sin ( x - 3 ) |
D) sin1(x32)- \left| \sin ^ { - 1 } \left( \frac { x - 3 } { 2 } \right) \right|
E) sin(x+32)- \left| \sin \left( \frac { x + 3 } { 2 } \right) \right|
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
12
Use the product-to-sum formulas to rewrite the product as a sum or difference. 10cos45cos2010 \cos 45 ^ { \circ } \cos 20 ^ { \circ }

A) 10(cos25+cos65)10 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
B) cos25+cos65\cos 25 ^ { \circ } + \cos 65 ^ { \circ }
C) 5(cos65cos25)5 \left( \cos 65 ^ { \circ } - \cos 25 ^ { \circ } \right)
D) 5(cos25+cos65)5 \left( \cos 25 ^ { \circ } + \cos 65 ^ { \circ } \right)
E) 5(cos65+sin25)5 \left( \cos 65 ^ { \circ } + \sin 25 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
13
Use the product-to-sum formulas to rewrite the product as a sum or difference. sinπ3cosπ6\sin \frac { \pi } { 3 } \cos \frac { \pi } { 6 }

A) 12(sinπ2+cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
B) 12(sinπ2+sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } + \sin \frac { \pi } { 6 } \right)
C) 12(sinπ2cosπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \cos \frac { \pi } { 6 } \right)
D) 12(sinπ2sinπ6)\frac { 1 } { 2 } \left( \sin \frac { \pi } { 2 } - \sin \frac { \pi } { 6 } \right)
E) (sinπ2+cosπ6)\left( \sin \frac { \pi } { 2 } + \cos \frac { \pi } { 6 } \right)
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
14
Use the sum-to-product formulas to rewrite the sum or difference as a product. sin9θ+sin7θ\sin 9 \theta + \sin 7 \theta

A) 2sin8θsinθ2 \sin 8 \theta \sin \theta
B) 2cos8θcosθ2 \cos 8 \theta \cos \theta
C) 2sin8θcosθ2 \sin 8 \theta \cos \theta
D) 2cos8θsinθ2 \cos 8 \theta \sin \theta
E) 2sin9θcos7θ2 \sin 9 \theta \cos 7 \theta
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
15
Use a double-angle formula to rewrite the expression. ​
10 cos2 x - 5

A)5 cos x
B)​cos 5x
C)​10 cos 2x
D)​10 cos x
E)​5 cos 2x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
16
Use the product-to-sum formulas to rewrite the product as a sum or difference. 8sin65cos258 \sin 65 ^ { \circ } \cos 25 ^ { \circ }

A) 8(sin90+sin40)8 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
B) 4(cos90+cos40)4 \left( \cos 90 ^ { \circ } + \cos 40 ^ { \circ } \right)
C) 4(cos90cos40)4 \left( \cos 90 ^ { \circ } - \cos 40 ^ { \circ } \right)
D) (sin90+sin40)\left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
E) 4(sin90+sin40)4 \left( \sin 90 ^ { \circ } + \sin 40 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
17
Use the figure to find the exact value of the trigonometric function.
Cos 2 θ\theta
 <strong>Use the figure to find the exact value of the trigonometric function. Cos 2 \theta    a = 1, b = 2 </strong> A)   \frac { 3 } { 4 }  B)  \frac { 3 } { 5 }  C)   \frac { 5 } { 3 }  D)   \frac { 4 } { 5 }  E)   \frac { 5 } { 4 }
a = 1, b = 2

A) 34\frac { 3 } { 4 }
B) 35\frac { 3 } { 5 }
C) 53\frac { 5 } { 3 }
D) 45\frac { 4 } { 5 }
E) 54\frac { 5 } { 4 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
18
Use a double-angle formula to rewrite the expression.
2sinxcosx2 \sin x \cos x

A) sin x
B) 2 sin x
C) 2 sin 2x.
D) sin x..
E) sin 2x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
19
Use the half-angle formulas to simplify the expression.
1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A) - |cos x|
B) |cos x|
C) |cos 4x|
D)- |cos 4x|
E) - |cos 8x|
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
20
Use the product-to-sum formulas to rewrite the product as a sum or difference. 4cosπ2sin5π44 \cos \frac { \pi } { 2 } \sin \frac { 5 \pi } { 4 }

A) 2(sin7π4sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } - \sin \frac { 3 \pi } { 4 } \right)
B) 2(cos7π4cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } - \cos \frac { 3 \pi } { 4 } \right)
C) 2(sin7π4+cos3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
D) 2(sin7π4+sin3π4)2 \left( \sin \frac { 7 \pi } { 4 } + \sin \frac { 3 \pi } { 4 } \right)
E) 2(cos7π4+cos3π4)2 \left( \cos \frac { 7 \pi } { 4 } + \cos \frac { 3 \pi } { 4 } \right)
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
21
Find the exact solutions of the given equation in the interval [0, 2 π\pi ).
2sin2x+3sinx=12 \sin ^ { 2 } x + 3 \sin x = - 1

A) x=π,7π4,3π2,11π6x = \pi , \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
B) x=7π4,3π2,11π4x = \frac { 7 \pi } { 4 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 4 }
C) x=7π6,3π2,11π6x = \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 6 }
D) x=π4,7π6,3π2,11π2x = \frac { \pi } { 4 } , \frac { 7 \pi } { 6 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
E) x=0,7π2,3π2,11π2x = 0 , \frac { 7 \pi } { 2 } , \frac { 3 \pi } { 2 } , \frac { 11 \pi } { 2 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
22
Use the figure below to determine the exact value of the given function. csc2θ\csc 2 \theta  <strong>Use the figure below to determine the exact value of the given function.    \csc 2 \theta   </strong> A)   \csc 2 \theta = \frac { 13 } { 5 }  B)   \csc 2 \theta = \frac { 13 } { 7 }  C)   \csc 2 \theta = \frac { 13 } { 5 } . D)   \csc 2 \theta = \frac { 13 } { 9 }  E)   \csc 2 \theta = \frac { 13 } { 12 }

A) csc2θ=135\csc 2 \theta = \frac { 13 } { 5 }
B) csc2θ=137\csc 2 \theta = \frac { 13 } { 7 }
C) csc2θ=135\csc 2 \theta = \frac { 13 } { 5 } .
D) csc2θ=139\csc 2 \theta = \frac { 13 } { 9 }
E) csc2θ=1312\csc 2 \theta = \frac { 13 } { 12 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
23
Convert the expression.
(2sinx+2cosx)2( 2 \sin x + 2 \cos x ) ^ { 2 }

A) 44sin2x4 - 4 \sin 2 x
B) 2+4sinx2 + 4 \sin x
C) 4+4sinx4 + 4 \sin x
D) 44sinx4 - 4 \sin x
E) 4+4sin2x4 + 4 \sin 2 x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
24
Convert the expression. tana2\tan \frac { a } { 2 }

A) cscatana\csc a - \tan a
B) csca+cota\csc a + \cot a
C) cosacota\cos a - \cot a
D) cosa+cota\cos a + \cot a
E) cscacota\csc a - \cot a
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
25
Convert the expression. cos4α\cos 4 \alpha

A) cos22αsin22α\cos ^ { 2 } 2 \alpha - \sin ^ { 2 } 2 \alpha
B) cos22α+sin22α\cos ^ { 2 } 2 \alpha + \sin ^ { 2 } 2 \alpha
C) cos42α+sin42α\cos ^ { 4 } 2 \alpha + \sin ^ { 4 } 2 \alpha
D) cos42αsin42α\cos ^ { 4 } 2 \alpha - \sin ^ { 4 } 2 \alpha
E) cos42αsin22α\cos ^ { 4 } 2 \alpha - \sin ^ { 2 } 2 \alpha
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
26
Convert the expression. 3csc2θ3 \csc 2 \theta

A) 3cscθ2sinθ\frac { 3 \csc \theta } { 2 \sin \theta }
B) 3cscθ2secθ\frac { 3 \csc \theta } { 2 \sec \theta }
C) 3cscθcosθ\frac { 3 \csc \theta } { \cos \theta }
D) 3cscθ2cosθ\frac { 3 \csc \theta } { 2 \cos \theta }
E) 3secθ2cosθ\frac { 3 \sec \theta } { 2 \cos \theta }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
27
Use a double-angle formula to find the exact value of cos2u when sinu=725, where π2<u<π\sin u = \frac { 7 } { 25 } \text {, where } \frac { \pi } { 2 } < u < \pi

A) cos2u=527625\cos 2 u = \frac { 527 } { 625 }
B) cos2u=1152625\cos 2 u = - \frac { 1152 } { 625 }
C) cos2u=336625\cos 2 u = \frac { 336 } { 625 }
D) cos2u=168625\cos 2 u = \frac { 168 } { 625 }
E) cos2u=478625\cos 2 u = - \frac { 478 } { 625 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
28
Convert the expression.
1+cos4y1 + \cos 4 y

A) 2cos22y2 \cos ^ { 2 } 2 y
B) cos24y\cos ^ { 2 } 4 y
C) cos22y\cos ^ { 2 } 2 y
D) 4cos24y4 \cos ^ { 2 } 4 y
E) 2cos24y2 \cos ^ { 2 } 4 y
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
29
Use the figure to find the exact value of the trigonometric function.  <strong>Use the figure to find the exact value of the trigonometric function.      \begin{array} { l } a = 12 , b = 3 \\ c = 5 , d = 4 \end{array}  Cos 2 \beta  </strong> A)   \frac { 41 } { 5 }  B)   \frac { 3 } { 10 }  C)  \frac { 9 } { 41 }  D)   \frac { 12 } { 13 }  E)   \frac { 41 } { 9 }   a=12,b=3c=5,d=4\begin{array} { l } a = 12 , b = 3 \\c = 5 , d = 4\end{array}
Cos 2 β\beta

A) 415\frac { 41 } { 5 }
B) 310\frac { 3 } { 10 }
C) 941\frac { 9 } { 41 }
D) 1213\frac { 12 } { 13 }
E) 419\frac { 41 } { 9 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
30
Use the sum-to-product formulas to rewrite the sum or difference as a product. cos12θ+cos8θ\cos 12 \theta + \cos 8 \theta

A) 2sin10θcos2θ2 \sin 10 \theta \cos 2 \theta
B) 2cos10θsin2θ2 \cos 10 \theta \sin 2 \theta
C) 2sin12θcos8θ2 \sin 12 \theta \cos 8 \theta
D) 2cos10θcos2θ2 \cos 10 \theta \cos 2 \theta
E) 2sin10θsin2θ2 \sin 10 \theta \sin 2 \theta
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
31
Use a double angle formula to rewrite the given expression. 10cos2x510 \cos ^ { 2 } x - 5

A) 5cos5x5 \cos 5 x
B) 5cos2x5 \cos 2 x
C) 10cos2x10 \cos 2 x
D) 2cos10x2 \cos 10 x
E) 2cos5x2 \cos 5 x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
32
Use the sum-to-product formulas to rewrite the sum or difference as a product.
Cos 3 θ\theta + cos 8 θ\theta

A) cos11θ2cos5θ2\cos \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
B) 2cos11θ2sin5θ22 \cos \frac { 11 \theta } { 2 } \sin - \frac { 5 \theta } { 2 }
C) 2sin11θ2sin5θ22 \sin \frac { 11 \theta } { 2 } \sin \frac { 5 \theta } { 2 }
D) cos11θ2cos5θ2\cos - \frac { 11 \theta } { 2 } \cos \frac { 5 \theta } { 2 }
E) 2cos11θ2cos5θ22 \cos \frac { 11 \theta } { 2 } \cos - \frac { 5 \theta } { 2 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
33
Convert the expression. cos4bsin4b\cos ^ { 4 } b - \sin ^ { 4 } b

A)2 cos b
B) cos 2b
C) cos b
D)2 cos 2b
E) 4 cos b
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
34
When two railroad tracks merge, the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet) and the angle θ\theta are related by
x2=2rsin2θ2\frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 }
Write a formula for x in terms of cos θ\theta .
 <strong>When two railroad tracks merge, the overlapping portions of the tracks are in the shapes of circular arcs (see figure).The radius of each arc r (in feet) and the angle  \theta  are related by  \frac { x } { 2 } = 2 r \sin ^ { 2 } \frac { \theta } { 2 }  Write a formula for x in terms of cos  \theta .    </strong> A)   x = r \left( 1 - \cos \frac { \theta } { 2 } \right)  B)   x = r ( 1 - \cos \theta )  C)  x = 2 r ( 1 - \cos \theta )  D)  x = 2 r ( 1 + \cos \theta )  E)  x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)

A) x=r(1cosθ2)x = r \left( 1 - \cos \frac { \theta } { 2 } \right)
B) x=r(1cosθ)x = r ( 1 - \cos \theta )
C) x=2r(1cosθ)x = 2 r ( 1 - \cos \theta )
D) x=2r(1+cosθ)x = 2 r ( 1 + \cos \theta )
E) x=2r(1cosθ2)x = 2 r \left( 1 - \cos \frac { \theta } { 2 } \right)
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
35
Use the sum-to-product formulas to select the sum or difference as a product. cos(5ϕ+2π)+cos5ϕ\cos ( 5 \phi + 2 \pi ) + \cos 5 \phi

A) 2cos5ϕcosπ- 2 \cos 5 \phi \cos \pi
B) 2cos5π- 2 \cos 5 \pi
C) 2cos(5ϕ+π)cosπ2 \cos ( 5 \phi + \pi ) \cos \pi
D) 2cos(ϕ+π)cosπ2 \cos ( \phi + \pi ) \cos \pi
E) 2cos(5ϕ+π)2 \cos ( 5 \phi + \pi )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
36
Convert the expression. secb2\sec \frac { b } { 2 }

A) ±2tanbtanb+sinb\pm \sqrt { \frac { 2 \tan b } { \tan b + \sin b } }
B) ±2tanbtanb+cscb\pm \sqrt { \frac { 2 \tan b } { \tan b + \csc b } }
C) ±tanbtanbsinb\pm \sqrt { \frac { \tan b } { \tan b - \sin b } }
D) ±tanbtanb+sinb\pm \sqrt { \frac { \tan b } { \tan b + \sin b } }
E) ±2tanbtanbsinb\pm \sqrt { \frac { 2 \tan b } { \tan b - \sin b } }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
37
Find the exact solutions of the given equation in the interval [0, 2 π\pi ). cos2x+3cosx+2=0\cos 2 x + 3 \cos x + 2 = 0

A) x=0,π,2π3,5π3x = 0 , \pi , \frac { 2 \pi } { 3 } , \frac { 5 \pi } { 3 }
B) x=π,π3,5π3x = \pi , \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
C) x=π,2π3,4π3x = \pi , \frac { 2 \pi } { 3 } , \frac { 4 \pi } { 3 }
D) x = 0
E) x=0,π,π3,4π3x = 0 , \pi , \frac { \pi } { 3 } , \frac { 4 \pi } { 3 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
38
The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound, the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle θ\theta of the cone by sin(θ/5)=1/M\sin ( \theta / 5 ) = 1 / M .  <strong>The mach number M of an airplane is the ratio of its speed to the speed of sound.When an airplane travels faster than the speed of sound, the sound waves form a cone behind the airplane (see figure).The mach number is related to the apex angle  \theta   of the cone by  \sin ( \theta / 5 ) = 1 / M  .     Rewrite the equation in terms of  \theta . </strong> A)   \theta = 5 \sin \left( \frac { 1 } { M } \right)  B)   \theta = \sin \left( \frac { 1 } { M } \right)  C)   \theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)  D)   \theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)  E)  \theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
Rewrite the equation in terms of θ\theta .

A) θ=5sin(1M)\theta = 5 \sin \left( \frac { 1 } { M } \right)
B) θ=sin(1M)\theta = \sin \left( \frac { 1 } { M } \right)
C) θ=sin1(1M)\theta = \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
D) θ=5sin1(5M)\theta = 5 \sin ^ { - 1 } \left( \frac { 5 } { M } \right)
E) θ=5sin1(1M)\theta = 5 \sin ^ { - 1 } \left( \frac { 1 } { M } \right)
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
39
Use the figure to find the exact value of the trigonometric function.  <strong>Use the figure to find the exact value of the trigonometric function.      \begin{array} { l } a = 8 , b = 9 \\ c = 2 , d = 5 \end{array}  Sin 2 \alpha  </strong> A)   \frac { 8 } { 145 }  B)   \frac { 9 } { 145 }  C)   \frac { 145 } { 2 }  D)   \frac { 145 } { 144 }  E)  \frac { 144 } { 145 }   a=8,b=9c=2,d=5\begin{array} { l } a = 8 , b = 9 \\c = 2 , d = 5\end{array}
Sin 2 α\alpha

A) 8145\frac { 8 } { 145 }
B) 9145\frac { 9 } { 145 }
C) 1452\frac { 145 } { 2 }
D) 145144\frac { 145 } { 144 }
E) 144145\frac { 144 } { 145 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
40
Convert the expression. 7sec2θ7 \sec 2 \theta

A) 7sec2θ2+sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 + \sec ^ { 2 } \theta }
B) sec2θ2sec2θ\frac { \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
C) 7sec2θ2sec2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \sec ^ { 2 } \theta }
D) 7sec2θ2cos2θ\frac { 7 \sec ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
E) 7cos2θ2cos2θ\frac { 7 \cos ^ { 2 } \theta } { 2 - \cos ^ { 2 } \theta }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
41
The range of a projectile fired at an angle θ\theta with the horizontal and with an initial velocity of v0 feet per second is r=132v02sin2θr = \frac { 1 } { 32 } v _ { 0 } ^ { 2 } \sin 2 \theta where r is measured in feet.A golfer strikes a golf ball at 90 feet per second.Ignoring the effects of air resistance, at what angle must the golfer hit the ball so that it travels 150 feet? (Round your answer to the nearest degree.)

A)14°
B)36°
C)18°
D)27°
E)41°
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
42
Use the figure below to find the exact value of the given trigonometric expression. cosθ2\cos \frac { \theta } { 2 }  <strong>Use the figure below to find the exact value of the given trigonometric expression.  \cos \frac { \theta } { 2 }   </strong> A)   \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }  B)   \cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }  C)   \cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }  D)   \cos \frac { \theta } { 2 } = 7  E)   \cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }

A) cosθ2=7210\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 10 }
B) cosθ2=727\cos \frac { \theta } { 2 } = \frac { 7 \sqrt { 2 } } { 7 }
C) cosθ2=210\cos \frac { \theta } { 2 } = \frac { \sqrt { 2 } } { 10 }
D) cosθ2=7\cos \frac { \theta } { 2 } = 7
E) cosx2=7212\cos \frac { x } { 2 } = \frac { 7 \sqrt { 2 } } { 12 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
43
Find the expression as the sine of an angle.
sin55cos5+cos55sin5\sin 55 ^ { \circ } \cos 5 ^ { \circ } + \cos 55 ^ { \circ } \sin 5 ^ { \circ }

A) sin55\sin 55 ^ { \circ }
B) cos60\cos 60 ^ { \circ }
C) cos50\cos 50 ^ { \circ }
D) sin60\sin 60 ^ { \circ }
E) sin50\sin 50 ^ { \circ }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
44
Simplify the expression algebraically.
3sin(π2x)3 \sin \left( \frac { \pi } { 2 } - x \right)

A) 13cosx\frac { 1 } { 3 } \cos x
B) 3cosx3 \cos x
C) 13cosx- \frac { 1 } { 3 } \cos x
D) 3cosx- 3 \cos x
E) 3sinx3 \sin x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
45
Find all solutions of the given equation in the interval [0, 2 π\pi ).
cos3x=cosx\cos 3 x = \cos x

A) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
B) x=π4,π2,3π2x = \frac { \pi } { 4 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
C) x=0,π4,π2,πx = 0 , \frac { \pi } { 4 } , \frac { \pi } { 2 } , \pi
D) x=0,π4,π,3π4x = 0 , \frac { \pi } { 4 } , \pi , \frac { 3 \pi } { 4 }
E) x=π8,2π8,π2,3π8,π,3π2x = \frac { \pi } { 8 } , \frac { 2 \pi } { 8 } , \frac { \pi } { 2 } , \frac { 3 \pi } { 8 } , \pi , \frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
46
Find the expression as the tangent of an angle. tan3x+tanx1tan3xtanx\frac { \tan 3 x + \tan x } { 1 - \tan 3 x \tan x }

A) tan2x\tan 2 x
B) tan3x\tan 3 x
C) tan4x\tan 4 x
D) tan14x\tan ^ { - 1 } 4 x
E) tan12x\tan ^ { - 1 } 2 x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
47
Use the sum-to-product formulas to find the exact value of the given expression.
cos150+cos30\cos 150 ^ { \circ } + \cos 30 ^ { \circ }

A) 32\frac { - \sqrt { 3 } } { 2 }
B) 1
C) 32\frac { \sqrt { 3 } } { 2 }
D)-1
E)0
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
48
Use the half-angle formula to simplify the given expression.
1+cos8x2\sqrt { \frac { 1 + \cos 8 x } { 2 } }

A) cos |2x|
B) cos |8x|
C) cos |16x|
D) cos |32x|
E) cos |4x|
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
49
Find the expression as the tangent of an angle.
tan60tan201+tan60tan20\frac { \tan 60 ^ { \circ } - \tan 20 ^ { \circ } } { 1 + \tan 60 ^ { \circ } \tan 20 ^ { \circ } }

A) tan40\tan 40 ^ { \circ }
B) tan60\tan 60 ^ { \circ }
C) tan180\tan ^ { - 1 } 80 ^ { \circ }
D) tan20\tan 20 ^ { \circ }
E) tan140\tan ^ { - 1 } 40 ^ { \circ }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
50
Simplify the expression algebraically. 5sin(π6+x)5 \sin \left( \frac { \pi } { 6 } + x \right)

A) 52\frac { 5 } { 2 } (cosx3sinx)( \cos x - \sqrt { 3 } \sin x )
B) 52\frac { 5 } { 2 } (cosx+3sinx)( \cos x + \sqrt { 3 } \sin x )
C) 52\frac { 5 } { 2 } (sinx3cosx)( \sin x - \sqrt { 3 } \cos x )
D) 52\frac { 5 } { 2 } (cosx+sinx)( \cos x + \sin x )
E) 52\frac { 5 } { 2 } (sinx+3cosx)( \sin x + \sqrt { 3 } \cos x )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
51
Find the expression as the sine of an angle.
sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

A) sin3.4\sin 3.4
B) sin3.3\sin 3.3
C) sin3.5\sin 3.5
D) sin3.7\sin 3.7
E) sin3.6\sin 3.6
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
52
Find all solutions of the given equation in the interval [0, 2 π\pi ).
12sin2x=cosx\frac { 1 } { 2 } \sin 2 x = \cos x

A) x=π2,3π2x = \frac { \pi } { 2 } , \frac { 3 \pi } { 2 }
B) x=0,π2,πx = 0 , \frac { \pi } { 2 } , \pi
C) x=0,π,π2,3π4x = 0 , \pi , \frac { \pi } { 2 } , \frac { 3 \pi } { 4 }
D) x=0,πx = 0 , \pi
E) x = 0
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
53
Find the expression as the sine or cosine of an angle.
cos100cos60sin100sin60\cos 100 ^ { \circ } \cos 60 ^ { \circ } - \sin 100 ^ { \circ } \sin 60 ^ { \circ }

A) cos40\cos 40 ^ { \circ }
B) sin40\sin 40 ^ { \circ }
C) sin160\sin 160 ^ { \circ }
D) cos160\cos 160 ^ { \circ }
E) cos100\cos 100 ^ { \circ }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
54
Simplify the expression algebraically.
6sin(π2+x)6 \sin \left( \frac { \pi } { 2 } + x \right)

A) 6cosx6 \cos x
B) 6cosx- 6 \cos x
C) 6sinx6 \sin x
D) 16cosx- \frac { 1 } { 6 } \cos x
E) 16cosx\frac { 1 } { 6 } \cos x
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
55
Find the expression as the cosine of an angle.
cosπ5cosπ3sinπ5sinπ3\cos \frac { \pi } { 5 } \cos \frac { \pi } { 3 } - \sin \frac { \pi } { 5 } \sin \frac { \pi } { 3 }

A) sin15π8\sin \frac { 15 \pi } { 8 }
B) cos15π8\cos \frac { 15 \pi } { 8 }
C) cos8π15\cos \frac { 8 \pi } { 15 }
D) cosπ15\cos \frac { \pi } { 15 }
E) sin8π15\sin \frac { 8 \pi } { 15 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
56
Use the sum-to-product formulas to write the given expression as a product.
sin5θsin3θ\sin 5 \theta - \sin 3 \theta

A) 2 sin 4 θ\theta cos θ\theta
B) -2 sin 4 θ\theta sin θ\theta
C)- 2 cos 4 θ\theta cos θ\theta
D) 2 cos 4 θ\theta sin θ\theta
E) 2 cos 4 θ\theta cos θ\theta
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
57
Use the half-angle formulas to determine the exact value of the given trigonometric expression.
tan3π8\tan \frac { 3 \pi } { 8 }

A) tan3π8=21\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } - 1
B) tan3π8=224\tan \frac { 3 \pi } { 8 } = \frac { \sqrt { 2 - \sqrt { 2 } } } { 4 }
C) tan3π8=2+2\tan \frac { 3 \pi } { 8 } = \sqrt { 2 + \sqrt { 2 } }
D) tan3π8=2+1\tan \frac { 3 \pi } { 8 } = \sqrt { 2 } + 1
E) tan3π8=2+24\tan \frac { 3 \pi } { 8 } = - \frac { \sqrt { 2 + \sqrt { 2 } } } { 4 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
58
Use the product-to-sum formula to write the given product as a sum or difference. 12sinπ6cosπ612 \sin \frac { \pi } { 6 } \cos \frac { \pi } { 6 }

A) 66cosπ126 - 6 \cos \frac { \pi } { 12 }
B) 6sinπ6+6cosπ66 \sin \frac { \pi } { 6 } + 6 \cos \frac { \pi } { 6 }
C) 6sinπ3+6sin06 \sin \frac { \pi } { 3 } + 6 \sin 0
D) 6+6cosπ126 + 6 \cos \frac { \pi } { 12 }
E) 6sinπ12- 6 \sin \frac { \pi } { 12 }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
59
Find the expression as the sine or cosine of an angle.
cos9xcos5y+sin9xsin5y\cos 9 x \cos 5 y + \sin 9 x \sin 5 y

A) sin(5x9y)\sin ( 5 x - 9 y )
B) sin(9x5y)\sin ( 9 x - 5 y )
C) cos(5x9y)\cos ( 5 x - 9 y )
D) cos(9x5y)\cos ( 9 x - 5 y )
E) cos(9x+5y)\cos ( 9 x + 5 y )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
60
Find the expression as the tangent of an angle. tan130tan301+tan130tan30\frac { \tan 130 ^ { \circ } - \tan 30 ^ { \circ } } { 1 + \tan 130 ^ { \circ } \tan 30 ^ { \circ } }

A) tan1100\tan ^ { - 1 } 100 ^ { \circ }
B) tan1130\tan ^ { - 1 } 130 ^ { \circ }
C) tan160\tan 160 ^ { \circ }
D) tan100\tan 100 ^ { \circ }
E) tan30\tan 30 ^ { \circ }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
61
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system, the weight moves vertically from its equilibrium position, and this motion is modeled by
y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t where y is the distance from equilibrium (in feet) and t is the time (in seconds).
Find the amplitude of the oscillations of the weight.

A) 124ft\frac { 1 } { 24 } \mathrm { ft }
B) 110ft\frac { 1 } { 10 } \mathrm { ft }
C) 524ft\frac { 5 } { 24 } \mathrm { ft }
D) 15ft\frac { 1 } { 5 } \mathrm { ft }
E) 245ft\frac { 24 } { 5 } \mathrm { ft }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
62
Simplify the expression algebraically.
92cos(5π4x)\frac { 9 } { \sqrt { 2 } } \cos \left( \frac { 5 \pi } { 4 } - x \right)

A)- 92\frac { 9 } { 2 } (cosx+sinx)( \cos x + \sin x )
B) 92\frac { 9 } { 2 } (cosxsinx)( \cos x - \sin x )
C) 92\frac { 9 } { 2 } (cos5x4+sin5x4)\left( \cos \frac { 5 x } { 4 } + \sin \frac { 5 x } { 4 } \right)
D) 92\frac { 9 } { 2 } (sinxcosx)( \sin x - \cos x )
E) 92\frac { 9 } { 2 } (cos5x4sin5x4)\left( \cos \frac { 5 x } { 4 } - \sin \frac { 5 x } { 4 } \right)
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
63
Simplify the expression algebraically.
sin(9x+9y)sin(9x9y)\sin ( 9 x + 9 y ) \sin ( 9 x - 9 y )

A) sin2xsin29y\sin ^ { 2 } x - \sin ^ { 2 } 9 y
B) sin29x+sin29y\sin ^ { 2 } 9 x + \sin ^ { 2 } 9 y
C) sin29xsin29y\sin ^ { 2 } 9 x - \sin ^ { 2 } 9 y
D) sin2x+sin2y\sin ^ { 2 } x + \sin ^ { 2 } y
E) sin29xsin2y\sin ^ { 2 } 9 x - \sin ^ { 2 } y
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
64
A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system, the weight moves vertically from its equilibrium position, and this motion is modeled by
y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t
Where y is the distance from equilibrium (in feet) and t is the time (in seconds).

Use the identity asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where C=arctan(b/a),a>0C = \arctan ( b / a ) , a > 0 , to write the model in the form y=a2+b2sin(Bt+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B t + C ) .

A) y=sin(2t+0.9273)y = \sin ( 2 t + 0.9273 )
B) y=245sin(2t+0.9273)y = \frac { 24 } { 5 } \sin ( 2 t + 0.9273 )
C) y=245sin(2t0.9273)y = \frac { 24 } { 5 } \sin ( 2 t - 0.9273 )
D) y=sin(2t0.9273)y = \sin ( 2 t - 0.9273 )
E) y=524sin(2t+0.9273)y = \frac { 5 } { 24 } \sin ( 2 t + 0.9273 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
65
Simplify the expression algebraically.
cos(6x+9y)+cos(6x9y)\cos ( 6 x + 9 y ) + \cos ( 6 x - 9 y )

A) cos6x\cos 6 x
B) cos6xcos9y\cos 6 x \cos 9 y
C) 2cos6xcos9y2 \cos 6 x \cos 9 y
D) 2cos6x2 \cos 6 x
E) 2cosxcosy2 \cos x \cos y
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
66
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 , to rewrite the trigonometric expression in the form.
6sin(θ+π4)\sqrt { 6 } \sin \left( \theta + \frac { \pi } { 4 } \right)

A) 3sinθ3cosθ\sqrt { 3 } \sin \theta - \sqrt { 3 } \cos \theta
B) 3sinθ+cosθ\sqrt { 3 } \sin \theta + \cos \theta
C) sinθ3cosθ\sin \theta - \sqrt { 3 } \cos \theta
D) 3sinθ+3cosθ\sqrt { 3 } \sin \theta + \sqrt { 3 } \cos \theta
E) sinθ+cosθ\sin \theta + \cos \theta
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
67
Simplify the expression algebraically.
sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

A) sin(7x2+7y2)\sin \left( 7 x ^ { 2 } + 7 y ^ { 2 } \right)
B) 2sin7x2 \sin 7 x
C) sin(7x27y2)\sin \left( 7 x ^ { 2 } - 7 y ^ { 2 } \right)
D) sin7xcos7y\sin 7 x \cos 7 y
E) 2sin7xcos7y2 \sin 7 x \cos 7 y
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
68
Simplify the expression algebraically.
cos(7x+4y)cos(7x4y)\cos ( 7 x + 4 y ) \cos ( 7 x - 4 y )

A) cos27xsin2y\cos ^ { 2 } 7 x - \sin ^ { 2 } y
B) cos27x+sin24y\cos ^ { 2 } 7 x + \sin ^ { 2 } 4 y
C) cos27xsin24y\cos ^ { 2 } 7 x - \sin ^ { 2 } 4 y
D) cos2xsin24y\cos ^ { 2 } x - \sin ^ { 2 } 4 y
E) cos2xsin2y\cos ^ { 2 } x - \sin ^ { 2 } y
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
69
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=3,b=,B=1C = \arctan ( b / a ) , a = 3 , b = , B = 1 to rewrite the trigonometric expression in the following form.
y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) sin(θ+0.3218)\sin ( \theta + 0.3218 )
B) sin(θ0.3218)\sin ( \theta - 0.3218 )
C)3 sin(θ+0.3218)\sin ( \theta + 0.3218 )
D) 10\sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
E) 10\sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
70
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 , to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

A) 922cosθ\frac { 9 \sqrt { 2 } } { 2 } \cos \theta
B) 922sinθ922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
C) 922sinθ+922cosθ- \frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
D) 922sinθ+922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta + \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
E) 922sinθ922cosθ\frac { 9 \sqrt { 2 } } { 2 } \sin \theta - \frac { 9 \sqrt { 2 } } { 2 } \cos \theta
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
71
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=9,b=2,B=2C = \arctan ( a / b ) , a = 9 , b = 2 , B = 2 to rewrite the trigonometric expression in the following form.
y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 85\sqrt { 85 } cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
B)9 cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
C)9 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
D) 85\sqrt { 85 } cos(3θ+1.3521)\cos ( 3 \theta + 1.3521 )
E)2 cos(3θ1.3521)\cos ( 3 \theta - 1.3521 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
72
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=1,b=3,B=2C = \arctan ( b / a ) , a = 1 , b = 3 , B = 2 , to rewrite the trigonometric expression in the following form. y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 10\sqrt { 10 } sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
B) 10\sqrt { 10 } sin(θ1.249)\sin ( \theta - 1.249 )
C) 10\sqrt { 10 } sin(2θ1.249)\sin ( 2 \theta - 1.249 )
D) 10\sqrt { 10 } sin(θ+1.249)\sin ( \theta + 1.249 )
E) sin(2θ+1.249)\sin ( 2 \theta + 1.249 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
73
Use the formula asinBθ+bcosBθ=a2+b2sin(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) , where C=arctan(a/b),a=2,b=8,B=1C = \arctan ( a / b ) , a = 2 , b = 8 , B = 1 , to rewrite the trigonometric expression in the following form.
y=a2+b2sin(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)2 cos(θ+0.245)\cos ( \theta + 0.245 )
B) 2172 \sqrt { 17 } cos(θ0.245)\cos ( \theta - 0.245 )
C) 2172 \sqrt { 17 } cos(θ+0.245)\cos ( \theta + 0.245 )
D)2 cos(θ0.245)\cos ( \theta - 0.245 )
E)8 cos(θ0.245)\cos ( \theta - 0.245 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
74
Simplify the expression algebraically.
3cos(πθ)+3sin(π2+θ)3 \cos ( \pi - \theta ) + 3 \sin \left( \frac { \pi } { 2 } + \theta \right)

A) 3cos(θ)3sin(θ)3 \cos ( \theta ) - 3 \sin ( \theta )
B)0
C) 3cos(θ)+3sin(θ)3 \cos ( \theta ) + 3 \sin ( \theta )
D)1
E)6
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
75
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 , to rewrite the trigonometric expression in the following form.
y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 6106 \sqrt { 10 } sin(θ0.3218)\sin ( \theta - 0.3218 )
B) 6106 \sqrt { 10 } sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
C) sin(3θ+0.3218)\sin ( 3 \theta + 0.3218 )
D) 6106 \sqrt { 10 } sin(3θ0.3218)\sin ( 3 \theta - 0.3218 )
E) 6106 \sqrt { 10 } sin(θ+0.3218)\sin ( \theta + 0.3218 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
76
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.
y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 58\sqrt { 58 } cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
B) 58\sqrt { 58 } cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
C)7 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
D)3 cos(2θ0.4049)\cos ( 2 \theta - 0.4049 )
E)3 cos(2θ+0.4049)\cos ( 2 \theta + 0.4049 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
77
Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.
y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A)6 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
B) 205\sqrt { 205 } cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
C) 205\sqrt { 205 } cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
D)13 cos(3θ+1.1384)\cos ( 3 \theta + 1.1384 )
E)13 cos(3θ1.1384)\cos ( 3 \theta - 1.1384 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
78
Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

A) 44tanθ1+tanθ\frac { 4 - 4 \tan \theta } { 1 + \tan \theta }
B) 44tanθtanθ\frac { 4 - 4 \tan \theta } { \tan \theta }
C) tanθ4tanθ\frac { \tan \theta } { 4 - \tan \theta }
D) 4+4tanθ1tanθ\frac { 4 + 4 \tan \theta } { 1 - \tan \theta }
E) 4+4tanθtanθ\frac { 4 + 4 \tan \theta } { \tan \theta }
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
79
Use a graphing utility to select correct graph of y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.
y1=sin(x+6),y2=sin(x)+sin(6)y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )

A)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
B)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are different.
C)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  Yes, y1=y2y _ { 1 } = y _ { 2 } because their graphs are same.
D)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are Same.
E)  <strong>Use a graphing utility to select correct graph of  y _ { 1 }  and  y _ { 2 }  in the same viewing window.Use the graphs to determine whether  y _ { 1 } = y _ { 2 }  .Explain your reasoning.  y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )   </strong> A)    No,  y _ { 1 } = y _ { 2 }  because their graphs are different. B)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are different. C)    Yes,  y _ { 1 } = y _ { 2 }  because their graphs are same. D)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are Same. E)    No,  y _ { 1 } \neq y _ { 2 }  because their graphs are different.  No, y1y2y _ { 1 } \neq y _ { 2 } because their graphs are different.
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
80
Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 , to rewrite the trigonometric expression in the following form.
y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

A) 89\sqrt { 89 } sin(θ+1.0122)\sin ( \theta + 1.0122 )
B) 89\sqrt { 89 } sin(θ1.0122)\sin ( \theta - 1.0122 )
C) 89\sqrt { 89 } sin(2θ1.0122)\sin ( 2 \theta - 1.0122 )
D) 89\sqrt { 89 } sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
E) sin(2θ+1.0122)\sin ( 2 \theta + 1.0122 )
Unlock Deck
Unlock for access to all 265 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 265 flashcards in this deck.