Deck 4: Trigonometry

Full screen (f)
exit full mode
Question
The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 26 feet, and its angle of elevation is 60º (see figure).
 <strong>The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 26 feet, and its angle of elevation is 60º (see figure).   Find the angle of depression  \theta  from the top of the slide to the end of the slide at the ground in terms of the horizontal distance d the rider travels. </strong> A)  \theta = \arctan \left( \frac { 22.52 } { d } \right)  B)  \theta = \arctan \left( \frac { 23.52 } { d } \right)  C)  \theta = \arctan \left( \frac { 24.52 } { d } \right)  D)  \theta = \arctan \left( \frac { 25.52 } { d } \right)  E)  \theta = \arctan \left( \frac { 26.52 } { d } \right)  <div style=padding-top: 35px>
Find the angle of depression θ\theta from the top of the slide to the end of the slide at the ground in terms of the horizontal distance d the rider travels.

A) θ=arctan(22.52d)\theta = \arctan \left( \frac { 22.52 } { d } \right)
B) θ=arctan(23.52d)\theta = \arctan \left( \frac { 23.52 } { d } \right)
C) θ=arctan(24.52d)\theta = \arctan \left( \frac { 24.52 } { d } \right)
D) θ=arctan(25.52d)\theta = \arctan \left( \frac { 25.52 } { d } \right)
E) θ=arctan(26.52d)\theta = \arctan \left( \frac { 26.52 } { d } \right)
Use Space or
up arrow
down arrow
to flip the card.
Question
You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 100 feet ahead of the balloon (see figure).Round your answer to two decimal places. ​ <strong>You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 100 feet ahead of the balloon (see figure).Round your answer to two decimal places. ​   ​ Find the height h of the balloon if the angle of elevation to the top of the balloon is 35º. ​</strong> A)55.02 ft B)56.02 ft C)53.02 ft D)57.02 ft E)54.02 ft <div style=padding-top: 35px>
Find the height h of the balloon if the angle of elevation to the top of the balloon is 35º.

A)55.02 ft
B)56.02 ft
C)53.02 ft
D)57.02 ft
E)54.02 ft
Question
A cellular telephone tower that is 150 feet tall is placed on top of a mountain that is 1200 feet above sea level.What is the angle of depression from the top of the tower to a cell phone user who is 6 horizontal miles away and 400 feet above sea level? Round your answer to two decimal places. ​

A)3.72º
B)1.72º
C)5.72º
D)4.72º
E)2.72º
Question
The sun is 20º above the horizon.Find the length of a shadow cast by a park statue that is 30 feet tall.Approximate the answer to two decimal places. ​

A)82.42 ft
B)84.42 ft
C)85.42 ft
D)83.42 ft
E)86.42 ft
Question
A ladder 17 feet long leans against the side of a house.Find the height from the top of the ladder to the ground if the angle of elevation of the ladder is 80º.Approximate the answer to one decimal place. ​

A)19.7 ft
B)20.7 ft
C)18.7 ft
D)16.7 ft
E)17.7 ft
Question
A Global Positioning System satellite orbits a = 13,000 miles above Earth's surface (see figure).Find the angle of depression from the satellite to the horizon.Assume the radius of Earth is 4000 miles.Round your answer to two decimal places. ​ <strong>A Global Positioning System satellite orbits a = 13,000 miles above Earth's surface (see figure).Find the angle of depression from the satellite to the horizon.Assume the radius of Earth is 4000 miles.Round your answer to two decimal places. ​   ​</strong> A)77.39º B)78.39º C)79.39º D)76.39º E)80.39º <div style=padding-top: 35px>

A)77.39º
B)78.39º
C)79.39º
D)76.39º
E)80.39º
Question
An engineer erects a 111-foot cellular telephone tower.Find the angle of elevation to the top of the tower at a point on level ground 62 feet from its base.Round your answer to one decimal place. ​

A)60.8º
B)64.8º​
C)63.8º
D)61.8º
E)62.8º
Question
Solve the right triangle shown in the figure for all unknown sides and angles.Round your answers to two decimal places.  <strong>Solve the right triangle shown in the figure for all unknown sides and angles.Round your answers to two decimal places.     A = 30 ^ { \circ } , b = 12  </strong> A)  a \approx 13.86 , c \approx 6.93 , B = 60 ^ { \circ }  B)  a \approx 0.59 , c \approx 1.16 , B = 60 ^ { \circ }  C)  a \approx 6.93 , c \approx 13.86 , B = 60 ^ { \circ }  D)  a \approx 6.93 , c \approx 13.86 , B = 45 ^ { \circ }  E)  a \approx 6.93 , c \approx 13.86 , B = 30 ^ { \circ }  <div style=padding-top: 35px>
A=30,b=12A = 30 ^ { \circ } , b = 12

A) a13.86,c6.93,B=60a \approx 13.86 , c \approx 6.93 , B = 60 ^ { \circ }
B) a0.59,c1.16,B=60a \approx 0.59 , c \approx 1.16 , B = 60 ^ { \circ }
C) a6.93,c13.86,B=60a \approx 6.93 , c \approx 13.86 , B = 60 ^ { \circ }
D) a6.93,c13.86,B=45a \approx 6.93 , c \approx 13.86 , B = 45 ^ { \circ }
E) a6.93,c13.86,B=30a \approx 6.93 , c \approx 13.86 , B = 30 ^ { \circ }
Question
The sun is 25º above the horizon.Find the length of a shadow cast by a building that is α=130\alpha = 130 feet tall (see figure).Approximate the answer to two decimal places.  <strong>The sun is 25º above the horizon.Find the length of a shadow cast by a building that is  \alpha = 130  feet tall (see figure).Approximate the answer to two decimal places.      </strong> A)281.79 ft B)278.79 ft C)279.79 ft D)280.79 ft E)282.79 ft <div style=padding-top: 35px>

A)281.79 ft
B)278.79 ft
C)279.79 ft
D)280.79 ft
E)282.79 ft
Question
The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 24 feet, and its angle of elevation is 60º (see figure).
<strong>The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 24 feet, and its angle of elevation is 60º (see figure). ​   ​ Find the height of the slide.Round your answer to two decimal places. ​</strong> A)About 21.78 ft B)About 22.78 ft C)About 23.78 ft D)About 20.78 ft E)About 24.78 ft <div style=padding-top: 35px>
Find the height of the slide.Round your answer to two decimal places.

A)About 21.78 ft
B)About 22.78 ft
C)About 23.78 ft
D)About 20.78 ft
E)About 24.78 ft
Question
The length of a shadow of a tree is 120 feet when the angle of elevation of the sun is 33º.Approximate the height of the tree.Approximate the answer to one decimal place. ​

A)77.9 ft
B)81.9 ft
C)79.9 ft
D)78.9 ft
E)80.9 ft
Question
A police department has set up a speed enforcement zone on a straight length of highway.A patrol car is parked parallel to the zone, a = 210 feet from one end and b = 130 feet from the other end (see figure). ​ <strong>A police department has set up a speed enforcement zone on a straight length of highway.A patrol car is parked parallel to the zone, a = 210 feet from one end and b = 130 feet from the other end (see figure). ​   ​ Find the length l of the zone.Round your answer to two decimal places. ​</strong> A)286.98 ft B)276.98 ft C)266.98 ft D)246.98 ft E)256.98 ft <div style=padding-top: 35px>
Find the length l of the zone.Round your answer to two decimal places.

A)286.98 ft
B)276.98 ft
C)266.98 ft
D)246.98 ft
E)256.98 ft
Question
An observer in a lighthouse a = 340 feet above sea level observes two ships directly offshore. The angles of depression to the ships are 4º and 6.5º (see figure).How far apart are the ships? Round your answer to one decimal place.
<strong>An observer in a lighthouse a = 340 feet above sea level observes two ships directly offshore. The angles of depression to the ships are 4º and 6.5º (see figure).How far apart are the ships? Round your answer to one decimal place. ​   ​</strong> A)1878.1 ft B)1879.1 ft C)1880.1 ft D)1881.1 ft E)1882.1 ft <div style=padding-top: 35px>

A)1878.1 ft
B)1879.1 ft
C)1880.1 ft
D)1881.1 ft
E)1882.1 ft
Question
Find the altitude of the isosceles triangle shown in the figure.Round your answer to two decimal places.  <strong>Find the altitude of the isosceles triangle shown in the figure.Round your answer to two decimal places.     \theta = 45 ^ { \circ } , b = 11   </strong> A)2.00 B)11.00 C)5.50 D)22.00 E)7.50 <div style=padding-top: 35px>  θ=45,b=11\theta = 45 ^ { \circ } , b = 11

A)2.00
B)11.00
C)5.50
D)22.00
E)7.50
Question
You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).  <strong>You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).     Find the length l of the tether you are holding in terms of h, the height h of the balloon from top to bottom. </strong> A)  \sqrt { h ^ { 2 } + 34 h + 17,189 }  B)  \sqrt { h ^ { 2 } + 17 h + 17,189 }  C)  \sqrt { h ^ { 2 } + 20 h + 689 }  D)  \sqrt { h ^ { 2 } + 40 h + 689 }  E)  \sqrt { h ^ { 2 } + 34 h + 289 }  <div style=padding-top: 35px>
Find the length l of the tether you are holding in terms of h, the height h of the balloon from top to bottom.

A) h2+34h+17,189\sqrt { h ^ { 2 } + 34 h + 17,189 }
B) h2+17h+17,189\sqrt { h ^ { 2 } + 17 h + 17,189 }
C) h2+20h+689\sqrt { h ^ { 2 } + 20 h + 689 }
D) h2+40h+689\sqrt { h ^ { 2 } + 40 h + 689 }
E) h2+34h+289\sqrt { h ^ { 2 } + 34 h + 289 }
Question
For the simple harmonic motion described by the trigonometric function, find the least positive value of t for which d = 0. d=112sin14πtd = \frac { 1 } { 12 } \sin 14 \pi t

A) 114\frac { 1 } { 14 }
B) 112\frac { 1 } { 12 }
C) 1212
D) 16\frac { 1 } { 6 }
E) 1414
Question
You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).  <strong>You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).     Find an expression for the angle of elevation from you to the top of the balloon. </strong> A)  \theta = \arccos \left( \frac { 130 } { l } \right)  B)  \theta = \arccos \left( \frac { l } { 130 } \right)  C)  \theta = \arcsin \left( \frac { l } { h + 17 } \right)  D)  \theta = \arcsin \left( \frac { h + 20 } { l } \right)  E)  \theta = \arctan \left( \frac { 130 } { h + 20 } \right)  <div style=padding-top: 35px>
Find an expression for the angle of elevation from you to the top of the balloon.

A) θ=arccos(130l)\theta = \arccos \left( \frac { 130 } { l } \right)
B) θ=arccos(l130)\theta = \arccos \left( \frac { l } { 130 } \right)
C) θ=arcsin(lh+17)\theta = \arcsin \left( \frac { l } { h + 17 } \right)
D) θ=arcsin(h+20l)\theta = \arcsin \left( \frac { h + 20 } { l } \right)
E) θ=arctan(130h+20)\theta = \arctan \left( \frac { 130 } { h + 20 } \right)
Question
A passenger in an airplane at an altitude of a = 20 kilometers sees two towns directly to the east of the plane.The angles of depression to the towns are 28º and 55º (see figure).How far apart are the towns? How far apart are the ships? Round your answer to one decimal place. ​ <strong>A passenger in an airplane at an altitude of a = 20 kilometers sees two towns directly to the east of the plane.The angles of depression to the towns are 28º and 55º (see figure).How far apart are the towns? How far apart are the ships? Round your answer to one decimal place. ​   ​</strong> A)23.6 km B)24.6 km C)25.6 km D)26.6 km E)27.6 km <div style=padding-top: 35px>

A)23.6 km
B)24.6 km
C)25.6 km
D)26.6 km
E)27.6 km
Question
For the simple harmonic motion described by the trigonometric function, find the least positive value of t for which d = 0.
d=164sin794πtd = \frac { 1 } { 64 } \sin 794 \pi t

A) 6464
B) 1794\frac { 1 } { 794 }
C) 794794
D) 164\frac { 1 } { 64 }
E) 11,584\frac { 1 } { 1,584 }
Question
The height of an outdoor basketball backboard is 121412 \frac { 1 } { 4 } feet, and the backboard casts a shadow 171217 \frac { 1 } { 2 } feet long. Find the angle of elevation of the sun.Round your answer to one decimal place.

A)36.0º
B)37.0º
C)35.0º
D)39.0º
E)38.0º
Question
For the simple harmonic motion described by the trigonometric function, find the least positive value of t for which
d=0d = 0 d=6cos6π5td = 6 \cos \frac { 6 \pi } { 5 } t

A) 125\frac { 12 } { 5 }
B) 512\frac { 5 } { 12 }
C) 56\frac { 5 } { 6 }
D) 65\frac { 6 } { 5 }
E) 16\frac { 1 } { 6 }
Question
For the simple harmonic motion described by the trigonometric function, find the frequency per second. d=14sin6πtd = \frac { 1 } { 4 } \sin 6 \pi t

A) 33
B) 66
C) 3π3 \pi
D) 6π6 \pi
E) 2π2 \pi
Question
For the simple harmonic motion described by the trigonometric function, find the maximumvalue of d when . d=6cos6π5td = 6 \cos \frac { 6 \pi } { 5 } t Round your answer to nearest whole number.

A)1
B)10
C)6
D)5
E)0
Question
Find the angle α\alpha between two nonvertical lines L1L _ { 1 } and L2L _ { 2 } .The angle α\alpha satisfies the equation
tanα=m2m11+m2m1\tan \alpha = \left| \frac { m _ { 2 } - m _ { 1 } } { 1 + m _ { 2 } m _ { 1 } } \right|
Where m1m _ { 1 } and m2m _ { 2 } are slopes of L1L _ { 1 } and L2L _ { 2 } , respectively.
(Assume that m1m21m _ { 1 } m _ { 2 } \neq 1 .)
L1L _ { 1 } : 5x - 4y = 5 L2L _ { 2 } : x + y = 1

Round your answer to one decimal place.

A)83.7º
B)84.7º
C)85.7º
D)86.7º
E)87.7º
Question
For the simple harmonic motion described by the trigonometric function, find the maximum displacement. d=12sin6πtd = \frac { 1 } { 2 } \sin 6 \pi t

A) 66
B) 12\frac { 1 } { 2 }
C) 1212
D) 16\frac { 1 } { 6 }
E) 22
Question
A point on the end of a tuning fork moves in simple harmonic motion described by d=asinωtd = a \sin \omega t
Find ω\omega given that the tuning fork for middle C has a frequency 270 of vibrations per second.

A) ω=270π\omega = 270 \pi
B) ω=810π\omega = 810 \pi
C) ω=540π\omega = 540 \pi
D) ω=1080π\omega = 1080 \pi
E) ω=271π\omega = 271 \pi
Question
For the simple harmonic motion described by the trigonometric function, find the maximum displacement.
d=8cos6π5td = 8 \cos \frac { 6 \pi } { 5 } t

A) 55
B) 65\frac { 6 } { 5 }
C) 8
D) 18\frac { 1 } { 8 }
E) 56\frac { 5 } { 6 }
Question
Find the length of the sides of a regular pentagon inscribed in a circle of radius 26 inches.Round your answer to one decimal place. ​

A)31.6 in.
B)33.6 in.
C)30.6 in.
D)32.6 in.
E)34.6 in.
Question
For the simple harmonic motion described by the trigonometric function, find the frequency per second.
d=9cos8π5td = 9 \cos \frac { 8 \pi } { 5 } t

A) 45\frac { 4 } { 5 }
B) 8π5\frac { 8 \pi } { 5 }
C) 54\frac { 5 } { 4 }
D) 5π8\frac { 5 \pi } { 8 }
E) 58\frac { 5 } { 8 }
Question
Determine the angle between the diagonal of a cube and the diagonal of its base, as shown in the figure, where a=12a = 12 .Round your answer to one decimal place.
 <strong>Determine the angle between the diagonal of a cube and the diagonal of its base, as shown in the figure, where  a = 12  .Round your answer to one decimal place.    </strong> A)38.3<sup>o</sup> B)36.3<sup>o</sup> C)39.3<sup>o</sup> D)35.3<sup>o</sup> E)37.3<sup>o</sup> <div style=padding-top: 35px>

A)38.3o
B)36.3o
C)39.3o
D)35.3o
E)37.3o
Question
Find a model for simple harmonic motion satisfying the specified conditions.
Displacement (t = 0): 0
Amplitude: 5 meters
Period: 10 seconds

A) d=5sin(πt5)d = 5 \sin \left( \frac { \pi t } { 5 } \right)
B) d=5sin(2πt)d = 5 \sin ( 2 \pi t )
C) d=5sin(πt12)d = 5 \sin \left( \frac { \pi t } { 12 } \right)
D) d=10sin(πt)d = 10 \sin ( \pi t )
E) d=5cos(2πt)d = 5 \cos ( 2 \pi t )
Question
Find the length of the sides of a regular hexagon inscribed in a circle of radius 29 inches. ​

A)30 in.
B)31 in.
C)32 in.
D)33 in.
E)29 in.
Question
Find the angle α\alpha between two nonvertical lines L1L _ { 1 } and L2L _ { 2 } .The angle α\alpha satisfies the equation
tanα=m2m11+m2m1\tan \alpha = \left| \frac { m _ { 2 } - m _ { 1 } } { 1 + m _ { 2 } m _ { 1 } } \right|

Where m1m _ { 1 } and m2m _ { 2 } are slopes of L1L _ { 1 } and L2L _ { 2 } , respectively.
(Assume that m1m21m _ { 1 } m _ { 2 } \neq 1 .)

L1:2xy=8L _ { 1 } : 2 x - y = 8 L2:x5y=4L _ { 2 } : x - 5 y = - 4
Round your answer to one decimal place.

A)54.1o
B) 53.1o
C)55.1o
D)52.1o
E)56.1o
Question
Find the distance y across the flat sides of a hexagonal nut (see figure). r=14r = 14 cm Round your answer to two decimal places.
 <strong>Find the distance y across the flat sides of a hexagonal nut (see figure).  r = 14  cm Round your answer to two decimal places.    </strong> A)  y = 28.25  cm B)  y = 24.25  cm C)  y = 27.25  cm D)  y = 26.25  cm E)  y = 25.25  cm <div style=padding-top: 35px>

A) y=28.25y = 28.25 cm
B) y=24.25y = 24.25 cm
C) y=27.25y = 27.25 cm
D) y=26.25y = 26.25 cm
E) y=25.25y = 25.25 cm
Question
Determine the angle between the diagonal of a cube and its edge, as shown in the figure, where a=12a = 12 .Round your answer to one decimal place.  <strong>Determine the angle between the diagonal of a cube and its edge, as shown in the figure, where  a = 12  .Round your answer to one decimal place.     </strong> A)56.7<sup>o</sup> B)57.7<sup>o</sup> C)55.7<sup>o</sup> D)54.7<sup>o</sup> E)58.7<sup>o</sup> <div style=padding-top: 35px>

A)56.7o
B)57.7o
C)55.7o
D)54.7o
E)58.7o
Question
For the simple harmonic motion described by the trigonometric function, find the frequency per second. d=116cos12πtd = \frac { 1 } { 16 } \cos 12 \pi t

A)16
B) π\pi
C)12
D)2 π\pi
E)6
Question
For the simple harmonic motion described by the trigonometric function, find the maximum displacement. d=14cos20πtd = \frac { 1 } { 4 } \cos 20 \pi t

A) 120\frac { 1 } { 20 }
B) 204\frac { 20 } { 4 }
C) 14\frac { 1 } { 4 }
D) 420\frac { 4 } { 20 }
E) 2020
Question
A ball that is bobbing up and down on the end of a spring has a maximum displacement of 3 inches.Its motion (in ideal conditions) is modeled by
y=14cos18t(t>0)y = \frac { 1 } { 4 } \cos 18 t ( t > 0 )
where y is measured in feet and t is the time in seconds.
What is the period of the oscillations ?

A) 9π\frac { 9 } { \pi }
B) 18π\frac { 18 } { \pi }
C) π18\frac { \pi } { 18 }
D) π2\frac { \pi } { 2 }
E) π9\frac { \pi } { 9 }
Question
Find a model for simple harmonic motion satisfying the specified conditions.
Displacement (t = 0): 0
Amplitude: 5 centimeters
Period: 2 seconds

A) d=5cos(2πt)d = 5 \cos ( 2 \pi t )
B) d=5sin(πt2)d = 5 \sin \left( \frac { \pi t } { 2 } \right)
C) d=5sin(πt)d = 5 \sin ( \pi \mathrm { t } )
D) d=2sin(πt)d = 2 \sin ( \pi t )
E) d=5sin(2πt)d = 5 \sin ( 2 \pi t )
Question
Find the lengths of all the unknown members of the truss. Round your answer to one decimal place.
 <strong>Find the lengths of all the unknown members of the truss. Round your answer to one decimal place.      A = 30   </strong> A)  b \approx 22.0 , a \approx 37.6  B)  b \approx 21.0 , a \approx 36.6  C)  b \approx 24.0 , a \approx 39.6  D)  b \approx 36.6 , a \approx 21.0  E)  b \approx 23.0 , a \approx 38.6  <div style=padding-top: 35px>  A=30A = 30

A) b22.0,a37.6b \approx 22.0 , a \approx 37.6
B) b21.0,a36.6b \approx 21.0 , a \approx 36.6
C) b24.0,a39.6b \approx 24.0 , a \approx 39.6
D) b36.6,a21.0b \approx 36.6 , a \approx 21.0
E) b23.0,a38.6b \approx 23.0 , a \approx 38.6
Question
Evaluate the expression.Round your result to two decimal places. arctan2.6\arctan 2.6

A)2.20
B)0.20
C)3.20
D)-0.80
E)1.20
Question
Evaluate the expression.Round your result to two decimal places. arccos0.23\arccos 0.23

A)-0.66
B)2.34
C)1.34
D)3.34
E)0.34
Question
A plane is 52 miles west and 46 miles north of an airport.The pilot wants to fly directly to the airport.What bearing should the pilot take? Answer should be given in degrees and minutes.

A) 13130131 ^ { \circ } 30 ^ { \prime }
B) 12927129 ^ { \circ } 27 ^ { \prime }
C) 13232132 ^ { \circ } 32 ^ { \prime }
D) 483048 ^ { \circ } 30 ^ { \prime }
E) 13429134 ^ { \circ } 29 ^ { \prime }
Question
Evaluate the expression.Round your result to two decimal places. arcsin0.45\arcsin 0.45

A)-1.53
B)-0.53
C)2.47
D)0.47
E)1.47
Question
Evaluate the expression.Round your result to two decimal places. arcsin(0.130)\arcsin ( - 0.130 )

A)1.87
B)-2.13
C)-1.13
D)0.87
E)-0.13
Question
After leaving the runway, a plane's angle of ascent is 17o and its speed is 278 feet per second.How many minutes will it take for the airplane to climb to a height of 11,500 feet? Round answer to two decimal places.

A)0.69 minutes
B)2.36 minutes
C)0.72 minutes
D)1.25 minutes
E)1.81 minutes
Question
Find the altitude of the isosceles triangle shown below if θ=53\theta = 53 ^ { \circ } and b=25 meters b = 25 \text { meters } .Round answer to two decimal places.  <strong>Find the altitude of the isosceles triangle shown below if  \theta = 53 ^ { \circ }  and  b = 25 \text { meters }  .Round answer to two decimal places.  </strong> A)33.18 meters B)6.23 meters C)9.98 meters D)16.59 meters E)9.42 meters <div style=padding-top: 35px>

A)33.18 meters
B)6.23 meters
C)9.98 meters
D)16.59 meters
E)9.42 meters
Question
Evaluate the expression.Round your result to two decimal places. arccos(0.6)\arccos ( - 0.6 )

A)4.21
B)2.21
C)3.21
D)0.21
E)1.21
Question
Find the altitude of the isosceles triangle shown below if θ=38\theta = 38 ^ { \circ } and b=8 centimeters b = 8 \text { centimeters } .Round your answer to two decimal places.  <strong>Find the altitude of the isosceles triangle shown below if  \theta = 38 ^ { \circ }  and  b = 8 \text { centimeters }  .Round your answer to two decimal places.  </strong> A)5.12 centimeters B)6.25 centimeters C)3.13 centimeters D)2.46 centimeters E)1.38 centimeters <div style=padding-top: 35px>

A)5.12 centimeters
B)6.25 centimeters
C)3.13 centimeters
D)2.46 centimeters
E)1.38 centimeters
Question
Evaluate the expression.Round your result to two decimal places. arctan30\arctan 30

A)3.54
B)0.54
C)1.54
D)2.54
E)-0.46
Question
A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile, θ, is called the angle of repose.If the height of a pile of sand is 11 feet and its diameter is approximately 34 feet, determine the angle of repose.Round answer to nearest degree. <strong>A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile, θ, is called the angle of repose.If the height of a pile of sand is 11 feet and its diameter is approximately 34 feet, determine the angle of repose.Round answer to nearest degree.  </strong> A)29<sup>o</sup> B)30<sup>o</sup> C)31<sup>o</sup> D)32<sup>o</sup> E)33<sup>o</sup> <div style=padding-top: 35px>

A)29o
B)30o
C)31o
D)32o
E)33o
Question
A land developer wants to find the distance across a small lake in the middle of his proposed development.The bearing from A to B is N31W\mathrm { N } 31 ^ { \circ } \mathrm { W } .The developer leaves point A and travels 74 yards perpendicular to AB\overline {A B} to point C.The bearing from C to point B is N59W\mathrm { N } 59 ^ { \circ } \mathrm { W } .Determine the distance, AB, across the small lake.Round distance to nearest yard.  <strong>A land developer wants to find the distance across a small lake in the middle of his proposed development.The bearing from A to B is  \mathrm { N } 31 ^ { \circ } \mathrm { W }  .The developer leaves point A and travels 74 yards perpendicular to  \overline {A B}  to point C.The bearing from C to point B is  \mathrm { N } 59 ^ { \circ } \mathrm { W }  .Determine the distance, AB, across the small lake.Round distance to nearest yard.  </strong> A)169 yards B)114 yards C)139 yards D)154 yards E)121 yards <div style=padding-top: 35px>

A)169 yards
B)114 yards
C)139 yards
D)154 yards
E)121 yards
Question
Evaluate the expression.Round your result to two decimal places. cos10.44\cos ^ { - 1 } 0.44

A)2.12
B)0.12
C)1.12
D)-0.88
E)3.12
Question
Evaluate the expression.Round your result to two decimal places. arcsin23\arcsin \frac { 2 } { 3 }

A)1.73
B)-0.27
C)-1.27
D)2.73
E)0.73
Question
If the sides of a rectangular solid are as shown, and s=4s = 4 , determine the angle, θ\theta , between the diagonal of the base of the solid and the diagonal of the solid.Round answer to two decimal places.  <strong>If the sides of a rectangular solid are as shown, and  s = 4  , determine the angle,  \theta , between the diagonal of the base of the solid and the diagonal of the solid.Round answer to two decimal places.  </strong> A)21.91<sup>o</sup> B)24.09<sup>o</sup> C)17.21<sup>o</sup> D)26.28<sup>o</sup> E)19.86<sup>o</sup> <div style=padding-top: 35px>

A)21.91o
B)24.09o
C)17.21o
D)26.28o
E)19.86o
Question
After leaving the runway, a plane's angle of ascent is 17o and its speed is 280 feet per second.How many minutes will it take for the airplane to climb to a height of 11,000 feet? Round your answer to two decimal places. ​

A)1.72 minutes
B)1.19 minutes
C)2.24 minutes
D)0.65 minutes
E)0.68 minutes
Question
If a=12a = 12 and c=18c = 18 , determine the value of A.Round to two decimal places.  <strong>If  a = 12  and  c = 18  , determine the value of A.Round to two decimal places.  </strong> A)48.19<sup>o</sup> B)56.31<sup>o</sup> C)33.69<sup>o</sup> D)41.81<sup>o</sup> E)53.19<sup>o</sup> <div style=padding-top: 35px>

A)48.19o
B)56.31o
C)33.69o
D)41.81o
E)53.19o
Question
If a=11a = 11 and c=28c = 28 , determine the value of B.Round to two decimal places.  <strong>If  a = 11  and  c = 28  , determine the value of B.Round to two decimal places.  </strong> A)68.55<sup>o</sup> B)66.87<sup>o</sup> C)28.13<sup>o</sup> D)21.45<sup>o</sup> E)23.13<sup>o</sup> <div style=padding-top: 35px>

A)68.55o
B)66.87o
C)28.13o
D)21.45o
E)23.13o
Question
The angle of elevation of the sun is 26o.Find the length, l, of a shadow cast by a tree that is 38 feet tall.Round your answer to two decimal places.

A) l=68.96l = 68.96 feet
B) l=86.68l = 86.68 feet
C) l=42.28l = 42.28 feet
D) l=49.48l = 49.48 feet
E) l=77.91l = 77.91 feet
Question
Evaluate the expression.Round your result to two decimal places. sin10.65\sin ^ { - 1 } 0.65

A)2.71
B)-0.29
C)1.71
D)0.71
E)-1.29
Question
Find an algebraic expression that is equivalent to the expression.. tan(arccosx6)\tan \left( \arccos \frac { x } { 6 } \right)

A) 36x2x\frac { \sqrt { 36 - x ^ { 2 } } } { x }
B) 36x2x\frac { 36 - x ^ { 2 } } { x }
C) 36+x2x\frac { \sqrt { 36 + x ^ { 2 } } } { x }
D) 36+x236+x2\frac { \sqrt { 36 + x ^ { 2 } } } { 36 + x ^ { 2 } }
E) 36x236x2\frac { \sqrt { 36 - x ^ { 2 } } } { 36 - x ^ { 2 } }
Question
Find an algebraic expression that is equivalent to the expression. sec(arctan4x)\sec ( \arctan 4 x )

A) 16x2+1\sqrt { 16 x ^ { 2 } + 1 }
B) 116x2\sqrt { 1 - 16 x ^ { 2 } }
C) 16x2116x21\frac { \sqrt { 16 x ^ { 2 } - 1 } } { 16 x ^ { 2 } - 1 }
D) 16x21\sqrt { 16 x ^ { 2 } - 1 }
E) 16x2+116x2+1\frac { \sqrt { 16 x ^ { 2 } + 1 } } { 16 x ^ { 2 } + 1 }
Question
Evaluate the expression.Round your result to two decimal places. tan1(588)\tan ^ { - 1 } ( - \sqrt { 588 } )

A)-0.53
B)-1.53
C)0.47
D)-3.53
E)-2.53
Question
A boat is pulled in by means of a winch located on a dock a=2a = 2 feet above the deck of the boat (see figure).Let θ\theta be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write θ\theta as a function of s.  <strong>A boat is pulled in by means of a winch located on a dock  a = 2  feet above the deck of the boat (see figure).Let  \theta  be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write  \theta  as a function of s.     </strong> A)  \theta = \operatorname { arccsc } \frac { 2 } { s }  B)  \theta = \operatorname { arcsec } \frac { 2 } { s }  C)  \theta = \arccos \frac { 2 } { s }  D)  \theta = \arctan \frac { 2 } { s }  E)  \theta = \arcsin \frac { 2 } { s }  <div style=padding-top: 35px>

A) θ=arccsc2s\theta = \operatorname { arccsc } \frac { 2 } { s }
B) θ=arcsec2s\theta = \operatorname { arcsec } \frac { 2 } { s }
C) θ=arccos2s\theta = \arccos \frac { 2 } { s }
D) θ=arctan2s\theta = \arctan \frac { 2 } { s }
E) θ=arcsin2s\theta = \arcsin \frac { 2 } { s }
Question
Use the properties of inverse trigonometric functions to evaluate the expression. arcsin(sin7π)\arcsin ( \sin 7 \pi )

A)1
B)-1
C) cos17π\cos ^ { - 1 } 7 \pi
D)0
E) sin17π\sin ^ { - 1 } 7 \pi
Question
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta as a function of x.     A = 5x B = x + 9 </strong> A)  \theta = \arctan \frac { x + 9 } { 5 x }  B)  \theta = \arcsin \frac { x + 9 } { 5 x }  C)  \theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }  D)  \theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }  E)  \theta = \arccos \frac { x + 9 } { 5 x }  <div style=padding-top: 35px>
A = 5x
B = x + 9

A) θ=arctanx+95x\theta = \arctan \frac { x + 9 } { 5 x }
B) θ=arcsinx+95x\theta = \arcsin \frac { x + 9 } { 5 x }
C) θ=arcsecx+95x\theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }
D) θ=arccscx+95x\theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }
E) θ=arccosx+95x\theta = \arccos \frac { x + 9 } { 5 x }
Question
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.       \begin{array} { l } a = x ^ { 2 } - 16 \\ b = x - 4 \end{array}   </strong> A)  \theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4  B)  \theta = \arctan \frac { 1 } { x - 4 } , x \neq 4  C)  \theta = \arctan \frac { 1 } { x + 4 } , x \neq 4  D)  \theta = \arccos \frac { 1 } { x + 4 } , x \neq 4  E)  \theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4  <div style=padding-top: 35px>  a=x216b=x4\begin{array} { l } a = x ^ { 2 } - 16 \\b = x - 4\end{array}

A) θ=arcsin1x+4,x4\theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4
B) θ=arctan1x4,x4\theta = \arctan \frac { 1 } { x - 4 } , x \neq 4
C) θ=arctan1x+4,x4\theta = \arctan \frac { 1 } { x + 4 } , x \neq 4
D) θ=arccos1x+4,x4\theta = \arccos \frac { 1 } { x + 4 } , x \neq 4
E) θ=arccot1x+4,x4\theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4
Question
Evaluate the expression.Round your result to two decimal places. arccos(23)\arccos \left( - \frac { 2 } { 3 } \right)

A)0.30
B)1.30
C)4.30
D)3.30
E)2.30
Question
A television camera at ground level is filming the lift-off of a space shuttle at a point a=925a = 925 meters from the launch pad (see figure).Let θ\theta be the angle of elevation to the shuttle and let s be the height of the shuttle.Write θ\theta as a function of s.  <strong>A television camera at ground level is filming the lift-off of a space shuttle at a point  a = 925  meters from the launch pad (see figure).Let  \theta  be the angle of elevation to the shuttle and let s be the height of the shuttle.Write  \theta  as a function of s.     </strong> A)  \theta = \arctan \frac { s } { 925 }  B)  \theta = \arcsin \frac { s } { 925 }  C)  \theta = \operatorname { arccsc } \frac { s } { 925 }  D)  \theta = \arctan \frac { 925 } { s }  E)  \theta = \operatorname { arccot } \frac { s } { 925 }  <div style=padding-top: 35px>

A) θ=arctans925\theta = \arctan \frac { s } { 925 }
B) θ=arcsins925\theta = \arcsin \frac { s } { 925 }
C) θ=arccscs925\theta = \operatorname { arccsc } \frac { s } { 925 }
D) θ=arctan925s\theta = \arctan \frac { 925 } { s }
E) θ=arccots925\theta = \operatorname { arccot } \frac { s } { 925 }
Question
Find an algebraic expression that is equivalent to the expression.. cos(arcsin4x)\cos ( \arcsin 4 x )

A) 1+16x21+16x2\frac { \sqrt { 1 + 16 x ^ { 2 } } } { 1 + 16 x ^ { 2 } }
B) 116x2116x2\frac { \sqrt { 1 - 16 x ^ { 2 } } } { 1 - 16 x ^ { 2 } }
C) 16x21\sqrt { 16 x ^ { 2 } - 1 }
D) 1+16x2\sqrt { 1 + 16 x ^ { 2 } }
E) 116x2\sqrt { 1 - 16 x ^ { 2 } }
Question
Find the value of the expression.Round your result to two decimal places. arcsec3.14\operatorname { arcsec } 3.14

A)-1.25
B)1.25
C)1.89
D)3.14
E)-3.14
Question
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.     A = x B = 10 </strong> A)  \theta = \arcsin \frac { x } { 10 }  B)  \theta = \arccos \frac { 10 } { x }  C)  \theta = \operatorname { arccot } \frac { x } { 10 }  D)  \theta = \arccos \frac { x } { 10 }  E)  \theta = \arctan \frac { x } { 10 }  <div style=padding-top: 35px>
A = x
B = 10

A) θ=arcsinx10\theta = \arcsin \frac { x } { 10 }
B) θ=arccos10x\theta = \arccos \frac { 10 } { x }
C) θ=arccotx10\theta = \operatorname { arccot } \frac { x } { 10 }
D) θ=arccosx10\theta = \arccos \frac { x } { 10 }
E) θ=arctanx10\theta = \arctan \frac { x } { 10 }
Question
A security car with its spotlight on is parked a=30a = 30 meters from a warehouse.Consider θ\theta and x as shown in the figure.Write θ\theta as a function of x.  <strong>A security car with its spotlight on is parked  a = 30  meters from a warehouse.Consider  \theta  and x as shown in the figure.Write  \theta  as a function of x.      </strong> A)  \theta = \operatorname { arccot } \frac { x } { 30 }  B)  \theta = \arctan \frac { x } { 30 }  C)  \theta = \operatorname { arccsc } \frac { x } { 30 }  D)  \theta = \arcsin \frac { x } { 30 }  E)  \theta = \arctan \frac { 30 } { x }  <div style=padding-top: 35px>

A) θ=arccotx30\theta = \operatorname { arccot } \frac { x } { 30 }
B) θ=arctanx30\theta = \arctan \frac { x } { 30 }
C) θ=arccscx30\theta = \operatorname { arccsc } \frac { x } { 30 }
D) θ=arcsinx30\theta = \arcsin \frac { x } { 30 }
E) θ=arctan30x\theta = \arctan \frac { 30 } { x }
Question
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.    A = x + 6 B = 2 </strong> A)  \theta = \arctan \frac { x + 6 } { 2 }  B)  \theta = \arcsin \frac { 2 } { x + 6 }  C)  \theta = \operatorname { arccot } \frac { x + 6 } { 2 }  D)  \theta = \arccos \frac { x + 6 } { 2 }  E)  \theta = \arcsin \frac { x + 6 } { 2 }  <div style=padding-top: 35px>
A = x + 6
B = 2

A) θ=arctanx+62\theta = \arctan \frac { x + 6 } { 2 }
B) θ=arcsin2x+6\theta = \arcsin \frac { 2 } { x + 6 }
C) θ=arccotx+62\theta = \operatorname { arccot } \frac { x + 6 } { 2 }
D) θ=arccosx+62\theta = \arccos \frac { x + 6 } { 2 }
E) θ=arcsinx+62\theta = \arcsin \frac { x + 6 } { 2 }
Question
Use the properties of inverse trigonometric functions to evaluate the expression. sin[arcsin(0.4)]\sin [ \arcsin ( - 0.4 ) ]

A) sin10.4\sin ^ { - 1 } 0.4
B) sin(0.4)\sin ( - 0.4 )
C)0.4
D) 0.4- 0.4
E) π0.4\frac { \pi } { 0.4 }
Question
Evaluate the expression.Round your result to two decimal places. tan1(974)\tan ^ { - 1 } \left( - \frac { 97 } { 4 } \right)

A)-3.53
B)0.47
C)-0.53
D)-1.53
E)-2.53
Question
An airplane flies at an altitude of a=6a = 6 miles toward a point directly over an observer.Consider θ\theta and x as shown in the figure.Write θ\theta as a function of x.  <strong>An airplane flies at an altitude of  a = 6  miles toward a point directly over an observer.Consider  \theta  and x as shown in the figure.Write \theta as a function of x.      </strong> A)  \theta = \operatorname { arccsc } \frac { x } { 6 }  B)  \theta = \operatorname { arccot } \frac { 6 } { x }  C)  \theta = \arcsin \frac { x } { 6 }  D)  \theta = \arctan \frac { 6 } { x }  E)  \theta = \arctan \frac { x } { 6 }  <div style=padding-top: 35px>

A) θ=arccscx6\theta = \operatorname { arccsc } \frac { x } { 6 }
B) θ=arccot6x\theta = \operatorname { arccot } \frac { 6 } { x }
C) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
D) θ=arctan6x\theta = \arctan \frac { 6 } { x }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
Question
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta as a function of x.     A = x B = 6 </strong> A)  \theta = \arctan \frac { 6 } { x }  B)  \theta = \arccos \frac { x } { 6 }  C)  \theta = \operatorname { arccot } \frac { x } { 6 }  D)  \theta = \arcsin \frac { x } { 6 }  E)  \theta = \arctan \frac { x } { 6 }  <div style=padding-top: 35px>
A = x
B = 6

A) θ=arctan6x\theta = \arctan \frac { 6 } { x }
B) θ=arccosx6\theta = \arccos \frac { x } { 6 }
C) θ=arccotx6\theta = \operatorname { arccot } \frac { x } { 6 }
D) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
Question
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.     A = x + 5 B = 10 </strong> A)  \theta = \arccos \frac { x + 5 } { 10 }  B)  \theta = \arctan \frac { x + 5 } { 10 }  C)  \theta = \arctan \frac { 10 } { x + 5 }  D)  \theta = \operatorname { arccot } \frac { x + 5 } { 10 }  E)  \theta = \arcsin \frac { x + 5 } { 10 }  <div style=padding-top: 35px>
A = x + 5
B = 10

A) θ=arccosx+510\theta = \arccos \frac { x + 5 } { 10 }
B) θ=arctanx+510\theta = \arctan \frac { x + 5 } { 10 }
C) θ=arctan10x+5\theta = \arctan \frac { 10 } { x + 5 }
D) θ=arccotx+510\theta = \operatorname { arccot } \frac { x + 5 } { 10 }
E) θ=arcsinx+510\theta = \arcsin \frac { x + 5 } { 10 }
Question
Use the properties of inverse trigonometric functions to evaluate the expression. tan(arctan40)\tan ( \arctan 40 )

A) tan140\tan ^ { - 1 } 40
B) 40- 40
C) π40\frac { \pi } { 40 }
D) tan40\tan 40
E)40
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/384
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Trigonometry
1
The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 26 feet, and its angle of elevation is 60º (see figure).
 <strong>The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 26 feet, and its angle of elevation is 60º (see figure).   Find the angle of depression  \theta  from the top of the slide to the end of the slide at the ground in terms of the horizontal distance d the rider travels. </strong> A)  \theta = \arctan \left( \frac { 22.52 } { d } \right)  B)  \theta = \arctan \left( \frac { 23.52 } { d } \right)  C)  \theta = \arctan \left( \frac { 24.52 } { d } \right)  D)  \theta = \arctan \left( \frac { 25.52 } { d } \right)  E)  \theta = \arctan \left( \frac { 26.52 } { d } \right)
Find the angle of depression θ\theta from the top of the slide to the end of the slide at the ground in terms of the horizontal distance d the rider travels.

A) θ=arctan(22.52d)\theta = \arctan \left( \frac { 22.52 } { d } \right)
B) θ=arctan(23.52d)\theta = \arctan \left( \frac { 23.52 } { d } \right)
C) θ=arctan(24.52d)\theta = \arctan \left( \frac { 24.52 } { d } \right)
D) θ=arctan(25.52d)\theta = \arctan \left( \frac { 25.52 } { d } \right)
E) θ=arctan(26.52d)\theta = \arctan \left( \frac { 26.52 } { d } \right)
θ=arctan(22.52d)\theta = \arctan \left( \frac { 22.52 } { d } \right)
2
You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 100 feet ahead of the balloon (see figure).Round your answer to two decimal places. ​ <strong>You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 100 feet ahead of the balloon (see figure).Round your answer to two decimal places. ​   ​ Find the height h of the balloon if the angle of elevation to the top of the balloon is 35º. ​</strong> A)55.02 ft B)56.02 ft C)53.02 ft D)57.02 ft E)54.02 ft
Find the height h of the balloon if the angle of elevation to the top of the balloon is 35º.

A)55.02 ft
B)56.02 ft
C)53.02 ft
D)57.02 ft
E)54.02 ft
53.02 ft
3
A cellular telephone tower that is 150 feet tall is placed on top of a mountain that is 1200 feet above sea level.What is the angle of depression from the top of the tower to a cell phone user who is 6 horizontal miles away and 400 feet above sea level? Round your answer to two decimal places. ​

A)3.72º
B)1.72º
C)5.72º
D)4.72º
E)2.72º
1.72º
4
The sun is 20º above the horizon.Find the length of a shadow cast by a park statue that is 30 feet tall.Approximate the answer to two decimal places. ​

A)82.42 ft
B)84.42 ft
C)85.42 ft
D)83.42 ft
E)86.42 ft
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
5
A ladder 17 feet long leans against the side of a house.Find the height from the top of the ladder to the ground if the angle of elevation of the ladder is 80º.Approximate the answer to one decimal place. ​

A)19.7 ft
B)20.7 ft
C)18.7 ft
D)16.7 ft
E)17.7 ft
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
6
A Global Positioning System satellite orbits a = 13,000 miles above Earth's surface (see figure).Find the angle of depression from the satellite to the horizon.Assume the radius of Earth is 4000 miles.Round your answer to two decimal places. ​ <strong>A Global Positioning System satellite orbits a = 13,000 miles above Earth's surface (see figure).Find the angle of depression from the satellite to the horizon.Assume the radius of Earth is 4000 miles.Round your answer to two decimal places. ​   ​</strong> A)77.39º B)78.39º C)79.39º D)76.39º E)80.39º

A)77.39º
B)78.39º
C)79.39º
D)76.39º
E)80.39º
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
7
An engineer erects a 111-foot cellular telephone tower.Find the angle of elevation to the top of the tower at a point on level ground 62 feet from its base.Round your answer to one decimal place. ​

A)60.8º
B)64.8º​
C)63.8º
D)61.8º
E)62.8º
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
8
Solve the right triangle shown in the figure for all unknown sides and angles.Round your answers to two decimal places.  <strong>Solve the right triangle shown in the figure for all unknown sides and angles.Round your answers to two decimal places.     A = 30 ^ { \circ } , b = 12  </strong> A)  a \approx 13.86 , c \approx 6.93 , B = 60 ^ { \circ }  B)  a \approx 0.59 , c \approx 1.16 , B = 60 ^ { \circ }  C)  a \approx 6.93 , c \approx 13.86 , B = 60 ^ { \circ }  D)  a \approx 6.93 , c \approx 13.86 , B = 45 ^ { \circ }  E)  a \approx 6.93 , c \approx 13.86 , B = 30 ^ { \circ }
A=30,b=12A = 30 ^ { \circ } , b = 12

A) a13.86,c6.93,B=60a \approx 13.86 , c \approx 6.93 , B = 60 ^ { \circ }
B) a0.59,c1.16,B=60a \approx 0.59 , c \approx 1.16 , B = 60 ^ { \circ }
C) a6.93,c13.86,B=60a \approx 6.93 , c \approx 13.86 , B = 60 ^ { \circ }
D) a6.93,c13.86,B=45a \approx 6.93 , c \approx 13.86 , B = 45 ^ { \circ }
E) a6.93,c13.86,B=30a \approx 6.93 , c \approx 13.86 , B = 30 ^ { \circ }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
9
The sun is 25º above the horizon.Find the length of a shadow cast by a building that is α=130\alpha = 130 feet tall (see figure).Approximate the answer to two decimal places.  <strong>The sun is 25º above the horizon.Find the length of a shadow cast by a building that is  \alpha = 130  feet tall (see figure).Approximate the answer to two decimal places.      </strong> A)281.79 ft B)278.79 ft C)279.79 ft D)280.79 ft E)282.79 ft

A)281.79 ft
B)278.79 ft
C)279.79 ft
D)280.79 ft
E)282.79 ft
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
10
The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 24 feet, and its angle of elevation is 60º (see figure).
<strong>The designers of a water park are creating a new slide and have sketched some preliminary drawings.The length of the ladder is a = 24 feet, and its angle of elevation is 60º (see figure). ​   ​ Find the height of the slide.Round your answer to two decimal places. ​</strong> A)About 21.78 ft B)About 22.78 ft C)About 23.78 ft D)About 20.78 ft E)About 24.78 ft
Find the height of the slide.Round your answer to two decimal places.

A)About 21.78 ft
B)About 22.78 ft
C)About 23.78 ft
D)About 20.78 ft
E)About 24.78 ft
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
11
The length of a shadow of a tree is 120 feet when the angle of elevation of the sun is 33º.Approximate the height of the tree.Approximate the answer to one decimal place. ​

A)77.9 ft
B)81.9 ft
C)79.9 ft
D)78.9 ft
E)80.9 ft
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
12
A police department has set up a speed enforcement zone on a straight length of highway.A patrol car is parked parallel to the zone, a = 210 feet from one end and b = 130 feet from the other end (see figure). ​ <strong>A police department has set up a speed enforcement zone on a straight length of highway.A patrol car is parked parallel to the zone, a = 210 feet from one end and b = 130 feet from the other end (see figure). ​   ​ Find the length l of the zone.Round your answer to two decimal places. ​</strong> A)286.98 ft B)276.98 ft C)266.98 ft D)246.98 ft E)256.98 ft
Find the length l of the zone.Round your answer to two decimal places.

A)286.98 ft
B)276.98 ft
C)266.98 ft
D)246.98 ft
E)256.98 ft
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
13
An observer in a lighthouse a = 340 feet above sea level observes two ships directly offshore. The angles of depression to the ships are 4º and 6.5º (see figure).How far apart are the ships? Round your answer to one decimal place.
<strong>An observer in a lighthouse a = 340 feet above sea level observes two ships directly offshore. The angles of depression to the ships are 4º and 6.5º (see figure).How far apart are the ships? Round your answer to one decimal place. ​   ​</strong> A)1878.1 ft B)1879.1 ft C)1880.1 ft D)1881.1 ft E)1882.1 ft

A)1878.1 ft
B)1879.1 ft
C)1880.1 ft
D)1881.1 ft
E)1882.1 ft
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
14
Find the altitude of the isosceles triangle shown in the figure.Round your answer to two decimal places.  <strong>Find the altitude of the isosceles triangle shown in the figure.Round your answer to two decimal places.     \theta = 45 ^ { \circ } , b = 11   </strong> A)2.00 B)11.00 C)5.50 D)22.00 E)7.50  θ=45,b=11\theta = 45 ^ { \circ } , b = 11

A)2.00
B)11.00
C)5.50
D)22.00
E)7.50
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
15
You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).  <strong>You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).     Find the length l of the tether you are holding in terms of h, the height h of the balloon from top to bottom. </strong> A)  \sqrt { h ^ { 2 } + 34 h + 17,189 }  B)  \sqrt { h ^ { 2 } + 17 h + 17,189 }  C)  \sqrt { h ^ { 2 } + 20 h + 689 }  D)  \sqrt { h ^ { 2 } + 40 h + 689 }  E)  \sqrt { h ^ { 2 } + 34 h + 289 }
Find the length l of the tether you are holding in terms of h, the height h of the balloon from top to bottom.

A) h2+34h+17,189\sqrt { h ^ { 2 } + 34 h + 17,189 }
B) h2+17h+17,189\sqrt { h ^ { 2 } + 17 h + 17,189 }
C) h2+20h+689\sqrt { h ^ { 2 } + 20 h + 689 }
D) h2+40h+689\sqrt { h ^ { 2 } + 40 h + 689 }
E) h2+34h+289\sqrt { h ^ { 2 } + 34 h + 289 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
16
For the simple harmonic motion described by the trigonometric function, find the least positive value of t for which d = 0. d=112sin14πtd = \frac { 1 } { 12 } \sin 14 \pi t

A) 114\frac { 1 } { 14 }
B) 112\frac { 1 } { 12 }
C) 1212
D) 16\frac { 1 } { 6 }
E) 1414
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
17
You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).  <strong>You are holding one of the tethers attached to the top of a giant character balloon in a parade.Before the start of the parade the balloon is upright and the bottom is floating approximately 20 feet above ground level.You are standing approximately a = 130 feet ahead of the balloon (see figure).     Find an expression for the angle of elevation from you to the top of the balloon. </strong> A)  \theta = \arccos \left( \frac { 130 } { l } \right)  B)  \theta = \arccos \left( \frac { l } { 130 } \right)  C)  \theta = \arcsin \left( \frac { l } { h + 17 } \right)  D)  \theta = \arcsin \left( \frac { h + 20 } { l } \right)  E)  \theta = \arctan \left( \frac { 130 } { h + 20 } \right)
Find an expression for the angle of elevation from you to the top of the balloon.

A) θ=arccos(130l)\theta = \arccos \left( \frac { 130 } { l } \right)
B) θ=arccos(l130)\theta = \arccos \left( \frac { l } { 130 } \right)
C) θ=arcsin(lh+17)\theta = \arcsin \left( \frac { l } { h + 17 } \right)
D) θ=arcsin(h+20l)\theta = \arcsin \left( \frac { h + 20 } { l } \right)
E) θ=arctan(130h+20)\theta = \arctan \left( \frac { 130 } { h + 20 } \right)
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
18
A passenger in an airplane at an altitude of a = 20 kilometers sees two towns directly to the east of the plane.The angles of depression to the towns are 28º and 55º (see figure).How far apart are the towns? How far apart are the ships? Round your answer to one decimal place. ​ <strong>A passenger in an airplane at an altitude of a = 20 kilometers sees two towns directly to the east of the plane.The angles of depression to the towns are 28º and 55º (see figure).How far apart are the towns? How far apart are the ships? Round your answer to one decimal place. ​   ​</strong> A)23.6 km B)24.6 km C)25.6 km D)26.6 km E)27.6 km

A)23.6 km
B)24.6 km
C)25.6 km
D)26.6 km
E)27.6 km
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
19
For the simple harmonic motion described by the trigonometric function, find the least positive value of t for which d = 0.
d=164sin794πtd = \frac { 1 } { 64 } \sin 794 \pi t

A) 6464
B) 1794\frac { 1 } { 794 }
C) 794794
D) 164\frac { 1 } { 64 }
E) 11,584\frac { 1 } { 1,584 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
20
The height of an outdoor basketball backboard is 121412 \frac { 1 } { 4 } feet, and the backboard casts a shadow 171217 \frac { 1 } { 2 } feet long. Find the angle of elevation of the sun.Round your answer to one decimal place.

A)36.0º
B)37.0º
C)35.0º
D)39.0º
E)38.0º
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
21
For the simple harmonic motion described by the trigonometric function, find the least positive value of t for which
d=0d = 0 d=6cos6π5td = 6 \cos \frac { 6 \pi } { 5 } t

A) 125\frac { 12 } { 5 }
B) 512\frac { 5 } { 12 }
C) 56\frac { 5 } { 6 }
D) 65\frac { 6 } { 5 }
E) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
22
For the simple harmonic motion described by the trigonometric function, find the frequency per second. d=14sin6πtd = \frac { 1 } { 4 } \sin 6 \pi t

A) 33
B) 66
C) 3π3 \pi
D) 6π6 \pi
E) 2π2 \pi
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
23
For the simple harmonic motion described by the trigonometric function, find the maximumvalue of d when . d=6cos6π5td = 6 \cos \frac { 6 \pi } { 5 } t Round your answer to nearest whole number.

A)1
B)10
C)6
D)5
E)0
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
24
Find the angle α\alpha between two nonvertical lines L1L _ { 1 } and L2L _ { 2 } .The angle α\alpha satisfies the equation
tanα=m2m11+m2m1\tan \alpha = \left| \frac { m _ { 2 } - m _ { 1 } } { 1 + m _ { 2 } m _ { 1 } } \right|
Where m1m _ { 1 } and m2m _ { 2 } are slopes of L1L _ { 1 } and L2L _ { 2 } , respectively.
(Assume that m1m21m _ { 1 } m _ { 2 } \neq 1 .)
L1L _ { 1 } : 5x - 4y = 5 L2L _ { 2 } : x + y = 1

Round your answer to one decimal place.

A)83.7º
B)84.7º
C)85.7º
D)86.7º
E)87.7º
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
25
For the simple harmonic motion described by the trigonometric function, find the maximum displacement. d=12sin6πtd = \frac { 1 } { 2 } \sin 6 \pi t

A) 66
B) 12\frac { 1 } { 2 }
C) 1212
D) 16\frac { 1 } { 6 }
E) 22
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
26
A point on the end of a tuning fork moves in simple harmonic motion described by d=asinωtd = a \sin \omega t
Find ω\omega given that the tuning fork for middle C has a frequency 270 of vibrations per second.

A) ω=270π\omega = 270 \pi
B) ω=810π\omega = 810 \pi
C) ω=540π\omega = 540 \pi
D) ω=1080π\omega = 1080 \pi
E) ω=271π\omega = 271 \pi
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
27
For the simple harmonic motion described by the trigonometric function, find the maximum displacement.
d=8cos6π5td = 8 \cos \frac { 6 \pi } { 5 } t

A) 55
B) 65\frac { 6 } { 5 }
C) 8
D) 18\frac { 1 } { 8 }
E) 56\frac { 5 } { 6 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
28
Find the length of the sides of a regular pentagon inscribed in a circle of radius 26 inches.Round your answer to one decimal place. ​

A)31.6 in.
B)33.6 in.
C)30.6 in.
D)32.6 in.
E)34.6 in.
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
29
For the simple harmonic motion described by the trigonometric function, find the frequency per second.
d=9cos8π5td = 9 \cos \frac { 8 \pi } { 5 } t

A) 45\frac { 4 } { 5 }
B) 8π5\frac { 8 \pi } { 5 }
C) 54\frac { 5 } { 4 }
D) 5π8\frac { 5 \pi } { 8 }
E) 58\frac { 5 } { 8 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
30
Determine the angle between the diagonal of a cube and the diagonal of its base, as shown in the figure, where a=12a = 12 .Round your answer to one decimal place.
 <strong>Determine the angle between the diagonal of a cube and the diagonal of its base, as shown in the figure, where  a = 12  .Round your answer to one decimal place.    </strong> A)38.3<sup>o</sup> B)36.3<sup>o</sup> C)39.3<sup>o</sup> D)35.3<sup>o</sup> E)37.3<sup>o</sup>

A)38.3o
B)36.3o
C)39.3o
D)35.3o
E)37.3o
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
31
Find a model for simple harmonic motion satisfying the specified conditions.
Displacement (t = 0): 0
Amplitude: 5 meters
Period: 10 seconds

A) d=5sin(πt5)d = 5 \sin \left( \frac { \pi t } { 5 } \right)
B) d=5sin(2πt)d = 5 \sin ( 2 \pi t )
C) d=5sin(πt12)d = 5 \sin \left( \frac { \pi t } { 12 } \right)
D) d=10sin(πt)d = 10 \sin ( \pi t )
E) d=5cos(2πt)d = 5 \cos ( 2 \pi t )
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
32
Find the length of the sides of a regular hexagon inscribed in a circle of radius 29 inches. ​

A)30 in.
B)31 in.
C)32 in.
D)33 in.
E)29 in.
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
33
Find the angle α\alpha between two nonvertical lines L1L _ { 1 } and L2L _ { 2 } .The angle α\alpha satisfies the equation
tanα=m2m11+m2m1\tan \alpha = \left| \frac { m _ { 2 } - m _ { 1 } } { 1 + m _ { 2 } m _ { 1 } } \right|

Where m1m _ { 1 } and m2m _ { 2 } are slopes of L1L _ { 1 } and L2L _ { 2 } , respectively.
(Assume that m1m21m _ { 1 } m _ { 2 } \neq 1 .)

L1:2xy=8L _ { 1 } : 2 x - y = 8 L2:x5y=4L _ { 2 } : x - 5 y = - 4
Round your answer to one decimal place.

A)54.1o
B) 53.1o
C)55.1o
D)52.1o
E)56.1o
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
34
Find the distance y across the flat sides of a hexagonal nut (see figure). r=14r = 14 cm Round your answer to two decimal places.
 <strong>Find the distance y across the flat sides of a hexagonal nut (see figure).  r = 14  cm Round your answer to two decimal places.    </strong> A)  y = 28.25  cm B)  y = 24.25  cm C)  y = 27.25  cm D)  y = 26.25  cm E)  y = 25.25  cm

A) y=28.25y = 28.25 cm
B) y=24.25y = 24.25 cm
C) y=27.25y = 27.25 cm
D) y=26.25y = 26.25 cm
E) y=25.25y = 25.25 cm
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
35
Determine the angle between the diagonal of a cube and its edge, as shown in the figure, where a=12a = 12 .Round your answer to one decimal place.  <strong>Determine the angle between the diagonal of a cube and its edge, as shown in the figure, where  a = 12  .Round your answer to one decimal place.     </strong> A)56.7<sup>o</sup> B)57.7<sup>o</sup> C)55.7<sup>o</sup> D)54.7<sup>o</sup> E)58.7<sup>o</sup>

A)56.7o
B)57.7o
C)55.7o
D)54.7o
E)58.7o
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
36
For the simple harmonic motion described by the trigonometric function, find the frequency per second. d=116cos12πtd = \frac { 1 } { 16 } \cos 12 \pi t

A)16
B) π\pi
C)12
D)2 π\pi
E)6
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
37
For the simple harmonic motion described by the trigonometric function, find the maximum displacement. d=14cos20πtd = \frac { 1 } { 4 } \cos 20 \pi t

A) 120\frac { 1 } { 20 }
B) 204\frac { 20 } { 4 }
C) 14\frac { 1 } { 4 }
D) 420\frac { 4 } { 20 }
E) 2020
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
38
A ball that is bobbing up and down on the end of a spring has a maximum displacement of 3 inches.Its motion (in ideal conditions) is modeled by
y=14cos18t(t>0)y = \frac { 1 } { 4 } \cos 18 t ( t > 0 )
where y is measured in feet and t is the time in seconds.
What is the period of the oscillations ?

A) 9π\frac { 9 } { \pi }
B) 18π\frac { 18 } { \pi }
C) π18\frac { \pi } { 18 }
D) π2\frac { \pi } { 2 }
E) π9\frac { \pi } { 9 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
39
Find a model for simple harmonic motion satisfying the specified conditions.
Displacement (t = 0): 0
Amplitude: 5 centimeters
Period: 2 seconds

A) d=5cos(2πt)d = 5 \cos ( 2 \pi t )
B) d=5sin(πt2)d = 5 \sin \left( \frac { \pi t } { 2 } \right)
C) d=5sin(πt)d = 5 \sin ( \pi \mathrm { t } )
D) d=2sin(πt)d = 2 \sin ( \pi t )
E) d=5sin(2πt)d = 5 \sin ( 2 \pi t )
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
40
Find the lengths of all the unknown members of the truss. Round your answer to one decimal place.
 <strong>Find the lengths of all the unknown members of the truss. Round your answer to one decimal place.      A = 30   </strong> A)  b \approx 22.0 , a \approx 37.6  B)  b \approx 21.0 , a \approx 36.6  C)  b \approx 24.0 , a \approx 39.6  D)  b \approx 36.6 , a \approx 21.0  E)  b \approx 23.0 , a \approx 38.6   A=30A = 30

A) b22.0,a37.6b \approx 22.0 , a \approx 37.6
B) b21.0,a36.6b \approx 21.0 , a \approx 36.6
C) b24.0,a39.6b \approx 24.0 , a \approx 39.6
D) b36.6,a21.0b \approx 36.6 , a \approx 21.0
E) b23.0,a38.6b \approx 23.0 , a \approx 38.6
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
41
Evaluate the expression.Round your result to two decimal places. arctan2.6\arctan 2.6

A)2.20
B)0.20
C)3.20
D)-0.80
E)1.20
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
42
Evaluate the expression.Round your result to two decimal places. arccos0.23\arccos 0.23

A)-0.66
B)2.34
C)1.34
D)3.34
E)0.34
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
43
A plane is 52 miles west and 46 miles north of an airport.The pilot wants to fly directly to the airport.What bearing should the pilot take? Answer should be given in degrees and minutes.

A) 13130131 ^ { \circ } 30 ^ { \prime }
B) 12927129 ^ { \circ } 27 ^ { \prime }
C) 13232132 ^ { \circ } 32 ^ { \prime }
D) 483048 ^ { \circ } 30 ^ { \prime }
E) 13429134 ^ { \circ } 29 ^ { \prime }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
44
Evaluate the expression.Round your result to two decimal places. arcsin0.45\arcsin 0.45

A)-1.53
B)-0.53
C)2.47
D)0.47
E)1.47
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate the expression.Round your result to two decimal places. arcsin(0.130)\arcsin ( - 0.130 )

A)1.87
B)-2.13
C)-1.13
D)0.87
E)-0.13
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
46
After leaving the runway, a plane's angle of ascent is 17o and its speed is 278 feet per second.How many minutes will it take for the airplane to climb to a height of 11,500 feet? Round answer to two decimal places.

A)0.69 minutes
B)2.36 minutes
C)0.72 minutes
D)1.25 minutes
E)1.81 minutes
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
47
Find the altitude of the isosceles triangle shown below if θ=53\theta = 53 ^ { \circ } and b=25 meters b = 25 \text { meters } .Round answer to two decimal places.  <strong>Find the altitude of the isosceles triangle shown below if  \theta = 53 ^ { \circ }  and  b = 25 \text { meters }  .Round answer to two decimal places.  </strong> A)33.18 meters B)6.23 meters C)9.98 meters D)16.59 meters E)9.42 meters

A)33.18 meters
B)6.23 meters
C)9.98 meters
D)16.59 meters
E)9.42 meters
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
48
Evaluate the expression.Round your result to two decimal places. arccos(0.6)\arccos ( - 0.6 )

A)4.21
B)2.21
C)3.21
D)0.21
E)1.21
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
49
Find the altitude of the isosceles triangle shown below if θ=38\theta = 38 ^ { \circ } and b=8 centimeters b = 8 \text { centimeters } .Round your answer to two decimal places.  <strong>Find the altitude of the isosceles triangle shown below if  \theta = 38 ^ { \circ }  and  b = 8 \text { centimeters }  .Round your answer to two decimal places.  </strong> A)5.12 centimeters B)6.25 centimeters C)3.13 centimeters D)2.46 centimeters E)1.38 centimeters

A)5.12 centimeters
B)6.25 centimeters
C)3.13 centimeters
D)2.46 centimeters
E)1.38 centimeters
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
50
Evaluate the expression.Round your result to two decimal places. arctan30\arctan 30

A)3.54
B)0.54
C)1.54
D)2.54
E)-0.46
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
51
A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile, θ, is called the angle of repose.If the height of a pile of sand is 11 feet and its diameter is approximately 34 feet, determine the angle of repose.Round answer to nearest degree. <strong>A granular substance such as sand naturally settles into a cone-shaped pile when poured from a small aperture.Its height depends on the humidity and adhesion between granules.The angle of elevation of a pile, θ, is called the angle of repose.If the height of a pile of sand is 11 feet and its diameter is approximately 34 feet, determine the angle of repose.Round answer to nearest degree.  </strong> A)29<sup>o</sup> B)30<sup>o</sup> C)31<sup>o</sup> D)32<sup>o</sup> E)33<sup>o</sup>

A)29o
B)30o
C)31o
D)32o
E)33o
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
52
A land developer wants to find the distance across a small lake in the middle of his proposed development.The bearing from A to B is N31W\mathrm { N } 31 ^ { \circ } \mathrm { W } .The developer leaves point A and travels 74 yards perpendicular to AB\overline {A B} to point C.The bearing from C to point B is N59W\mathrm { N } 59 ^ { \circ } \mathrm { W } .Determine the distance, AB, across the small lake.Round distance to nearest yard.  <strong>A land developer wants to find the distance across a small lake in the middle of his proposed development.The bearing from A to B is  \mathrm { N } 31 ^ { \circ } \mathrm { W }  .The developer leaves point A and travels 74 yards perpendicular to  \overline {A B}  to point C.The bearing from C to point B is  \mathrm { N } 59 ^ { \circ } \mathrm { W }  .Determine the distance, AB, across the small lake.Round distance to nearest yard.  </strong> A)169 yards B)114 yards C)139 yards D)154 yards E)121 yards

A)169 yards
B)114 yards
C)139 yards
D)154 yards
E)121 yards
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
53
Evaluate the expression.Round your result to two decimal places. cos10.44\cos ^ { - 1 } 0.44

A)2.12
B)0.12
C)1.12
D)-0.88
E)3.12
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
54
Evaluate the expression.Round your result to two decimal places. arcsin23\arcsin \frac { 2 } { 3 }

A)1.73
B)-0.27
C)-1.27
D)2.73
E)0.73
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
55
If the sides of a rectangular solid are as shown, and s=4s = 4 , determine the angle, θ\theta , between the diagonal of the base of the solid and the diagonal of the solid.Round answer to two decimal places.  <strong>If the sides of a rectangular solid are as shown, and  s = 4  , determine the angle,  \theta , between the diagonal of the base of the solid and the diagonal of the solid.Round answer to two decimal places.  </strong> A)21.91<sup>o</sup> B)24.09<sup>o</sup> C)17.21<sup>o</sup> D)26.28<sup>o</sup> E)19.86<sup>o</sup>

A)21.91o
B)24.09o
C)17.21o
D)26.28o
E)19.86o
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
56
After leaving the runway, a plane's angle of ascent is 17o and its speed is 280 feet per second.How many minutes will it take for the airplane to climb to a height of 11,000 feet? Round your answer to two decimal places. ​

A)1.72 minutes
B)1.19 minutes
C)2.24 minutes
D)0.65 minutes
E)0.68 minutes
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
57
If a=12a = 12 and c=18c = 18 , determine the value of A.Round to two decimal places.  <strong>If  a = 12  and  c = 18  , determine the value of A.Round to two decimal places.  </strong> A)48.19<sup>o</sup> B)56.31<sup>o</sup> C)33.69<sup>o</sup> D)41.81<sup>o</sup> E)53.19<sup>o</sup>

A)48.19o
B)56.31o
C)33.69o
D)41.81o
E)53.19o
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
58
If a=11a = 11 and c=28c = 28 , determine the value of B.Round to two decimal places.  <strong>If  a = 11  and  c = 28  , determine the value of B.Round to two decimal places.  </strong> A)68.55<sup>o</sup> B)66.87<sup>o</sup> C)28.13<sup>o</sup> D)21.45<sup>o</sup> E)23.13<sup>o</sup>

A)68.55o
B)66.87o
C)28.13o
D)21.45o
E)23.13o
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
59
The angle of elevation of the sun is 26o.Find the length, l, of a shadow cast by a tree that is 38 feet tall.Round your answer to two decimal places.

A) l=68.96l = 68.96 feet
B) l=86.68l = 86.68 feet
C) l=42.28l = 42.28 feet
D) l=49.48l = 49.48 feet
E) l=77.91l = 77.91 feet
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
60
Evaluate the expression.Round your result to two decimal places. sin10.65\sin ^ { - 1 } 0.65

A)2.71
B)-0.29
C)1.71
D)0.71
E)-1.29
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
61
Find an algebraic expression that is equivalent to the expression.. tan(arccosx6)\tan \left( \arccos \frac { x } { 6 } \right)

A) 36x2x\frac { \sqrt { 36 - x ^ { 2 } } } { x }
B) 36x2x\frac { 36 - x ^ { 2 } } { x }
C) 36+x2x\frac { \sqrt { 36 + x ^ { 2 } } } { x }
D) 36+x236+x2\frac { \sqrt { 36 + x ^ { 2 } } } { 36 + x ^ { 2 } }
E) 36x236x2\frac { \sqrt { 36 - x ^ { 2 } } } { 36 - x ^ { 2 } }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
62
Find an algebraic expression that is equivalent to the expression. sec(arctan4x)\sec ( \arctan 4 x )

A) 16x2+1\sqrt { 16 x ^ { 2 } + 1 }
B) 116x2\sqrt { 1 - 16 x ^ { 2 } }
C) 16x2116x21\frac { \sqrt { 16 x ^ { 2 } - 1 } } { 16 x ^ { 2 } - 1 }
D) 16x21\sqrt { 16 x ^ { 2 } - 1 }
E) 16x2+116x2+1\frac { \sqrt { 16 x ^ { 2 } + 1 } } { 16 x ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
63
Evaluate the expression.Round your result to two decimal places. tan1(588)\tan ^ { - 1 } ( - \sqrt { 588 } )

A)-0.53
B)-1.53
C)0.47
D)-3.53
E)-2.53
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
64
A boat is pulled in by means of a winch located on a dock a=2a = 2 feet above the deck of the boat (see figure).Let θ\theta be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write θ\theta as a function of s.  <strong>A boat is pulled in by means of a winch located on a dock  a = 2  feet above the deck of the boat (see figure).Let  \theta  be the angle of elevation from the boat to the winch and let s be the length of the rope from the winch to the boat.Write  \theta  as a function of s.     </strong> A)  \theta = \operatorname { arccsc } \frac { 2 } { s }  B)  \theta = \operatorname { arcsec } \frac { 2 } { s }  C)  \theta = \arccos \frac { 2 } { s }  D)  \theta = \arctan \frac { 2 } { s }  E)  \theta = \arcsin \frac { 2 } { s }

A) θ=arccsc2s\theta = \operatorname { arccsc } \frac { 2 } { s }
B) θ=arcsec2s\theta = \operatorname { arcsec } \frac { 2 } { s }
C) θ=arccos2s\theta = \arccos \frac { 2 } { s }
D) θ=arctan2s\theta = \arctan \frac { 2 } { s }
E) θ=arcsin2s\theta = \arcsin \frac { 2 } { s }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
65
Use the properties of inverse trigonometric functions to evaluate the expression. arcsin(sin7π)\arcsin ( \sin 7 \pi )

A)1
B)-1
C) cos17π\cos ^ { - 1 } 7 \pi
D)0
E) sin17π\sin ^ { - 1 } 7 \pi
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
66
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta as a function of x.     A = 5x B = x + 9 </strong> A)  \theta = \arctan \frac { x + 9 } { 5 x }  B)  \theta = \arcsin \frac { x + 9 } { 5 x }  C)  \theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }  D)  \theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }  E)  \theta = \arccos \frac { x + 9 } { 5 x }
A = 5x
B = x + 9

A) θ=arctanx+95x\theta = \arctan \frac { x + 9 } { 5 x }
B) θ=arcsinx+95x\theta = \arcsin \frac { x + 9 } { 5 x }
C) θ=arcsecx+95x\theta = \operatorname { arcsec } \frac { x + 9 } { 5 x }
D) θ=arccscx+95x\theta = \operatorname { arccsc } \frac { x + 9 } { 5 x }
E) θ=arccosx+95x\theta = \arccos \frac { x + 9 } { 5 x }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
67
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.       \begin{array} { l } a = x ^ { 2 } - 16 \\ b = x - 4 \end{array}   </strong> A)  \theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4  B)  \theta = \arctan \frac { 1 } { x - 4 } , x \neq 4  C)  \theta = \arctan \frac { 1 } { x + 4 } , x \neq 4  D)  \theta = \arccos \frac { 1 } { x + 4 } , x \neq 4  E)  \theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4   a=x216b=x4\begin{array} { l } a = x ^ { 2 } - 16 \\b = x - 4\end{array}

A) θ=arcsin1x+4,x4\theta = \arcsin \frac { 1 } { x + 4 } , x \neq 4
B) θ=arctan1x4,x4\theta = \arctan \frac { 1 } { x - 4 } , x \neq 4
C) θ=arctan1x+4,x4\theta = \arctan \frac { 1 } { x + 4 } , x \neq 4
D) θ=arccos1x+4,x4\theta = \arccos \frac { 1 } { x + 4 } , x \neq 4
E) θ=arccot1x+4,x4\theta = \operatorname { arccot } \frac { 1 } { x + 4 } , x \neq 4
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate the expression.Round your result to two decimal places. arccos(23)\arccos \left( - \frac { 2 } { 3 } \right)

A)0.30
B)1.30
C)4.30
D)3.30
E)2.30
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
69
A television camera at ground level is filming the lift-off of a space shuttle at a point a=925a = 925 meters from the launch pad (see figure).Let θ\theta be the angle of elevation to the shuttle and let s be the height of the shuttle.Write θ\theta as a function of s.  <strong>A television camera at ground level is filming the lift-off of a space shuttle at a point  a = 925  meters from the launch pad (see figure).Let  \theta  be the angle of elevation to the shuttle and let s be the height of the shuttle.Write  \theta  as a function of s.     </strong> A)  \theta = \arctan \frac { s } { 925 }  B)  \theta = \arcsin \frac { s } { 925 }  C)  \theta = \operatorname { arccsc } \frac { s } { 925 }  D)  \theta = \arctan \frac { 925 } { s }  E)  \theta = \operatorname { arccot } \frac { s } { 925 }

A) θ=arctans925\theta = \arctan \frac { s } { 925 }
B) θ=arcsins925\theta = \arcsin \frac { s } { 925 }
C) θ=arccscs925\theta = \operatorname { arccsc } \frac { s } { 925 }
D) θ=arctan925s\theta = \arctan \frac { 925 } { s }
E) θ=arccots925\theta = \operatorname { arccot } \frac { s } { 925 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
70
Find an algebraic expression that is equivalent to the expression.. cos(arcsin4x)\cos ( \arcsin 4 x )

A) 1+16x21+16x2\frac { \sqrt { 1 + 16 x ^ { 2 } } } { 1 + 16 x ^ { 2 } }
B) 116x2116x2\frac { \sqrt { 1 - 16 x ^ { 2 } } } { 1 - 16 x ^ { 2 } }
C) 16x21\sqrt { 16 x ^ { 2 } - 1 }
D) 1+16x2\sqrt { 1 + 16 x ^ { 2 } }
E) 116x2\sqrt { 1 - 16 x ^ { 2 } }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
71
Find the value of the expression.Round your result to two decimal places. arcsec3.14\operatorname { arcsec } 3.14

A)-1.25
B)1.25
C)1.89
D)3.14
E)-3.14
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
72
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.     A = x B = 10 </strong> A)  \theta = \arcsin \frac { x } { 10 }  B)  \theta = \arccos \frac { 10 } { x }  C)  \theta = \operatorname { arccot } \frac { x } { 10 }  D)  \theta = \arccos \frac { x } { 10 }  E)  \theta = \arctan \frac { x } { 10 }
A = x
B = 10

A) θ=arcsinx10\theta = \arcsin \frac { x } { 10 }
B) θ=arccos10x\theta = \arccos \frac { 10 } { x }
C) θ=arccotx10\theta = \operatorname { arccot } \frac { x } { 10 }
D) θ=arccosx10\theta = \arccos \frac { x } { 10 }
E) θ=arctanx10\theta = \arctan \frac { x } { 10 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
73
A security car with its spotlight on is parked a=30a = 30 meters from a warehouse.Consider θ\theta and x as shown in the figure.Write θ\theta as a function of x.  <strong>A security car with its spotlight on is parked  a = 30  meters from a warehouse.Consider  \theta  and x as shown in the figure.Write  \theta  as a function of x.      </strong> A)  \theta = \operatorname { arccot } \frac { x } { 30 }  B)  \theta = \arctan \frac { x } { 30 }  C)  \theta = \operatorname { arccsc } \frac { x } { 30 }  D)  \theta = \arcsin \frac { x } { 30 }  E)  \theta = \arctan \frac { 30 } { x }

A) θ=arccotx30\theta = \operatorname { arccot } \frac { x } { 30 }
B) θ=arctanx30\theta = \arctan \frac { x } { 30 }
C) θ=arccscx30\theta = \operatorname { arccsc } \frac { x } { 30 }
D) θ=arcsinx30\theta = \arcsin \frac { x } { 30 }
E) θ=arctan30x\theta = \arctan \frac { 30 } { x }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
74
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.    A = x + 6 B = 2 </strong> A)  \theta = \arctan \frac { x + 6 } { 2 }  B)  \theta = \arcsin \frac { 2 } { x + 6 }  C)  \theta = \operatorname { arccot } \frac { x + 6 } { 2 }  D)  \theta = \arccos \frac { x + 6 } { 2 }  E)  \theta = \arcsin \frac { x + 6 } { 2 }
A = x + 6
B = 2

A) θ=arctanx+62\theta = \arctan \frac { x + 6 } { 2 }
B) θ=arcsin2x+6\theta = \arcsin \frac { 2 } { x + 6 }
C) θ=arccotx+62\theta = \operatorname { arccot } \frac { x + 6 } { 2 }
D) θ=arccosx+62\theta = \arccos \frac { x + 6 } { 2 }
E) θ=arcsinx+62\theta = \arcsin \frac { x + 6 } { 2 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
75
Use the properties of inverse trigonometric functions to evaluate the expression. sin[arcsin(0.4)]\sin [ \arcsin ( - 0.4 ) ]

A) sin10.4\sin ^ { - 1 } 0.4
B) sin(0.4)\sin ( - 0.4 )
C)0.4
D) 0.4- 0.4
E) π0.4\frac { \pi } { 0.4 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
76
Evaluate the expression.Round your result to two decimal places. tan1(974)\tan ^ { - 1 } \left( - \frac { 97 } { 4 } \right)

A)-3.53
B)0.47
C)-0.53
D)-1.53
E)-2.53
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
77
An airplane flies at an altitude of a=6a = 6 miles toward a point directly over an observer.Consider θ\theta and x as shown in the figure.Write θ\theta as a function of x.  <strong>An airplane flies at an altitude of  a = 6  miles toward a point directly over an observer.Consider  \theta  and x as shown in the figure.Write \theta as a function of x.      </strong> A)  \theta = \operatorname { arccsc } \frac { x } { 6 }  B)  \theta = \operatorname { arccot } \frac { 6 } { x }  C)  \theta = \arcsin \frac { x } { 6 }  D)  \theta = \arctan \frac { 6 } { x }  E)  \theta = \arctan \frac { x } { 6 }

A) θ=arccscx6\theta = \operatorname { arccsc } \frac { x } { 6 }
B) θ=arccot6x\theta = \operatorname { arccot } \frac { 6 } { x }
C) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
D) θ=arctan6x\theta = \arctan \frac { 6 } { x }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
78
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta as a function of x.     A = x B = 6 </strong> A)  \theta = \arctan \frac { 6 } { x }  B)  \theta = \arccos \frac { x } { 6 }  C)  \theta = \operatorname { arccot } \frac { x } { 6 }  D)  \theta = \arcsin \frac { x } { 6 }  E)  \theta = \arctan \frac { x } { 6 }
A = x
B = 6

A) θ=arctan6x\theta = \arctan \frac { 6 } { x }
B) θ=arccosx6\theta = \arccos \frac { x } { 6 }
C) θ=arccotx6\theta = \operatorname { arccot } \frac { x } { 6 }
D) θ=arcsinx6\theta = \arcsin \frac { x } { 6 }
E) θ=arctanx6\theta = \arctan \frac { x } { 6 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
79
Use an inverse trigonometric function to write θ\theta as a function of x.  <strong>Use an inverse trigonometric function to write  \theta  as a function of x.     A = x + 5 B = 10 </strong> A)  \theta = \arccos \frac { x + 5 } { 10 }  B)  \theta = \arctan \frac { x + 5 } { 10 }  C)  \theta = \arctan \frac { 10 } { x + 5 }  D)  \theta = \operatorname { arccot } \frac { x + 5 } { 10 }  E)  \theta = \arcsin \frac { x + 5 } { 10 }
A = x + 5
B = 10

A) θ=arccosx+510\theta = \arccos \frac { x + 5 } { 10 }
B) θ=arctanx+510\theta = \arctan \frac { x + 5 } { 10 }
C) θ=arctan10x+5\theta = \arctan \frac { 10 } { x + 5 }
D) θ=arccotx+510\theta = \operatorname { arccot } \frac { x + 5 } { 10 }
E) θ=arcsinx+510\theta = \arcsin \frac { x + 5 } { 10 }
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
80
Use the properties of inverse trigonometric functions to evaluate the expression. tan(arctan40)\tan ( \arctan 40 )

A) tan140\tan ^ { - 1 } 40
B) 40- 40
C) π40\frac { \pi } { 40 }
D) tan40\tan 40
E)40
Unlock Deck
Unlock for access to all 384 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 384 flashcards in this deck.