Deck 10: Propositional Logic-Arguments

Full screen (f)
exit full mode
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? BFBF\frac { B \cdot F } { B \equiv F }

A)B: T F: T
B)B: T F: F
C)B: F F: T
D)B: F F: F
E)None-the argument is valid.
Use Space or
up arrow
down arrow
to flip the card.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? TUTU\begin{array} { l } \mathrm { T } \supset \mathrm { U } \\\sim \mathrm { T } \\\sim \mathrm { U }\end{array}

A)T: T U: T
B)T: T U: F
C)T: F U: T
D)T: F U: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ABA?B\begin{array} { l } A \cup B \\\frac { A } { ?B }\end{array}

A)A: T B: T
B)A: T B: F
C)A: F B: T
D)A: F B: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? CEEC\frac { C \cdot E } { E \cdot C }

A)C: T E: T
B)C: T E: F
C)C: F E: T
D)C: F E: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? NANA\begin{array} { l } \mathrm { N } \supset \mathrm { A } \\\mathrm { N } \\\mathrm { A }\end{array}

A)N: T A: T
B)N: T A: F
C)N: F A: T
D)N: F A: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? QPQ\frac { Q } { P \supset Q }

A)P: T Q: T
B)P: T Q: F
C)P: F Q: T
D)P: F Q: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? BAA\frac { B \cdot A } { A }

A)B: T A: T
B)B: T A: F
C)B: F A: T
D)B: F A: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? NNT\frac { N } { N \equiv T}

A)N: T T: T
B)N: T T: F
C)N: F T: T
D)N: F T: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? MUMU\frac { M \cdot U } { M \vee U }

A)M: T U: T
B)M: T U: F
C)M: F U: T
D)M: F U: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? LEEL\begin{array} { l } \mathrm { L } \supset \mathrm { E } \\\sim \mathrm { E } \\\sim \mathrm { L }\end{array}

A)L: T E: T
B)L: T E: F
C)L: F E: T
D)L: F E: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? GX\mathrm { G } \vee \mathrm { X }
G
X

A)G: T X: T
B)G: T X: F
C)G: F X: T
D)G: F X: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? BTBT\begin{array} { l } \mathrm { B } \vee \mathrm { T } \\\sim \mathrm { B } \\\mathrm { T }\end{array}

A)B: T T: T
B)B: T T: F
C)B: F T: T
D)B: F T: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? OYYO\begin{array} { l } \mathrm { O } \supset \mathrm { Y } \\\mathrm { Y } \\\mathrm { O }\end{array}

A)O: T Y: T
B)O: T Y: F
C)O: F Y: T
D)O: F Y: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? DCD\frac { \sim \mathrm { D } } { \mathrm { C \supset } \mathrm { D }}

A)D: T C: T
B)D: T C: F
C)D: F C: T
D)D: F C: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? RTR\frac { \mathrm { R } \equiv \mathrm { T } } { \mathrm { R } }

A)R: T T: T
B)R: T T: F
C)R: F T: T
D)R: F T: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? NCCN\begin{array} { l } \mathrm { N } \vee \mathrm { C } \\\sim \mathrm { C } \\\sim \mathrm { N }\end{array}

A)N: T C: T
B)N: T C: F
C)N: F C: T
D)N: F C: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ZAZA\frac { Z \equiv A } { Z \supset A }

A)Z: T A: T
B)Z: T A: F
C)Z: F A: T
D)Z: F A: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? MMN\frac { \sim \mathrm { M } } { \mathrm { M \supset N }}

A)M: T N: T
B)M: T N: F
C)M: F N: T
D)M: F N: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ESSEES\begin{array} { l } E \supset S \\S \supset E \\E \equiv S\end{array}

A)E: T S: T
B)E: T S: F
C)E: F S: T
D)E: F S: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? AAB\frac { A } { A\supset B}

A)A: T B: T
B)A: T B: F
C)A: F B: T
D)A: F B: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (ZY)XZ WYWVW\begin{array} { l } ( \mathrm { Z } \supset \mathrm { Y } ) \supset \mathrm { X } \\\mathrm { Z } \supset \mathrm {~W} \\\sim \mathrm { Y } \supset \sim \mathrm { W } \\\mathrm { V } \vee \mathrm { W }\end{array}

A)Z: T Y: T X: T W: T V: T
B)Z: T Y: T X: F W: F V: F
C)Z: F Y: F X: T W: F V: F
D)Z: F Y: F X: F W: F V: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? [(CX)A]CC[(XA)C]\frac { [ ( C \cdot X ) \vee A ] \supset C } { C \supset [ ( X \vee A ) \supset C ] }

A)A: T C: T X: T
B)A: T C: T X: F
C)A: T C: F X: T
D)A: F C: F X: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? A(JS)JSA\begin{array} { l } \mathrm { A } \supset ( \mathrm { J } \vee \mathrm { S } ) \\\sim \mathrm { J } \\\mathrm { S } \\\mathrm { A }\end{array}

A)A: T J: T S: T
B)A: T J: T S: F
C)A: T J: F S: T
D)A: F J: F S: T
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ZCGZ(AC)GA\begin{array} { l } \sim \mathrm { Z } \\\mathrm { C } \supset \mathrm { G } \\\mathrm { Z } \vee ( \mathrm { A } \supset \mathrm { C } ) \\\sim \mathrm { G } \supset \sim \mathrm { A }\end{array}

A)Z: T C: T G: T A: T
B)Z: F C: T G: F A: T
C)Z: F C: T G: F A: F
D)Z: F C: F G: T A: T
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ABBC[(AB)C][(AB)C]\begin{array} { l } \mathrm { A } \equiv \mathrm { B } \\\mathrm { B } \equiv \mathrm { C } \\{ [ ( \mathrm { A } \cdot \mathrm { B } ) \cdot \mathrm { C } ] \cup [ ( \sim \mathrm { A } \cdot \sim \mathrm { B } ) \cdot \sim \mathrm { C } ] }\end{array}

A)A: T B: T C: T
B)A: T B: T C: F
C)A: T B: F C: T
D)A: F B: F C: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (SD)(CO)CDSD\begin{array} { l } ( \mathrm { S } \cdot \mathrm { D } ) \supset ( \mathrm { C } \cdot \mathrm { O } ) \\\mathrm { C } \supset \mathrm { D } \\\mathrm { S } \supset \mathrm { D }\end{array}

A)S: T D: T C: T O: T
B)S: T D: T C: F O: F
C)S: T D: F C: F O: T
D)S: F D: F C: F O: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (PI)PI\frac { \sim ( P \cdot I ) } { \sim P \vee \sim I }

A)P: T I: T
B)P: T I: F
C)P: F I: T
D)P: F I: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? S(LC)(DC)ALC(SA)\begin{array} { l } \sim \mathrm { S } \supset ( \mathrm { L } \vee \mathrm { C } ) \\( \sim \mathrm { D } \cdot \sim \mathrm { C } ) \supset \mathrm { A } \\\sim \mathrm { L } \\\sim \mathrm { C } \supset ( \mathrm { S } \cdot \mathrm { A } )\end{array}

A)S: T L: T C: T D: T A: T
B)S: T L: T C: F D: F A: F
C)S: F L: F C: T D: T A: F
D)S: F L: F C: F D: T A: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (HA)IIW(HA)W\begin{array} { l } ( \mathrm { H } \bullet \sim A ) \supset \mathrm { I } \\\mathrm { I } \supset \mathrm { W } \\( \mathrm { H } \bullet \mathrm { A } ) \supset \sim \mathrm { W }\end{array}

A)H: T A: T I: T W: T
B)H: T A: T I: F W: F
C)H: T A: F I: T W: T
D)H: F A: F I: T W: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (JV)(RD)RD(JV)\begin{array} { l } ( \mathrm { J } \bullet \sim \mathrm { V } ) \supset ( \mathrm { R } \vee \mathrm { D } ) \\\sim \mathrm { R } \\\sim \mathrm { D } \\\sim ( \mathrm { J } \bullet \sim \mathrm { V } )\end{array}

A)J: T V: T R: T D: T
B)J: T V: T R: F D: F
C)J: F V: F R: T D: T
D)J: F V: F R: F D: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (JV)(RD)RDJ\begin{array} { l } ( \mathrm { J } \bullet \sim \mathrm { V } ) \supset ( \mathrm { R } \vee \mathrm { D } ) \\\sim \mathrm { R } \\\sim \mathrm { D } \\\sim \mathrm { J }\end{array}

A)J: T V: T R: T D: T
B)J: T V: T R: F D: F
C)J: F V: F R: T D: T
D)J: F V: F R: F D: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (EH)G(HG)E\begin{array} { l } ( \mathrm { E }\cdot \sim \mathrm { H } ) \supset \mathrm { G } \\\sim ( \mathrm { H } \vee \mathrm { G } ) \\\sim \mathrm { E }\end{array}

A)E: T H: T G: T
B)E: T H: T G: F
C)E: T H: F G: T
D)E: F H: F G: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (CM)CC(MC)\frac { ( C \cdot M ) \supset C } { C \supset ( M \supset C ) }

A)C: T M: T
B)C: T M: F
C)C: F M: T
D)C: F M: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? MIIMEMHEHI\begin{array} { l } \mathrm { M } \supset \sim \mathrm { I } \\\mathrm { I } \supset \sim \mathrm { M } \\\mathrm { E } \supset \sim \mathrm { M } \\\mathrm { H } \supset \mathrm { E } \\\mathrm { H } \supset \mathrm { I }\end{array}

A)M: T I: T E: T H: T
B)M: T I: T E: F H: F
C)M: F I: F E: T H: T
D)M: F I: F E: F H: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (JV)(RD)RDV\begin{array} { l } ( \mathrm { J } \bullet \sim \mathrm { V } ) \supset ( \mathrm { R } \vee \mathrm { D } ) \\\sim \mathrm { R } \\\sim \mathrm { D } \\\sim \mathrm { V }\end{array}

A)J: T V: T R: T D: T
B)J: T V: T R: F D: F
C)J: F V: F R: T D: T
D)J: F V: F R: F D: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? SRDSDS\begin{array} { l } S \supset R \\\sim \mathrm { D } \\\mathrm { S } \supset \mathrm { D } \\\sim \mathrm { S }\end{array}

A)S: T R: T D: T
B)S: T R: T D: F
C)S: F R: T D: F
D)S: F R: F D: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? DWHCCDHW\begin{array} { l } \mathrm { D } \supset \sim \mathrm { W } \\\mathrm { H } \supset \sim \mathrm { C } \\\sim \mathrm { C } \supset \sim \mathrm { D } \\\mathrm { H } \supset \mathrm {W}\end{array}

A)D: T W: T H: T C: T
B)D: T W: T H: F C: F
C)D: F W: F H: T C: F
D)D: F W: F H: F C: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (ZY)XZWYWVX\begin{array} { l } ( \mathrm { Z } \supset \mathrm { Y } ) \supset \mathrm { X } \\\mathrm { Z } \supset \mathrm { W } \\\sim \mathrm { Y } \supset \sim \mathrm { W } \\\mathrm { V } \vee \mathrm { X }\end{array}

A)Z: T Y: T X: T W: T V: T
B)Z: T Y: T X: F W: F V: F
C)Z: F Y: F X: T W: F V: F
D)Z: F Y: F X: F W: F V: F
E)None-the argument is valid.
Question
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? IEIE\frac { \sim \mathrm { I } \cup \mathrm { E } } { \mathrm { I } \supset \mathrm { E } }

A)I: T E: T
B)I: T E: F
C)I: F E: T
D)I: F E: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? WBXB(WX)B\begin{array} { l } W \supset \sim B \\X \supset \sim B \\( W \cup X ) \supset \sim B\end{array}

A)W: T X: T B: T
B)W: T X: T B: F
C)W: T X: F B: T
D)W: F X: F B: T
E)None-the argument is valid.
Question
Which rule is used in the following inference? (DE)FF(GH)(DE)(GH)\begin{array} { l } ( \mathrm { D } \vee \sim \mathrm { E } ) \supset \mathrm { F } \\\mathrm { F } \supset ( \mathrm { G } \cdot \mathrm { H } ) \\( \mathrm { D } \vee \sim \mathrm { E } ) \supset ( \mathrm { G } \cdot \mathrm { H } )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? PW(DR)WPD(PR)W\begin{array} { l } \mathrm { P } \supset \mathrm { W } \\( \sim \mathrm { D } \cdot \mathrm { R } ) \supset \mathrm { W } \\\mathrm { P } \supset \sim \mathrm { D } \\( \mathrm { P } \vee \mathrm { R } ) \supset W\end{array}

A)P: T W: T D: T R: T
B)P: T W: T D: F R: F
C)P: F W: F D: T R: T
D)P: F W: F D: F R: F
E)None-the argument is valid.
Question
Which rule is used in the following inference? A(DF)(DF)GAG\begin{array} { l } A \supset ( D \vee F ) \\( D \vee F ) \supset G \\A \supset G\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (BC)F(FE)(JP)BP\begin{array} { l } ( \mathrm { B } \cdot \mathrm { C } ) \supset \mathrm { F } \\( \mathrm { F } \cdot \mathrm { E } ) \supset ( \mathrm { J } \cdot \mathrm { P } ) \\\mathrm { B } \supset \mathrm { P }\end{array}

A)B: T C: T F: T E: T J: T P: F
B)B: T C: T F: T E: F J: T P: F
C)B: F C: T F: T E: F J: F P: F
D)B: F C: F F: F E: F J: F P: F
E)None-the argument is valid.
Question
Which rule is used in the following inference? ABAB\begin{array} { l } A \supset B \\A \\B\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Which rule is used in the following inference? (AB)(CD)ABCD\begin{array} { l } ( A \cdot B ) \supset ( C \supset D ) \\A \cdot B \\C \supset D \end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Which, if any, of the following proofs are correct demonstrations of the validity of this argument? (AD)(CD)C Proof 1 (1) (AD)(CD)/C Premise/Condusion  (2) CD1Simp (3) D1Simp (4) C 2,3DS Proof 2 (1) (AD)(CD)/C Premise/Condusion  (2) CD1Simp (3) AD1Simp (4) D3Simp (5) C 2,4DS\begin{array}{l}\frac { ( A \cdot \sim D ) \cdot ( C \vee D ) } { C }\\\text { Proof } 1\\\begin{array} { l l l } \text { (1) } ( A \cdot \sim D ) \cdot ( C \vee D ) & / C & \text { Premise/Condusion } \\\text { (2) } \mathrm { C } \vee \mathrm { D } & & 1 \operatorname { Simp } \\\text { (3) } \sim \mathrm { D } & & 1 \operatorname { Simp } \\\text { (4) C } & & 2,3 \mathrm { DS } \\\text { Proof } 2 & & \\\text { (1) } ( \mathrm { A } \cdot \sim \mathrm { D } ) \cdot ( \mathrm { C } \vee \mathrm { D } ) & / \mathrm { C } & \text { Premise/Condusion } \\\text { (2) } \mathrm { C } \vee \mathrm { D } & & 1 \mathrm { Simp } \\\text { (3) } \mathrm { A } \cdot \sim \mathrm { D } && 1 \mathrm { Simp } \\\text { (4) } \sim \mathrm { D } && 3 \mathrm { Simp } \\\text { (5) C } && 2,4 \mathrm { DS }\end{array}\end{array}

A)Proof 1
B)Proof 2
C)Proofs 1 and 2
D)Neither proof
E)Not enough information is provided because proofs are incomplete.
Question
Which rule is used in the following inference? [A(BC)](BD)](BD)[E(FG)][A(BC)][E(FG)]\begin{array} { l } [ A \cdot ( B \cdot \mathrm { C } ) ] \supset ( \mathrm { B } \vee \mathrm { D } ) ] \\( \mathrm { B } \vee \mathrm { D } ) \supset [ \mathrm { E } \vee ( \mathrm { F } \cdot \mathrm { G } ) ] \\{ [ \mathrm { A } \cdot ( \mathrm { B } \cdot \mathrm { C } ) ] \supset [ \mathrm { E } \vee ( \mathrm { F } \cdot \mathrm { G } ) ] }\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (WA)I(AW)ME(WA)EG(IM)G\begin{array} { l } ( \mathrm { W } \bullet \sim \mathrm { A } ) \supset \mathrm { I } \\( \mathrm { A } \bullet \sim \mathrm { W } ) \supset \mathrm { M } \\\mathrm { E } \supset ( \sim \mathrm { W } \vee \sim \mathrm { A } ) \\\mathrm { E } \\\underline{\mathrm { G } \supset \sim ( \mathrm { I } \vee \mathrm { M } )} \\\sim \mathrm { G }\end{array}

A)W: T A: T I: T M: T E: T G: T
B)W: T A: T I: T M: F E: T G: T
C)W: F A: T I: T M: F E: T G: T
D)W: F A: F I: F M: F E: T G: T
E)None-the argument is valid.
Question
Which rule is used in the following inference? (FK)(FL)(FL)(FK)\begin{array} { l } \sim ( \mathrm { F } \cdot \mathrm { K } ) \supset ( \mathrm { F } \supset \mathrm { L } ) \\\sim ( \mathrm { F } \supset \mathrm { L } ) \\\sim ( \mathrm { F } \cdot \mathrm { K } )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Which rule is used in the following inference? (IJ)(KL)IJKL\begin{array} { l } ( \mathrm { I } \cdot \mathrm { J } ) \supset ( \mathrm { K } \vee \mathrm { L } ) \\\mathrm { I } \cdot \mathrm { J } \\\mathrm { K } \vee \mathrm { L }\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Which rule is used in the following inference? (AB)(AC)(AC)(AB)\begin{array} { l } \sim ( A \equiv B )\supset( A \cup C ) \\\sim ( A \cup C ) \\\sim ( A \equiv B )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? SRDSDR\begin{array} { l } S \supset R \\\sim \mathrm { D } \\S\supset D \\\sim R\end{array}

A)S: T R: T D: T
B)S: T R: T D: F
C)S: F R: T D: F
D)S: F R: F D: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? C(PB)(PE)(BW)(WE)TTC\begin{array} { l } \mathrm { C } \supset ( \mathrm { P } \cdot \mathrm { B } ) \\( \mathrm { P } \supset \mathrm { E } ) \cdot ( \mathrm { B } \supset \mathrm { W } ) \\( \mathrm { W } \cdot \mathrm { E } ) \supset \sim \mathrm { T } \\\mathrm { T }\\\sim \mathrm {C } \end{array}

A)C: T P: T B: T E: T W: T T: T
B)C: T P: T B: T E: F W: T T: T
C)C: F P: T B: T E: F W: T T: T
D)C: F P: F B: F E: F W: T T: T
E)None-the argument is valid.
Question
Which rule is used in the following inference? [(AB)(CB)](AC)(AB)(CB)(AC)\begin{array} { l } { [ ( A \supset B ) \vee ( C \supset B ) ] \supset \sim ( \sim A \cdot \sim C ) } \\( A \supset B ) \vee ( C \supset B ) \\\sim ( \sim A \cdot \sim C )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Which rule is used in the following inference? [E(BC)](FG)(FG)[H(FG)][E(BC)][H(FG)]\begin{array} { l } \sim [ \mathrm { E } \vee ( \mathrm { B } \cdot \mathrm { C } ) ] \supset \sim ( \mathrm { F } \vee \sim \mathrm { G } ) \\\sim ( \mathrm { F } \vee \sim \mathrm { G } ) \supset [ \mathrm { H } \equiv ( \mathrm { F } \cdot \mathrm { G } ) ] \\\sim [ \mathrm { E } \vee ( \mathrm { B } \cdot \mathrm { C } ) ] \supset [ \mathrm { H } \equiv ( \mathrm { F } \cdot \mathrm { G } ) ]\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? IBIPG(BP)G\begin{array} { l } \mathrm { I } \supset \sim \mathrm { B } \\\sim \mathrm { I } \supset \sim \mathrm { P } \\\mathrm { G } \supset ( \mathrm { B } \cdot \mathrm { P } ) \\\sim \mathrm { G }\end{array}

A)I: T B: T P: T G: T
B)I: T B: T P: T G: F
C)I: F B: T P: T G: F
D)I: F B: F P: F G: F
E)None-the argument is valid.
Question
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (BC)F(FE)(JP)(BC)P\begin{array} { l } ( \mathrm { B } \cdot \mathrm { C } ) \supset \mathrm { F } \\( \mathrm { F } \cdot \mathrm { E } ) \supset ( \mathrm { J } \cdot \mathrm { P } ) \\( \mathrm { B } \cdot \mathrm { C } ) \supset \mathrm { P }\end{array}

A)B: T C: T F: T E: T J: T P: F
B)B: T C: T F: T E: F J: T P: F
C)B: F C: T F: T E: F J: F P: F
D)B: F C: F F: F E: F J: F P: F
E)None-the argument is valid.
Question
Which rule is used in the following inference? JRRJ\begin{array} { l } \mathrm { J } \supset \mathrm { R } \\\sim \mathrm { R } \\\sim \mathrm { J }\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
Which rule is used in the following inference? AR\sim A \supset R
R\sim R
A\sim A

A)HS
B)MP
C)MT
D)CD
E)DD
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (YO)RR(HN)(YO)(HN)\begin{array} { l } ( \mathrm { Y } \cdot \mathrm { O } ) \supset \mathrm { R } \\\mathrm { R } \supset ( \mathrm { H } \cdot \mathrm { N } ) \\( \mathrm { Y } \cdot \mathrm { O } ) \supset ( \mathrm { H } \cdot \mathrm { N } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. MO(MO)(FR)FR\begin{array} { l } \mathrm { M } \equiv \mathrm { O } \\( \mathrm { M } \equiv \mathrm { O } ) \supset ( \mathrm { F } \cdot \mathrm { R } ) \\\mathrm { F } \cdot \mathrm { R }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (PR)APRA\begin{array} { l } ( \mathrm { P } \cdot \mathrm { R } ) \supset A \\P \cdot R\\A\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. <strong>The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form.  </strong> A)MP B)MT C)HS D)DS E)Conj <div style=padding-top: 35px>

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
Which rule is used in the following inference? DLDL\begin{array} { l } \mathrm { D } \vee \mathrm { L } \\\frac { \sim \mathrm { D } } { \mathrm { L } }\end{array}

A)Simp
B)Conj
C)Add
D)DS
E)HS
Question
Which rule is used in the following inference? [(FG)H](IJ)(IJ)[FG)H]\begin{array} { l } \sim [ ( \mathrm { F } \vee \mathrm { G } ) \cdot \mathrm { H } ] \supset \sim ( \mathrm { I } \equiv \mathrm { J } ) \\\sim \sim ( \mathrm { I } \equiv \mathrm { J } ) \\\sim \sim [ \mathrm { F } \vee \mathrm { G } ) \cdot \mathrm { H } ]\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. [(PT)(HN)](TS)(TS)[(HE)R][(PT)(HN)][(HE)R]\begin{array} { l } { [ ( \mathrm { P } \equiv \mathrm { T } ) \cdot ( \mathrm { H } \cdot \mathrm { N } ) ] \supset ( \mathrm { T } \supset \sim \mathrm { S } ) } \\( \mathrm { T } \supset \sim \mathrm { S } ) \supset [ ( \mathrm { H } \vee \mathrm { E } ) \cup \mathrm { R } ] \\{ [ ( \mathrm { P } \equiv \mathrm { T } ) \cdot ( \mathrm { H } \cdot \mathrm { N } ) ] \supset [ ( \mathrm { H } \vee \mathrm { E } ) \vee \mathrm { R } ] }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. [(GR)(SP)](NG)(NG)[(GR)(SP)]\begin{array} { l } { [ ( \mathrm { G } \cdot \mathrm { R } ) \equiv ( \mathrm { S } \supset \mathrm { P } ) ] \supset ( \mathrm { N } \cdot \mathrm { G } ) } \\\sim ( \mathrm { N } \cdot \mathrm { G } ) \\\sim [ ( \mathrm { G } \cdot \mathrm { R } ) \equiv ( \mathrm { S } \supset \mathrm { P } ) ]\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
Which rule is used in the following inference? (BC)DDBC\begin{array} { l } ( B \cdot C ) \vee D \\\sim \mathrm { D } \\B \cdot C\end{array}

A)Simp
B)Conj
C)Add
D)DS
E)HS
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (MP)(LS)(LS)(TW)(MP)(TW)\begin{array} { l } ( \mathrm { M } \supset \mathrm { P } ) \supset ( \mathrm { L } \vee \mathrm { S } ) \\( \mathrm { L } \vee \mathrm { S } ) \supset ( \mathrm { T } \equiv W ) \\( \mathrm { M } \supset \mathrm { P } ) \supset ( \mathrm { T } \equiv W )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. FFFF\begin{array} { l } \mathrm { F } \supset \mathrm { F } \\\mathrm { F } \\\mathrm { F }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (HE)(TH)(TH)(HE)\begin{array} { l } ( \mathrm { H } \cdot \mathrm { E } ) \supset ( \mathrm { T } \equiv \mathrm { H } ) \\\sim ( \mathrm { T } \equiv \mathrm { H } ) \\\sim ( \mathrm { H } \cdot \mathrm { E } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (ND)M( \mathrm { N } \cdot \mathrm { D } ) \supset \mathrm { M }
ND\mathrm { N } \cdot \mathrm { D }
M

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (RR)(DU)RRDU\begin{array} { l } ( \mathrm { R } \supset \mathrm { R } ) \supset ( \mathrm { D } \equiv \sim \mathrm { U } ) \\\frac { \mathrm { R } \supset \mathrm { R } } { \mathrm { D } \equiv \sim \mathrm { U } }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. [(YA)N](CT)(CT)(IN)[(YA)N](IN)\begin{array} { l } { [ ( \mathrm { Y } \cdot \mathrm { A } ) \vee \sim \mathrm { N } ] \supset ( \mathrm { C } \cdot \mathrm { T } ) } \\\underline{( \mathrm { C } \cdot \mathrm { T } ) \supset ( \mathrm { I } \vee \mathrm { N } )} \\{ [ ( \mathrm { Y } \cdot \mathrm { A } ) \vee \sim \mathrm { N } ] \supset ( \mathrm { I } \vee \mathrm { N } ) }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (CT)SS(CT)\begin{array} { l } ( \mathrm { C } \cdot \mathrm { T } ) \supset \mathrm { S } \\\sim \mathrm { S } \\\sim ( \mathrm { C } \cdot \mathrm { T } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (UW)SSC(UW)C\begin{array} { l } ( U \cup W ) \supset S \\S \supset C \\( U \vee W ) \supset C\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
Which rule is used in the following inference? [(ZY)(ZY)][(AZ)(XY)](ZY)(ZY)(A)(XY)\begin{array} { l } { [ ( Z \supset Y ) \cup ( Z \supset Y ) ] \supset [ \sim ( \sim A \cdot Z ) \supset ( \mathrm { X } \equiv Y ) ] } \\( Z \supset Y ) \cup ( Z \supset Y ) \\\sim ( \sim A \cdot \sim ) \supset ( \mathrm { X } \equiv Y )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. K(ZX)K(ZX)\begin{array} { l } \sim \sim \mathrm{K} \\( Z \vee X ) \supset \sim K \\\sim ( Z \cup X )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Question
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (NC)(BF)(RE)(NC)(RE)(BF)\begin{array} { l } ( \mathrm { N } \equiv \mathrm { C } ) \supset ( \mathrm { B } \vee \mathrm { F } ) \\( \mathrm { R } \cdot \mathrm { E } ) \supset ( \mathrm { N } \equiv \mathrm { C } ) \\( \mathrm { R } \cdot \mathrm { E } ) \supset ( \mathrm { B } \vee \mathrm { F } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/120
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Propositional Logic-Arguments
1
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? BFBF\frac { B \cdot F } { B \equiv F }

A)B: T F: T
B)B: T F: F
C)B: F F: T
D)B: F F: F
E)None-the argument is valid.
None-the argument is valid.
2
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? TUTU\begin{array} { l } \mathrm { T } \supset \mathrm { U } \\\sim \mathrm { T } \\\sim \mathrm { U }\end{array}

A)T: T U: T
B)T: T U: F
C)T: F U: T
D)T: F U: F
E)None-the argument is valid.
T: F U: T
3
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ABA?B\begin{array} { l } A \cup B \\\frac { A } { ?B }\end{array}

A)A: T B: T
B)A: T B: F
C)A: F B: T
D)A: F B: F
E)None-the argument is valid.
None-the argument is valid.
4
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? CEEC\frac { C \cdot E } { E \cdot C }

A)C: T E: T
B)C: T E: F
C)C: F E: T
D)C: F E: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
5
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? NANA\begin{array} { l } \mathrm { N } \supset \mathrm { A } \\\mathrm { N } \\\mathrm { A }\end{array}

A)N: T A: T
B)N: T A: F
C)N: F A: T
D)N: F A: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
6
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? QPQ\frac { Q } { P \supset Q }

A)P: T Q: T
B)P: T Q: F
C)P: F Q: T
D)P: F Q: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
7
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? BAA\frac { B \cdot A } { A }

A)B: T A: T
B)B: T A: F
C)B: F A: T
D)B: F A: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
8
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? NNT\frac { N } { N \equiv T}

A)N: T T: T
B)N: T T: F
C)N: F T: T
D)N: F T: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
9
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? MUMU\frac { M \cdot U } { M \vee U }

A)M: T U: T
B)M: T U: F
C)M: F U: T
D)M: F U: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
10
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? LEEL\begin{array} { l } \mathrm { L } \supset \mathrm { E } \\\sim \mathrm { E } \\\sim \mathrm { L }\end{array}

A)L: T E: T
B)L: T E: F
C)L: F E: T
D)L: F E: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
11
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? GX\mathrm { G } \vee \mathrm { X }
G
X

A)G: T X: T
B)G: T X: F
C)G: F X: T
D)G: F X: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
12
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? BTBT\begin{array} { l } \mathrm { B } \vee \mathrm { T } \\\sim \mathrm { B } \\\mathrm { T }\end{array}

A)B: T T: T
B)B: T T: F
C)B: F T: T
D)B: F T: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
13
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? OYYO\begin{array} { l } \mathrm { O } \supset \mathrm { Y } \\\mathrm { Y } \\\mathrm { O }\end{array}

A)O: T Y: T
B)O: T Y: F
C)O: F Y: T
D)O: F Y: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
14
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? DCD\frac { \sim \mathrm { D } } { \mathrm { C \supset } \mathrm { D }}

A)D: T C: T
B)D: T C: F
C)D: F C: T
D)D: F C: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
15
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? RTR\frac { \mathrm { R } \equiv \mathrm { T } } { \mathrm { R } }

A)R: T T: T
B)R: T T: F
C)R: F T: T
D)R: F T: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
16
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? NCCN\begin{array} { l } \mathrm { N } \vee \mathrm { C } \\\sim \mathrm { C } \\\sim \mathrm { N }\end{array}

A)N: T C: T
B)N: T C: F
C)N: F C: T
D)N: F C: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
17
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ZAZA\frac { Z \equiv A } { Z \supset A }

A)Z: T A: T
B)Z: T A: F
C)Z: F A: T
D)Z: F A: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
18
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? MMN\frac { \sim \mathrm { M } } { \mathrm { M \supset N }}

A)M: T N: T
B)M: T N: F
C)M: F N: T
D)M: F N: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
19
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ESSEES\begin{array} { l } E \supset S \\S \supset E \\E \equiv S\end{array}

A)E: T S: T
B)E: T S: F
C)E: F S: T
D)E: F S: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
20
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? AAB\frac { A } { A\supset B}

A)A: T B: T
B)A: T B: F
C)A: F B: T
D)A: F B: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
21
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (ZY)XZ WYWVW\begin{array} { l } ( \mathrm { Z } \supset \mathrm { Y } ) \supset \mathrm { X } \\\mathrm { Z } \supset \mathrm {~W} \\\sim \mathrm { Y } \supset \sim \mathrm { W } \\\mathrm { V } \vee \mathrm { W }\end{array}

A)Z: T Y: T X: T W: T V: T
B)Z: T Y: T X: F W: F V: F
C)Z: F Y: F X: T W: F V: F
D)Z: F Y: F X: F W: F V: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
22
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? [(CX)A]CC[(XA)C]\frac { [ ( C \cdot X ) \vee A ] \supset C } { C \supset [ ( X \vee A ) \supset C ] }

A)A: T C: T X: T
B)A: T C: T X: F
C)A: T C: F X: T
D)A: F C: F X: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
23
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? A(JS)JSA\begin{array} { l } \mathrm { A } \supset ( \mathrm { J } \vee \mathrm { S } ) \\\sim \mathrm { J } \\\mathrm { S } \\\mathrm { A }\end{array}

A)A: T J: T S: T
B)A: T J: T S: F
C)A: T J: F S: T
D)A: F J: F S: T
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
24
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ZCGZ(AC)GA\begin{array} { l } \sim \mathrm { Z } \\\mathrm { C } \supset \mathrm { G } \\\mathrm { Z } \vee ( \mathrm { A } \supset \mathrm { C } ) \\\sim \mathrm { G } \supset \sim \mathrm { A }\end{array}

A)Z: T C: T G: T A: T
B)Z: F C: T G: F A: T
C)Z: F C: T G: F A: F
D)Z: F C: F G: T A: T
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
25
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ABBC[(AB)C][(AB)C]\begin{array} { l } \mathrm { A } \equiv \mathrm { B } \\\mathrm { B } \equiv \mathrm { C } \\{ [ ( \mathrm { A } \cdot \mathrm { B } ) \cdot \mathrm { C } ] \cup [ ( \sim \mathrm { A } \cdot \sim \mathrm { B } ) \cdot \sim \mathrm { C } ] }\end{array}

A)A: T B: T C: T
B)A: T B: T C: F
C)A: T B: F C: T
D)A: F B: F C: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
26
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (SD)(CO)CDSD\begin{array} { l } ( \mathrm { S } \cdot \mathrm { D } ) \supset ( \mathrm { C } \cdot \mathrm { O } ) \\\mathrm { C } \supset \mathrm { D } \\\mathrm { S } \supset \mathrm { D }\end{array}

A)S: T D: T C: T O: T
B)S: T D: T C: F O: F
C)S: T D: F C: F O: T
D)S: F D: F C: F O: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
27
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (PI)PI\frac { \sim ( P \cdot I ) } { \sim P \vee \sim I }

A)P: T I: T
B)P: T I: F
C)P: F I: T
D)P: F I: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
28
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? S(LC)(DC)ALC(SA)\begin{array} { l } \sim \mathrm { S } \supset ( \mathrm { L } \vee \mathrm { C } ) \\( \sim \mathrm { D } \cdot \sim \mathrm { C } ) \supset \mathrm { A } \\\sim \mathrm { L } \\\sim \mathrm { C } \supset ( \mathrm { S } \cdot \mathrm { A } )\end{array}

A)S: T L: T C: T D: T A: T
B)S: T L: T C: F D: F A: F
C)S: F L: F C: T D: T A: F
D)S: F L: F C: F D: T A: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
29
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (HA)IIW(HA)W\begin{array} { l } ( \mathrm { H } \bullet \sim A ) \supset \mathrm { I } \\\mathrm { I } \supset \mathrm { W } \\( \mathrm { H } \bullet \mathrm { A } ) \supset \sim \mathrm { W }\end{array}

A)H: T A: T I: T W: T
B)H: T A: T I: F W: F
C)H: T A: F I: T W: T
D)H: F A: F I: T W: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
30
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (JV)(RD)RD(JV)\begin{array} { l } ( \mathrm { J } \bullet \sim \mathrm { V } ) \supset ( \mathrm { R } \vee \mathrm { D } ) \\\sim \mathrm { R } \\\sim \mathrm { D } \\\sim ( \mathrm { J } \bullet \sim \mathrm { V } )\end{array}

A)J: T V: T R: T D: T
B)J: T V: T R: F D: F
C)J: F V: F R: T D: T
D)J: F V: F R: F D: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
31
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (JV)(RD)RDJ\begin{array} { l } ( \mathrm { J } \bullet \sim \mathrm { V } ) \supset ( \mathrm { R } \vee \mathrm { D } ) \\\sim \mathrm { R } \\\sim \mathrm { D } \\\sim \mathrm { J }\end{array}

A)J: T V: T R: T D: T
B)J: T V: T R: F D: F
C)J: F V: F R: T D: T
D)J: F V: F R: F D: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
32
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (EH)G(HG)E\begin{array} { l } ( \mathrm { E }\cdot \sim \mathrm { H } ) \supset \mathrm { G } \\\sim ( \mathrm { H } \vee \mathrm { G } ) \\\sim \mathrm { E }\end{array}

A)E: T H: T G: T
B)E: T H: T G: F
C)E: T H: F G: T
D)E: F H: F G: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
33
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (CM)CC(MC)\frac { ( C \cdot M ) \supset C } { C \supset ( M \supset C ) }

A)C: T M: T
B)C: T M: F
C)C: F M: T
D)C: F M: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
34
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? MIIMEMHEHI\begin{array} { l } \mathrm { M } \supset \sim \mathrm { I } \\\mathrm { I } \supset \sim \mathrm { M } \\\mathrm { E } \supset \sim \mathrm { M } \\\mathrm { H } \supset \mathrm { E } \\\mathrm { H } \supset \mathrm { I }\end{array}

A)M: T I: T E: T H: T
B)M: T I: T E: F H: F
C)M: F I: F E: T H: T
D)M: F I: F E: F H: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
35
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (JV)(RD)RDV\begin{array} { l } ( \mathrm { J } \bullet \sim \mathrm { V } ) \supset ( \mathrm { R } \vee \mathrm { D } ) \\\sim \mathrm { R } \\\sim \mathrm { D } \\\sim \mathrm { V }\end{array}

A)J: T V: T R: T D: T
B)J: T V: T R: F D: F
C)J: F V: F R: T D: T
D)J: F V: F R: F D: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
36
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? SRDSDS\begin{array} { l } S \supset R \\\sim \mathrm { D } \\\mathrm { S } \supset \mathrm { D } \\\sim \mathrm { S }\end{array}

A)S: T R: T D: T
B)S: T R: T D: F
C)S: F R: T D: F
D)S: F R: F D: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
37
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? DWHCCDHW\begin{array} { l } \mathrm { D } \supset \sim \mathrm { W } \\\mathrm { H } \supset \sim \mathrm { C } \\\sim \mathrm { C } \supset \sim \mathrm { D } \\\mathrm { H } \supset \mathrm {W}\end{array}

A)D: T W: T H: T C: T
B)D: T W: T H: F C: F
C)D: F W: F H: T C: F
D)D: F W: F H: F C: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
38
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (ZY)XZWYWVX\begin{array} { l } ( \mathrm { Z } \supset \mathrm { Y } ) \supset \mathrm { X } \\\mathrm { Z } \supset \mathrm { W } \\\sim \mathrm { Y } \supset \sim \mathrm { W } \\\mathrm { V } \vee \mathrm { X }\end{array}

A)Z: T Y: T X: T W: T V: T
B)Z: T Y: T X: F W: F V: F
C)Z: F Y: F X: T W: F V: F
D)Z: F Y: F X: F W: F V: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
39
Use a truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? IEIE\frac { \sim \mathrm { I } \cup \mathrm { E } } { \mathrm { I } \supset \mathrm { E } }

A)I: T E: T
B)I: T E: F
C)I: F E: T
D)I: F E: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
40
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? WBXB(WX)B\begin{array} { l } W \supset \sim B \\X \supset \sim B \\( W \cup X ) \supset \sim B\end{array}

A)W: T X: T B: T
B)W: T X: T B: F
C)W: T X: F B: T
D)W: F X: F B: T
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
41
Which rule is used in the following inference? (DE)FF(GH)(DE)(GH)\begin{array} { l } ( \mathrm { D } \vee \sim \mathrm { E } ) \supset \mathrm { F } \\\mathrm { F } \supset ( \mathrm { G } \cdot \mathrm { H } ) \\( \mathrm { D } \vee \sim \mathrm { E } ) \supset ( \mathrm { G } \cdot \mathrm { H } )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
42
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? PW(DR)WPD(PR)W\begin{array} { l } \mathrm { P } \supset \mathrm { W } \\( \sim \mathrm { D } \cdot \mathrm { R } ) \supset \mathrm { W } \\\mathrm { P } \supset \sim \mathrm { D } \\( \mathrm { P } \vee \mathrm { R } ) \supset W\end{array}

A)P: T W: T D: T R: T
B)P: T W: T D: F R: F
C)P: F W: F D: T R: T
D)P: F W: F D: F R: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
43
Which rule is used in the following inference? A(DF)(DF)GAG\begin{array} { l } A \supset ( D \vee F ) \\( D \vee F ) \supset G \\A \supset G\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
44
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (BC)F(FE)(JP)BP\begin{array} { l } ( \mathrm { B } \cdot \mathrm { C } ) \supset \mathrm { F } \\( \mathrm { F } \cdot \mathrm { E } ) \supset ( \mathrm { J } \cdot \mathrm { P } ) \\\mathrm { B } \supset \mathrm { P }\end{array}

A)B: T C: T F: T E: T J: T P: F
B)B: T C: T F: T E: F J: T P: F
C)B: F C: T F: T E: F J: F P: F
D)B: F C: F F: F E: F J: F P: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
45
Which rule is used in the following inference? ABAB\begin{array} { l } A \supset B \\A \\B\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
46
Which rule is used in the following inference? (AB)(CD)ABCD\begin{array} { l } ( A \cdot B ) \supset ( C \supset D ) \\A \cdot B \\C \supset D \end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
47
Which, if any, of the following proofs are correct demonstrations of the validity of this argument? (AD)(CD)C Proof 1 (1) (AD)(CD)/C Premise/Condusion  (2) CD1Simp (3) D1Simp (4) C 2,3DS Proof 2 (1) (AD)(CD)/C Premise/Condusion  (2) CD1Simp (3) AD1Simp (4) D3Simp (5) C 2,4DS\begin{array}{l}\frac { ( A \cdot \sim D ) \cdot ( C \vee D ) } { C }\\\text { Proof } 1\\\begin{array} { l l l } \text { (1) } ( A \cdot \sim D ) \cdot ( C \vee D ) & / C & \text { Premise/Condusion } \\\text { (2) } \mathrm { C } \vee \mathrm { D } & & 1 \operatorname { Simp } \\\text { (3) } \sim \mathrm { D } & & 1 \operatorname { Simp } \\\text { (4) C } & & 2,3 \mathrm { DS } \\\text { Proof } 2 & & \\\text { (1) } ( \mathrm { A } \cdot \sim \mathrm { D } ) \cdot ( \mathrm { C } \vee \mathrm { D } ) & / \mathrm { C } & \text { Premise/Condusion } \\\text { (2) } \mathrm { C } \vee \mathrm { D } & & 1 \mathrm { Simp } \\\text { (3) } \mathrm { A } \cdot \sim \mathrm { D } && 1 \mathrm { Simp } \\\text { (4) } \sim \mathrm { D } && 3 \mathrm { Simp } \\\text { (5) C } && 2,4 \mathrm { DS }\end{array}\end{array}

A)Proof 1
B)Proof 2
C)Proofs 1 and 2
D)Neither proof
E)Not enough information is provided because proofs are incomplete.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
48
Which rule is used in the following inference? [A(BC)](BD)](BD)[E(FG)][A(BC)][E(FG)]\begin{array} { l } [ A \cdot ( B \cdot \mathrm { C } ) ] \supset ( \mathrm { B } \vee \mathrm { D } ) ] \\( \mathrm { B } \vee \mathrm { D } ) \supset [ \mathrm { E } \vee ( \mathrm { F } \cdot \mathrm { G } ) ] \\{ [ \mathrm { A } \cdot ( \mathrm { B } \cdot \mathrm { C } ) ] \supset [ \mathrm { E } \vee ( \mathrm { F } \cdot \mathrm { G } ) ] }\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
49
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (WA)I(AW)ME(WA)EG(IM)G\begin{array} { l } ( \mathrm { W } \bullet \sim \mathrm { A } ) \supset \mathrm { I } \\( \mathrm { A } \bullet \sim \mathrm { W } ) \supset \mathrm { M } \\\mathrm { E } \supset ( \sim \mathrm { W } \vee \sim \mathrm { A } ) \\\mathrm { E } \\\underline{\mathrm { G } \supset \sim ( \mathrm { I } \vee \mathrm { M } )} \\\sim \mathrm { G }\end{array}

A)W: T A: T I: T M: T E: T G: T
B)W: T A: T I: T M: F E: T G: T
C)W: F A: T I: T M: F E: T G: T
D)W: F A: F I: F M: F E: T G: T
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
50
Which rule is used in the following inference? (FK)(FL)(FL)(FK)\begin{array} { l } \sim ( \mathrm { F } \cdot \mathrm { K } ) \supset ( \mathrm { F } \supset \mathrm { L } ) \\\sim ( \mathrm { F } \supset \mathrm { L } ) \\\sim ( \mathrm { F } \cdot \mathrm { K } )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
51
Which rule is used in the following inference? (IJ)(KL)IJKL\begin{array} { l } ( \mathrm { I } \cdot \mathrm { J } ) \supset ( \mathrm { K } \vee \mathrm { L } ) \\\mathrm { I } \cdot \mathrm { J } \\\mathrm { K } \vee \mathrm { L }\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
52
Which rule is used in the following inference? (AB)(AC)(AC)(AB)\begin{array} { l } \sim ( A \equiv B )\supset( A \cup C ) \\\sim ( A \cup C ) \\\sim ( A \equiv B )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
53
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? SRDSDR\begin{array} { l } S \supset R \\\sim \mathrm { D } \\S\supset D \\\sim R\end{array}

A)S: T R: T D: T
B)S: T R: T D: F
C)S: F R: T D: F
D)S: F R: F D: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
54
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? C(PB)(PE)(BW)(WE)TTC\begin{array} { l } \mathrm { C } \supset ( \mathrm { P } \cdot \mathrm { B } ) \\( \mathrm { P } \supset \mathrm { E } ) \cdot ( \mathrm { B } \supset \mathrm { W } ) \\( \mathrm { W } \cdot \mathrm { E } ) \supset \sim \mathrm { T } \\\mathrm { T }\\\sim \mathrm {C } \end{array}

A)C: T P: T B: T E: T W: T T: T
B)C: T P: T B: T E: F W: T T: T
C)C: F P: T B: T E: F W: T T: T
D)C: F P: F B: F E: F W: T T: T
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
55
Which rule is used in the following inference? [(AB)(CB)](AC)(AB)(CB)(AC)\begin{array} { l } { [ ( A \supset B ) \vee ( C \supset B ) ] \supset \sim ( \sim A \cdot \sim C ) } \\( A \supset B ) \vee ( C \supset B ) \\\sim ( \sim A \cdot \sim C )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
56
Which rule is used in the following inference? [E(BC)](FG)(FG)[H(FG)][E(BC)][H(FG)]\begin{array} { l } \sim [ \mathrm { E } \vee ( \mathrm { B } \cdot \mathrm { C } ) ] \supset \sim ( \mathrm { F } \vee \sim \mathrm { G } ) \\\sim ( \mathrm { F } \vee \sim \mathrm { G } ) \supset [ \mathrm { H } \equiv ( \mathrm { F } \cdot \mathrm { G } ) ] \\\sim [ \mathrm { E } \vee ( \mathrm { B } \cdot \mathrm { C } ) ] \supset [ \mathrm { H } \equiv ( \mathrm { F } \cdot \mathrm { G } ) ]\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
57
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? IBIPG(BP)G\begin{array} { l } \mathrm { I } \supset \sim \mathrm { B } \\\sim \mathrm { I } \supset \sim \mathrm { P } \\\mathrm { G } \supset ( \mathrm { B } \cdot \mathrm { P } ) \\\sim \mathrm { G }\end{array}

A)I: T B: T P: T G: T
B)I: T B: T P: T G: F
C)I: F B: T P: T G: F
D)I: F B: F P: F G: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
58
Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (BC)F(FE)(JP)(BC)P\begin{array} { l } ( \mathrm { B } \cdot \mathrm { C } ) \supset \mathrm { F } \\( \mathrm { F } \cdot \mathrm { E } ) \supset ( \mathrm { J } \cdot \mathrm { P } ) \\( \mathrm { B } \cdot \mathrm { C } ) \supset \mathrm { P }\end{array}

A)B: T C: T F: T E: T J: T P: F
B)B: T C: T F: T E: F J: T P: F
C)B: F C: T F: T E: F J: F P: F
D)B: F C: F F: F E: F J: F P: F
E)None-the argument is valid.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
59
Which rule is used in the following inference? JRRJ\begin{array} { l } \mathrm { J } \supset \mathrm { R } \\\sim \mathrm { R } \\\sim \mathrm { J }\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
60
Which rule is used in the following inference? AR\sim A \supset R
R\sim R
A\sim A

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
61
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (YO)RR(HN)(YO)(HN)\begin{array} { l } ( \mathrm { Y } \cdot \mathrm { O } ) \supset \mathrm { R } \\\mathrm { R } \supset ( \mathrm { H } \cdot \mathrm { N } ) \\( \mathrm { Y } \cdot \mathrm { O } ) \supset ( \mathrm { H } \cdot \mathrm { N } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
62
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. MO(MO)(FR)FR\begin{array} { l } \mathrm { M } \equiv \mathrm { O } \\( \mathrm { M } \equiv \mathrm { O } ) \supset ( \mathrm { F } \cdot \mathrm { R } ) \\\mathrm { F } \cdot \mathrm { R }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
63
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (PR)APRA\begin{array} { l } ( \mathrm { P } \cdot \mathrm { R } ) \supset A \\P \cdot R\\A\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
64
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. <strong>The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form.  </strong> A)MP B)MT C)HS D)DS E)Conj

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
65
Which rule is used in the following inference? DLDL\begin{array} { l } \mathrm { D } \vee \mathrm { L } \\\frac { \sim \mathrm { D } } { \mathrm { L } }\end{array}

A)Simp
B)Conj
C)Add
D)DS
E)HS
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
66
Which rule is used in the following inference? [(FG)H](IJ)(IJ)[FG)H]\begin{array} { l } \sim [ ( \mathrm { F } \vee \mathrm { G } ) \cdot \mathrm { H } ] \supset \sim ( \mathrm { I } \equiv \mathrm { J } ) \\\sim \sim ( \mathrm { I } \equiv \mathrm { J } ) \\\sim \sim [ \mathrm { F } \vee \mathrm { G } ) \cdot \mathrm { H } ]\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
67
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. [(PT)(HN)](TS)(TS)[(HE)R][(PT)(HN)][(HE)R]\begin{array} { l } { [ ( \mathrm { P } \equiv \mathrm { T } ) \cdot ( \mathrm { H } \cdot \mathrm { N } ) ] \supset ( \mathrm { T } \supset \sim \mathrm { S } ) } \\( \mathrm { T } \supset \sim \mathrm { S } ) \supset [ ( \mathrm { H } \vee \mathrm { E } ) \cup \mathrm { R } ] \\{ [ ( \mathrm { P } \equiv \mathrm { T } ) \cdot ( \mathrm { H } \cdot \mathrm { N } ) ] \supset [ ( \mathrm { H } \vee \mathrm { E } ) \vee \mathrm { R } ] }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
68
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. [(GR)(SP)](NG)(NG)[(GR)(SP)]\begin{array} { l } { [ ( \mathrm { G } \cdot \mathrm { R } ) \equiv ( \mathrm { S } \supset \mathrm { P } ) ] \supset ( \mathrm { N } \cdot \mathrm { G } ) } \\\sim ( \mathrm { N } \cdot \mathrm { G } ) \\\sim [ ( \mathrm { G } \cdot \mathrm { R } ) \equiv ( \mathrm { S } \supset \mathrm { P } ) ]\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
69
Which rule is used in the following inference? (BC)DDBC\begin{array} { l } ( B \cdot C ) \vee D \\\sim \mathrm { D } \\B \cdot C\end{array}

A)Simp
B)Conj
C)Add
D)DS
E)HS
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
70
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (MP)(LS)(LS)(TW)(MP)(TW)\begin{array} { l } ( \mathrm { M } \supset \mathrm { P } ) \supset ( \mathrm { L } \vee \mathrm { S } ) \\( \mathrm { L } \vee \mathrm { S } ) \supset ( \mathrm { T } \equiv W ) \\( \mathrm { M } \supset \mathrm { P } ) \supset ( \mathrm { T } \equiv W )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
71
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. FFFF\begin{array} { l } \mathrm { F } \supset \mathrm { F } \\\mathrm { F } \\\mathrm { F }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
72
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (HE)(TH)(TH)(HE)\begin{array} { l } ( \mathrm { H } \cdot \mathrm { E } ) \supset ( \mathrm { T } \equiv \mathrm { H } ) \\\sim ( \mathrm { T } \equiv \mathrm { H } ) \\\sim ( \mathrm { H } \cdot \mathrm { E } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
73
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (ND)M( \mathrm { N } \cdot \mathrm { D } ) \supset \mathrm { M }
ND\mathrm { N } \cdot \mathrm { D }
M

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
74
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (RR)(DU)RRDU\begin{array} { l } ( \mathrm { R } \supset \mathrm { R } ) \supset ( \mathrm { D } \equiv \sim \mathrm { U } ) \\\frac { \mathrm { R } \supset \mathrm { R } } { \mathrm { D } \equiv \sim \mathrm { U } }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
75
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. [(YA)N](CT)(CT)(IN)[(YA)N](IN)\begin{array} { l } { [ ( \mathrm { Y } \cdot \mathrm { A } ) \vee \sim \mathrm { N } ] \supset ( \mathrm { C } \cdot \mathrm { T } ) } \\\underline{( \mathrm { C } \cdot \mathrm { T } ) \supset ( \mathrm { I } \vee \mathrm { N } )} \\{ [ ( \mathrm { Y } \cdot \mathrm { A } ) \vee \sim \mathrm { N } ] \supset ( \mathrm { I } \vee \mathrm { N } ) }\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
76
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (CT)SS(CT)\begin{array} { l } ( \mathrm { C } \cdot \mathrm { T } ) \supset \mathrm { S } \\\sim \mathrm { S } \\\sim ( \mathrm { C } \cdot \mathrm { T } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
77
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (UW)SSC(UW)C\begin{array} { l } ( U \cup W ) \supset S \\S \supset C \\( U \vee W ) \supset C\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
78
Which rule is used in the following inference? [(ZY)(ZY)][(AZ)(XY)](ZY)(ZY)(A)(XY)\begin{array} { l } { [ ( Z \supset Y ) \cup ( Z \supset Y ) ] \supset [ \sim ( \sim A \cdot Z ) \supset ( \mathrm { X } \equiv Y ) ] } \\( Z \supset Y ) \cup ( Z \supset Y ) \\\sim ( \sim A \cdot \sim ) \supset ( \mathrm { X } \equiv Y )\end{array}

A)HS
B)MP
C)MT
D)CD
E)DD
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
79
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. K(ZX)K(ZX)\begin{array} { l } \sim \sim \mathrm{K} \\( Z \vee X ) \supset \sim K \\\sim ( Z \cup X )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
80
The following argument is an instance of one of the five inference forms MP, MT, HS, DS, Conj.Identify the form. (NC)(BF)(RE)(NC)(RE)(BF)\begin{array} { l } ( \mathrm { N } \equiv \mathrm { C } ) \supset ( \mathrm { B } \vee \mathrm { F } ) \\( \mathrm { R } \cdot \mathrm { E } ) \supset ( \mathrm { N } \equiv \mathrm { C } ) \\( \mathrm { R } \cdot \mathrm { E } ) \supset ( \mathrm { B } \vee \mathrm { F } )\end{array}

A)MP
B)MT
C)HS
D)DS
E)Conj
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 120 flashcards in this deck.