Deck 18: Simplex-Based Sensitivity Analysis and Duality

Full screen (f)
exit full mode
Question
Given the simplex tableau for the optimal primal solution

A)the values of the dual variables can be found from the cj -zj values of the slack/surplus variable columns.
B)the values of the dual surplus variables can be found from the cj - zj values of the primal decision variable columns.
C)the value of the dual objective function will be the same as the objective function value for the primal problem.
D)each of the above is true.
Use Space or
up arrow
down arrow
to flip the card.
Question
As long as the objective function coefficient remains within the range of optimality, the variable values will not change although the value of the objective function could.
Question
The improvement in the value of the optimal solution per-unit increase in a constraint's right-hand side is

A)the slack value.
B)the dual price.
C)never negative.
D)the 100% rule.
Question
The range of optimality is calculated by considering changes in the cj - zj value of the variable in question.
Question
For an objective function coefficient change outside the range of optimality, explain how to calculate the new optimal solution. Must you return to the (revised) initial tableau?
Question
A one-sided range of optimality

A)always occurs for non-basic variables.
B)always occurs for basic variables.
C)indicates changes in more than one coefficient.
D)indicates changes in a slack variable's coefficient.
Question
If the dual price for b1 is 2.7, the range of feasibility is 20 \le b1 \le 50, and the original value of b1 was 30, which of the following is true?

A)There currently is no slack in the first constraint.
B)We would be willing to pay up to $2.70 per unit for up to 20 more units of resource 1.
C)If only 25 units of resource 1 were available, profit would drop by $13.50.
D)Each of the above is true.
Question
A linear programming problem with the objective function 3x1 + 8x2 has the optimal solution x1 = 5, x2 = 6. If c2 decreases by 2 and the range of optimality shows 5 \le c2 \le 12, the value of Z

A)will decrease by 12.
B)will decrease by 2.
C)will not change.
D)cannot be determined from this information.
Question
The dual price is the improvement in value of the optimal solution per unit increase in the value of the right-hand side associated with a linear programming problem.
Question
The range of feasibility indicates right-hand side values for which

A)the value of the objective function will not change.
B)the values of the decision variables will not change.
C)those variables which are in the basis will not change.
D)more simplex iterations must be performed.
Question
If the simplex tableau is from a maximization converted from a minimization, the signs and directions of the inequalities that give the objective function ranges will need to be adjusted to apply to the original coefficients.
Question
The dual variable represents

A)the marginal value of the constraint
B)the right-hand side value of the constraint
C)the artificial variable
D)the technical coefficient of the constraint
Question
The ranges for which the right-hand side values are valid are the same as the ranges over which the dual prices are valid.
Question
The entries in the associated slack column of the final tableau indicate the changes in the values of the current basic variables corresponding to a one-unit increase in the right-hand side.
Question
The range of optimality is useful only for basic variables.
Question
The dual price for an equality constraint is the zj value for its artificial variable.
Question
There is a dual price associated with each decision variable.
Question
The range of optimality for a basic variable defines the objective function coefficient values for which the variable will remain part of the current optimal basic feasible solution.
Question
For the basic feasible solution to remain optimal

A)all cj -zj values must remain \le 0.
B)no objective function coefficients are allowed to change.
C)the value of the objective function must not change.
D)each of the above is true.
Question
Dual prices and ranges for objective function coefficients and right-hand side values are found by considering

A)dual analysis.
B)optimality analysis.
C)ranging analysis.
D)sensitivity analysis.
Question
Given the following linear programming problem
Max Z
0.5x1 + 6x2 + 5x3
s.t.
4x1 + 6x2 + 3x3 \le 24
1x1 + 1.5x2 + 3x3 \le 12
3x1 + x2 \le 12
and the final tableau is x1x2x3 s1 s2 s3 Basis cB.565000x26110.22.2202.67x35001.11.4402.67 s302.3300.22.2219.33zj465.77.88029.33cjzj.500.77.880\begin{array} { c c | c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & .5 & 6 & 5 & 0 & 0 & 0 & \\\hline \mathrm { x } _ { 2 } & 6 & 1 & 1 & 0 & .22 & - .22 & 0 & 2.67 \\\mathrm { x } _ { 3 } & 5 & 0 & 0 & 1 & .11 & - .44 & 0 & 2.67 \\\mathrm {~s} _ { 3 } & 0 & 2.33 & 0 & 0 & - .22 & .22 & 1 & 9.33 \\\hline & \mathrm { z } _ { \mathrm { j } } & 4 & 6 & 5 & .77 & .88 & 0 & 29.33 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & .5 & 0 & 0 & - .77 & - .88 & 0 &\end{array}
a.Find the range of optimality for c1, c2, c3, c4, c5, and c6.
b.Find the range of feasibility for b1, b2, and b3.
Question
Explain how to put an equality constraint into canonical form and how to calculate its dual variable value.
Question
For the following linear programming problem
Max Z
-2x1 + x2 - x3
s.t.
2x1 + x2 \le 7
1x1 + x2 + x3 \ge 4
the final tableau is x1x2x3 s1 s2a2 Basis CB21100Ms201011113x212101007zj2101007Cjzj40110M\begin{array} { c c | c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm { a } _ { 2 } & \\\text { Basis } & \mathrm { C } _ { \mathrm { B } } & - 2 & 1 & - 1 & 0 & 0 & - \mathrm { M } & \\\hline \mathrm { s } _ { 2 } & 0 & 1 & 0 & - 1 & 1 & 1 & - 1 & 3 \\\mathrm { x } _ { 2 } & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 7 \\\hline & z _ { j } & 2 & 1 & 0 & 1 & 0 & 0 & 7 \\& \mathrm { C } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & - 4 & 0 & 1 & - 1 & 0 & - \mathrm { M } &\end{array}
a.Find the range of optimality for c1, c2 , c3.c4, c5 , and c6.
b.Find the range of feasibility for b1, and b2.
Question
Explain why the zj value for a slack variable is the dual price.
Question
Write the dual of the following problem
Min Z
= 2x1 -3x2 + 5x3
s.t.
-3x1 + 2x2 + 5x3 \ge 7
2x1 -x3 \ge 5
4x 2 + 3x3 \ge 8.
Question
The primal problem is
Min
2x1 + 5x2 + 4x3
s.t.
x1 + 3x2 + 3x3 \ge 30
3x1 + 7x2 + 5x3 \ge 70
x1, x2, x3 \ge 0
The final tableau for its dual problem is u1u2 s1 s2 s3 Basis cB3070000u270013/401/41/2 s20003/211/20u130105/403/41/2zj3070150550cjzj001505\begin{array} { c c | c c c c c | c } & & \mathrm { u } _ { 1 } & \mathrm { u } _ { 2 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & 30 & 70 & 0 & 0 & 0 & \\\hline \mathrm { u } _ { 2 } & 70 & 0 & 1 & 3 / 4 & 0 & - 1 / 4 & 1 / 2 \\\mathrm {~s} _ { 2 } & 0 & 0 & 0 & - 3 / 2 & 1 & - 1 / 2 & 0 \\\mathrm { u } _ { 1 } & 30 & 1 & 0 & - 5 / 4 & 0 & 3 / 4 & 1 / 2 \\\hline & z _ { \mathrm { j } } & 30 & 70 & 15 & 0 & 5 & 50 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & 0 & - 15 & 0 & - 5 &\end{array} Give the complete solution to the primal problem.
Question
Explain the simplex tableau location of the dual constraint for each type of constraint.
Question
For this optimal simplex tableau the original right-hand sides were 100 and 90. The problem was a maximization. For this optimal simplex tableau the original right-hand sides were 100 and 90. The problem was a maximization.   a.What would the new solution be if there had been 150 units available in the first constraint? b.What would the new solution be if there had been 70 units available in the second constraint?<div style=padding-top: 35px>
a.What would the new solution be if there had been 150 units available in the first constraint?
b.What would the new solution be if there had been 70 units available in the second constraint?
Question
The linear programming problem
Max
6x1 + 2x2 + 3x3 + 4x4
s.t.
x1 + x2 + x3 + x4 \le 100
4x1 + x2 + x3 + x4 \le 160
3x1 + x2 + 2x3 + 3x4 \le 240
x1, x2, x 3, x4 \ge 0
has the final tableau x1x2x3x4 s1 s2 s3 Basis cB6234000x22011/203/201/230x1610001/31/3020x44001/211/61/31/250zj62342.33.671380cjzj00002.33.671\begin{array} { c c | c c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm { x } _ { 4 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & 6 & 2 & 3 & 4 & 0 & 0 & 0 & \\\hline \mathrm { x } _ { 2 } & 2 & 0 & 1 & 1 / 2 & 0 & 3 / 2 & 0 & - 1 / 2 & 30 \\\mathrm { x } _ { 1 } & 6 & 1 & 0 & 0 & 0 & - 1 / 3 & 1 / 3 & 0 & 20 \\\mathrm { x } _ { 4 } & 4 & 0 & 0 & 1 / 2 & 1 & - 1 / 6 & - 1 / 3 & 1 / 2 & 50 \\\hline & \mathrm { z } _ { \mathrm { j } } & 6 & 2 & 3 & 4 & 2.33 & .67 & 1 & 380 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & 0 & 0 & 0 & - 2.33 & - .67 & - 1 &\end{array} Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem.
LINEAR PROGRAMMING PROBLEM
MAX
6X1+2X2+3X3+4X4
S.T.
1) 1X1 + 1X2 + 1X3 + 1X4 < 100
2) 4X1 + 1X2 + 1X3 + 1X4 < 160
3) 3X1 + 1X2 + 2X3 + 3X4 < 240
OPTIMAL SOLUTION Objective Function Value ==
 Variable  Value  Reduced Cost X1X2X3X4\begin{array}{ccc}\text { Variable } & \text { Value } & \text { Reduced Cost } \\X 1 & - &- \\X 2 & - &- \\X 3 & - &- \\X 4 & - &-\end{array}

 Constraint  Slack/Surplus  Dual Price 123\begin{array}{ccc}\text { Constraint } & \text { Slack/Surplus } & \text { Dual Price } \\1 & - & - \\2 & - & - \\3 & - & -\end{array}
 OBJECTIVE COEFFICIENT RANGES \text { OBJECTIVE COEFFICIENT RANGES }

 Variable  Lower Limit  Current Value  Upper Limit X1X2X3X4\begin{array}{cccc}\text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\mathrm{X} 1 & - & -&- \\\mathrm{X} 2 & - & -&- \\\mathrm{X} 3 & - & -&- \\\mathrm{X} 4 & - & -&-\end{array}
 RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES }

 Constraint  Lower Limit  Current Value  Upper Limit 123\begin{array}{cccc}\text { Constraint }& \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\1 & - & -&-\\2 & - & -&-\\3 & - & -&-\\\end{array}
Question
When sensitivity calculations yield several potential upper bounds and several lower bounds, how is the range determined?
Question
For this optimal simplex tableau, the right-hand sides for the two original \ge constraints were 300 and 250. The problem was a minimization. x1x2x3 s1 s2 Basis CB1001109500x39501.5111.575x11001201150zj10057.595542.512125Cjzj052.50542.5\begin{array} { c c | c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \\\text { Basis } & \mathrm { C } _ { \mathrm { B } } & - 100 & - 110 & - 95 & 0 & 0 & \\\hline \mathrm { x } _ { 3 } & - 95 & 0 & - 1.5 & 1 & 1 & - 1.5 & 75 \\\mathrm { x } _ { 1 } & - 100 & 1 & 2 & 0 & - 1 & 1 & 50 \\\hline & \mathrm { z } _ { \mathrm { j } } & - 100 & - 57.5 & - 95 & 5 & 42.5 & - 12125 \\& \mathrm { C } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & - 52.5 & 0 & - 5 & - 42.5 &\end{array}
a.What would the new solution be if the right-hand side value in the first constraint had been 325?
b.What would the new solution be if the right-hand side value for the second constraint had been 220?
Question
Write the dual to the following problem.
Min
12x1 + 15x2 + 20x3 + 18x4
s.t.
x1 + x2 + x3 + x4 \ge 50
3x1 + 4x3 \ge 60
2x2 + x3 - 2x4 \le 10
x1, x2, x3, x4 \ge 0
Question
Given the following linear programming problem
Max
10x1 + 12x2
s.t.
1x1 + 2x2 \ge 40
5x1 + 8x2 \le 160
1x1 + 1x2 \le 40
x1, x2 \ge 0
the final tableau is x1x2 s1 s2 s3 Basis cB1012000x212012.5.5020x110104100 s30001.55120zj10121040240cjzj001040\begin{array} { c c | c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & 10 & 12 & 0 & 0 & 0 & \\\hline \mathrm { x } _ { 2 } & 12 & 0 & 1 & - 2.5 & - .5 & 0 & 20 \\\mathrm { x } _ { 1 } & 10 & 1 & 0 & 4 & 1 & 0 & 0 \\\mathrm {~s} _ { 3 } & 0 & 0 & 0 & - 1.5 & - 5 & 1 & 20 \\\hline & \mathrm { z } _ { \mathrm { j } } & 10 & 12 & 10 & 4 & 0 & 240 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & 0 & - 10 & - 4 & 0 &\end{array}
a.Find the range of optimality for c1 and c2.
b.Find the range of feasibility for b1, b2, and b3.
c.Find the dual prices.
Question
Creative Kitchen Tools manufactures a wide line of gourmet cooking tools from stainless steel. For the coming production period, there is demand of 1200 for 8 quart stock pots, and unlimited demand for 3 quart mixing bowls and large slotted spoons. In the following model, the three variables measure the number of pots, bowls, and spoons to make. The objective function measures profit. Constraint 1 measures steel, constraint 2 measures manufacturing time, constraint 3 measures finishing time, and constraint 4 measures the stock pot demand.
Max
5x1 + 3x2 + 6x3
s.t.
3x1 + 1x2 + 2x3 \le 15000
4x1 + 4x2 + 5x3 \le 18000
2x1 + 1x2 + 2x3 \le 10000
x1 \le 1200
x1, x2, x3 \ge 0
The final tableau is: x1x2x3 s1 s2 s3 s4 Basis CB5360000 s10021.750.75001500 s40011.250.25013300 s3001.50.5101000x15111.250.25004500zj556.2501.250022500Cjzj02.2501.2500\begin{array} { c c | c c c ccc c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 }& \mathrm {~s} _ { 4 } \\\text { Basis } & \mathrm { C } _ { \mathrm { B } } &5&3&6&0&0&0&0& \\\hline \mathrm {~s} _ { 1 } &0&0&-2&-1.75&0&-.75&0&0&1500\\ \mathrm {~s} _ { 4 }&0&0&1&1.25&0&.25&0&1&3300\\ \mathrm {~s} _ { 3 }&0&0&-1&-.5&0&-.5&1&0&1000\\ \mathrm { x } _ { 1 } &5&1&1&1.25&0&.25&0&0&4500\\\hline& \mathrm { z } _ { j }&5&5&6.25&0&1.25&0&0&22500\\&\mathrm{C}_{\mathrm{j}}-z_{\mathrm{j}}&0&-2&-.25&0&-1.25&0&0&\end{array}
a.Calculate the range of optimality for c1, c2, and c3.
b.Calculate the range of feasibility for b1, b2, b3, and b4.
c.Suppose that the inventory records were incorrect and the company really has only 14000 units of steel.What effect will this have on your solution?
d.Suppose that a cost increase will change the profit on the pots to $4.62.What effect will this have on your solution?
e.Assume that the cost of time in production and finishing is relevant.Would you be willing to pay a $1.00 premium over the normal cost for 1000 more hours in the production department? What would this do to your solution?
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/34
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 18: Simplex-Based Sensitivity Analysis and Duality
1
Given the simplex tableau for the optimal primal solution

A)the values of the dual variables can be found from the cj -zj values of the slack/surplus variable columns.
B)the values of the dual surplus variables can be found from the cj - zj values of the primal decision variable columns.
C)the value of the dual objective function will be the same as the objective function value for the primal problem.
D)each of the above is true.
each of the above is true.
2
As long as the objective function coefficient remains within the range of optimality, the variable values will not change although the value of the objective function could.
True
3
The improvement in the value of the optimal solution per-unit increase in a constraint's right-hand side is

A)the slack value.
B)the dual price.
C)never negative.
D)the 100% rule.
B
4
The range of optimality is calculated by considering changes in the cj - zj value of the variable in question.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
5
For an objective function coefficient change outside the range of optimality, explain how to calculate the new optimal solution. Must you return to the (revised) initial tableau?
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
6
A one-sided range of optimality

A)always occurs for non-basic variables.
B)always occurs for basic variables.
C)indicates changes in more than one coefficient.
D)indicates changes in a slack variable's coefficient.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
7
If the dual price for b1 is 2.7, the range of feasibility is 20 \le b1 \le 50, and the original value of b1 was 30, which of the following is true?

A)There currently is no slack in the first constraint.
B)We would be willing to pay up to $2.70 per unit for up to 20 more units of resource 1.
C)If only 25 units of resource 1 were available, profit would drop by $13.50.
D)Each of the above is true.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
8
A linear programming problem with the objective function 3x1 + 8x2 has the optimal solution x1 = 5, x2 = 6. If c2 decreases by 2 and the range of optimality shows 5 \le c2 \le 12, the value of Z

A)will decrease by 12.
B)will decrease by 2.
C)will not change.
D)cannot be determined from this information.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
9
The dual price is the improvement in value of the optimal solution per unit increase in the value of the right-hand side associated with a linear programming problem.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
10
The range of feasibility indicates right-hand side values for which

A)the value of the objective function will not change.
B)the values of the decision variables will not change.
C)those variables which are in the basis will not change.
D)more simplex iterations must be performed.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
11
If the simplex tableau is from a maximization converted from a minimization, the signs and directions of the inequalities that give the objective function ranges will need to be adjusted to apply to the original coefficients.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
12
The dual variable represents

A)the marginal value of the constraint
B)the right-hand side value of the constraint
C)the artificial variable
D)the technical coefficient of the constraint
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
13
The ranges for which the right-hand side values are valid are the same as the ranges over which the dual prices are valid.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
14
The entries in the associated slack column of the final tableau indicate the changes in the values of the current basic variables corresponding to a one-unit increase in the right-hand side.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
15
The range of optimality is useful only for basic variables.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
16
The dual price for an equality constraint is the zj value for its artificial variable.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
17
There is a dual price associated with each decision variable.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
18
The range of optimality for a basic variable defines the objective function coefficient values for which the variable will remain part of the current optimal basic feasible solution.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
19
For the basic feasible solution to remain optimal

A)all cj -zj values must remain \le 0.
B)no objective function coefficients are allowed to change.
C)the value of the objective function must not change.
D)each of the above is true.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
20
Dual prices and ranges for objective function coefficients and right-hand side values are found by considering

A)dual analysis.
B)optimality analysis.
C)ranging analysis.
D)sensitivity analysis.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
21
Given the following linear programming problem
Max Z
0.5x1 + 6x2 + 5x3
s.t.
4x1 + 6x2 + 3x3 \le 24
1x1 + 1.5x2 + 3x3 \le 12
3x1 + x2 \le 12
and the final tableau is x1x2x3 s1 s2 s3 Basis cB.565000x26110.22.2202.67x35001.11.4402.67 s302.3300.22.2219.33zj465.77.88029.33cjzj.500.77.880\begin{array} { c c | c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & .5 & 6 & 5 & 0 & 0 & 0 & \\\hline \mathrm { x } _ { 2 } & 6 & 1 & 1 & 0 & .22 & - .22 & 0 & 2.67 \\\mathrm { x } _ { 3 } & 5 & 0 & 0 & 1 & .11 & - .44 & 0 & 2.67 \\\mathrm {~s} _ { 3 } & 0 & 2.33 & 0 & 0 & - .22 & .22 & 1 & 9.33 \\\hline & \mathrm { z } _ { \mathrm { j } } & 4 & 6 & 5 & .77 & .88 & 0 & 29.33 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & .5 & 0 & 0 & - .77 & - .88 & 0 &\end{array}
a.Find the range of optimality for c1, c2, c3, c4, c5, and c6.
b.Find the range of feasibility for b1, b2, and b3.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
22
Explain how to put an equality constraint into canonical form and how to calculate its dual variable value.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
23
For the following linear programming problem
Max Z
-2x1 + x2 - x3
s.t.
2x1 + x2 \le 7
1x1 + x2 + x3 \ge 4
the final tableau is x1x2x3 s1 s2a2 Basis CB21100Ms201011113x212101007zj2101007Cjzj40110M\begin{array} { c c | c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm { a } _ { 2 } & \\\text { Basis } & \mathrm { C } _ { \mathrm { B } } & - 2 & 1 & - 1 & 0 & 0 & - \mathrm { M } & \\\hline \mathrm { s } _ { 2 } & 0 & 1 & 0 & - 1 & 1 & 1 & - 1 & 3 \\\mathrm { x } _ { 2 } & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 7 \\\hline & z _ { j } & 2 & 1 & 0 & 1 & 0 & 0 & 7 \\& \mathrm { C } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & - 4 & 0 & 1 & - 1 & 0 & - \mathrm { M } &\end{array}
a.Find the range of optimality for c1, c2 , c3.c4, c5 , and c6.
b.Find the range of feasibility for b1, and b2.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
24
Explain why the zj value for a slack variable is the dual price.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
25
Write the dual of the following problem
Min Z
= 2x1 -3x2 + 5x3
s.t.
-3x1 + 2x2 + 5x3 \ge 7
2x1 -x3 \ge 5
4x 2 + 3x3 \ge 8.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
26
The primal problem is
Min
2x1 + 5x2 + 4x3
s.t.
x1 + 3x2 + 3x3 \ge 30
3x1 + 7x2 + 5x3 \ge 70
x1, x2, x3 \ge 0
The final tableau for its dual problem is u1u2 s1 s2 s3 Basis cB3070000u270013/401/41/2 s20003/211/20u130105/403/41/2zj3070150550cjzj001505\begin{array} { c c | c c c c c | c } & & \mathrm { u } _ { 1 } & \mathrm { u } _ { 2 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & 30 & 70 & 0 & 0 & 0 & \\\hline \mathrm { u } _ { 2 } & 70 & 0 & 1 & 3 / 4 & 0 & - 1 / 4 & 1 / 2 \\\mathrm {~s} _ { 2 } & 0 & 0 & 0 & - 3 / 2 & 1 & - 1 / 2 & 0 \\\mathrm { u } _ { 1 } & 30 & 1 & 0 & - 5 / 4 & 0 & 3 / 4 & 1 / 2 \\\hline & z _ { \mathrm { j } } & 30 & 70 & 15 & 0 & 5 & 50 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & 0 & - 15 & 0 & - 5 &\end{array} Give the complete solution to the primal problem.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
27
Explain the simplex tableau location of the dual constraint for each type of constraint.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
28
For this optimal simplex tableau the original right-hand sides were 100 and 90. The problem was a maximization. For this optimal simplex tableau the original right-hand sides were 100 and 90. The problem was a maximization.   a.What would the new solution be if there had been 150 units available in the first constraint? b.What would the new solution be if there had been 70 units available in the second constraint?
a.What would the new solution be if there had been 150 units available in the first constraint?
b.What would the new solution be if there had been 70 units available in the second constraint?
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
29
The linear programming problem
Max
6x1 + 2x2 + 3x3 + 4x4
s.t.
x1 + x2 + x3 + x4 \le 100
4x1 + x2 + x3 + x4 \le 160
3x1 + x2 + 2x3 + 3x4 \le 240
x1, x2, x 3, x4 \ge 0
has the final tableau x1x2x3x4 s1 s2 s3 Basis cB6234000x22011/203/201/230x1610001/31/3020x44001/211/61/31/250zj62342.33.671380cjzj00002.33.671\begin{array} { c c | c c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm { x } _ { 4 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & 6 & 2 & 3 & 4 & 0 & 0 & 0 & \\\hline \mathrm { x } _ { 2 } & 2 & 0 & 1 & 1 / 2 & 0 & 3 / 2 & 0 & - 1 / 2 & 30 \\\mathrm { x } _ { 1 } & 6 & 1 & 0 & 0 & 0 & - 1 / 3 & 1 / 3 & 0 & 20 \\\mathrm { x } _ { 4 } & 4 & 0 & 0 & 1 / 2 & 1 & - 1 / 6 & - 1 / 3 & 1 / 2 & 50 \\\hline & \mathrm { z } _ { \mathrm { j } } & 6 & 2 & 3 & 4 & 2.33 & .67 & 1 & 380 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & 0 & 0 & 0 & - 2.33 & - .67 & - 1 &\end{array} Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem.
LINEAR PROGRAMMING PROBLEM
MAX
6X1+2X2+3X3+4X4
S.T.
1) 1X1 + 1X2 + 1X3 + 1X4 < 100
2) 4X1 + 1X2 + 1X3 + 1X4 < 160
3) 3X1 + 1X2 + 2X3 + 3X4 < 240
OPTIMAL SOLUTION Objective Function Value ==
 Variable  Value  Reduced Cost X1X2X3X4\begin{array}{ccc}\text { Variable } & \text { Value } & \text { Reduced Cost } \\X 1 & - &- \\X 2 & - &- \\X 3 & - &- \\X 4 & - &-\end{array}

 Constraint  Slack/Surplus  Dual Price 123\begin{array}{ccc}\text { Constraint } & \text { Slack/Surplus } & \text { Dual Price } \\1 & - & - \\2 & - & - \\3 & - & -\end{array}
 OBJECTIVE COEFFICIENT RANGES \text { OBJECTIVE COEFFICIENT RANGES }

 Variable  Lower Limit  Current Value  Upper Limit X1X2X3X4\begin{array}{cccc}\text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\mathrm{X} 1 & - & -&- \\\mathrm{X} 2 & - & -&- \\\mathrm{X} 3 & - & -&- \\\mathrm{X} 4 & - & -&-\end{array}
 RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES }

 Constraint  Lower Limit  Current Value  Upper Limit 123\begin{array}{cccc}\text { Constraint }& \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\1 & - & -&-\\2 & - & -&-\\3 & - & -&-\\\end{array}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
30
When sensitivity calculations yield several potential upper bounds and several lower bounds, how is the range determined?
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
31
For this optimal simplex tableau, the right-hand sides for the two original \ge constraints were 300 and 250. The problem was a minimization. x1x2x3 s1 s2 Basis CB1001109500x39501.5111.575x11001201150zj10057.595542.512125Cjzj052.50542.5\begin{array} { c c | c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \\\text { Basis } & \mathrm { C } _ { \mathrm { B } } & - 100 & - 110 & - 95 & 0 & 0 & \\\hline \mathrm { x } _ { 3 } & - 95 & 0 & - 1.5 & 1 & 1 & - 1.5 & 75 \\\mathrm { x } _ { 1 } & - 100 & 1 & 2 & 0 & - 1 & 1 & 50 \\\hline & \mathrm { z } _ { \mathrm { j } } & - 100 & - 57.5 & - 95 & 5 & 42.5 & - 12125 \\& \mathrm { C } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & - 52.5 & 0 & - 5 & - 42.5 &\end{array}
a.What would the new solution be if the right-hand side value in the first constraint had been 325?
b.What would the new solution be if the right-hand side value for the second constraint had been 220?
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
32
Write the dual to the following problem.
Min
12x1 + 15x2 + 20x3 + 18x4
s.t.
x1 + x2 + x3 + x4 \ge 50
3x1 + 4x3 \ge 60
2x2 + x3 - 2x4 \le 10
x1, x2, x3, x4 \ge 0
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
33
Given the following linear programming problem
Max
10x1 + 12x2
s.t.
1x1 + 2x2 \ge 40
5x1 + 8x2 \le 160
1x1 + 1x2 \le 40
x1, x2 \ge 0
the final tableau is x1x2 s1 s2 s3 Basis cB1012000x212012.5.5020x110104100 s30001.55120zj10121040240cjzj001040\begin{array} { c c | c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 } & \\\text { Basis } & \mathrm { c } _ { \mathrm { B } } & 10 & 12 & 0 & 0 & 0 & \\\hline \mathrm { x } _ { 2 } & 12 & 0 & 1 & - 2.5 & - .5 & 0 & 20 \\\mathrm { x } _ { 1 } & 10 & 1 & 0 & 4 & 1 & 0 & 0 \\\mathrm {~s} _ { 3 } & 0 & 0 & 0 & - 1.5 & - 5 & 1 & 20 \\\hline & \mathrm { z } _ { \mathrm { j } } & 10 & 12 & 10 & 4 & 0 & 240 \\& \mathrm { c } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & 0 & 0 & - 10 & - 4 & 0 &\end{array}
a.Find the range of optimality for c1 and c2.
b.Find the range of feasibility for b1, b2, and b3.
c.Find the dual prices.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
34
Creative Kitchen Tools manufactures a wide line of gourmet cooking tools from stainless steel. For the coming production period, there is demand of 1200 for 8 quart stock pots, and unlimited demand for 3 quart mixing bowls and large slotted spoons. In the following model, the three variables measure the number of pots, bowls, and spoons to make. The objective function measures profit. Constraint 1 measures steel, constraint 2 measures manufacturing time, constraint 3 measures finishing time, and constraint 4 measures the stock pot demand.
Max
5x1 + 3x2 + 6x3
s.t.
3x1 + 1x2 + 2x3 \le 15000
4x1 + 4x2 + 5x3 \le 18000
2x1 + 1x2 + 2x3 \le 10000
x1 \le 1200
x1, x2, x3 \ge 0
The final tableau is: x1x2x3 s1 s2 s3 s4 Basis CB5360000 s10021.750.75001500 s40011.250.25013300 s3001.50.5101000x15111.250.25004500zj556.2501.250022500Cjzj02.2501.2500\begin{array} { c c | c c c ccc c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm {~s} _ { 3 }& \mathrm {~s} _ { 4 } \\\text { Basis } & \mathrm { C } _ { \mathrm { B } } &5&3&6&0&0&0&0& \\\hline \mathrm {~s} _ { 1 } &0&0&-2&-1.75&0&-.75&0&0&1500\\ \mathrm {~s} _ { 4 }&0&0&1&1.25&0&.25&0&1&3300\\ \mathrm {~s} _ { 3 }&0&0&-1&-.5&0&-.5&1&0&1000\\ \mathrm { x } _ { 1 } &5&1&1&1.25&0&.25&0&0&4500\\\hline& \mathrm { z } _ { j }&5&5&6.25&0&1.25&0&0&22500\\&\mathrm{C}_{\mathrm{j}}-z_{\mathrm{j}}&0&-2&-.25&0&-1.25&0&0&\end{array}
a.Calculate the range of optimality for c1, c2, and c3.
b.Calculate the range of feasibility for b1, b2, b3, and b4.
c.Suppose that the inventory records were incorrect and the company really has only 14000 units of steel.What effect will this have on your solution?
d.Suppose that a cost increase will change the profit on the pots to $4.62.What effect will this have on your solution?
e.Assume that the cost of time in production and finishing is relevant.Would you be willing to pay a $1.00 premium over the normal cost for 1000 more hours in the production department? What would this do to your solution?
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 34 flashcards in this deck.