Deck 13: Multiple Regression

Full screen (f)
exit full mode
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, the p-value for GDP is

A)0.05
B)0.01
C)0.001
D)None of the above.
Use Space or
up arrow
down arrow
to flip the card.
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, what is the predicted consumption level for an economy withGDP equal to $4 billion and an aggregate price index of 150?

A)$1.39 billion
B)$2.89 billion
C)$4.75 billion
D)$9.45 billion
Question
In a multiple regression problem involving two independent variables, if b1 is computed to be+2.0, it means that

A)the relationship between X1 and Y is significant.
B)the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, holding X2 constant.
C)the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, without regard to X2.
D)the estimated mean of Y is 2 when X1 equals zero.
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, what is the estimated mean consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A)$1.39 billion
B)$2.89 billion
C)$4.75 billion
D)$9.45 billion
Question
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, an employee who took 12 economics courses scores 10 on the performance rating.What is her estimated expected wage rate?

A)10.90
B)12.20
C)24.87
D)25.70
Question
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, suppose an employee had never taken an economics course and managed to score a 5 on his performance rating.What is his estimated expected wage rate?

A)10.90
B)12.20
C)17.23
D)25.11
Question
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, for these data, what is the value for the regression constant, b0?

A)0.616
B)1.054
C)6.932
D)9.103
Question
The variation attributable to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by

A)regression sum of squares.
B)error sum of squares.
C)total sum of squares.
D)regression mean squares.
Question
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, for these data, what is the estimated coefficient for performance rating, b1?

A)0.616
B)1.054
C)6.932
D)9.103
Question
In a multiple regression model, the value of the coefficient of multiple determination

A)has to fall between -1 and +1.
B)has to fall between 0 and +1.
C)has to fall between -1 and 0.
D)can fall between any pair of real numbers.
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, the p-value for the aggregated price index is

A)0.05
B)0.01
C)0.001
D)None of the above.
Question
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, if an employee who had been with the company 5 years scored a 9 on the aptitude test, what would his estimated expected sales be?

A)79.09
B)60.88
C)55.62
D)17.98
Question
In a multiple regression model, which of the following is correct regarding the value of the adjusted r 2 ?

A)It can be negative.
B)It has to be positive.
C)It has to be larger than the coefficient of multiple determination.
D)It can be larger than 1.
Question
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, for these data, what is the estimated coefficient for the variable representing scores on the aptitude test, b2?

A)0.998
B)3.103
C)4.698
D)21.293
Question
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, for these data, what is the estimated coefficient for the number of economics courses taken, b2?

A)0.616
B)1.054
C)6.932
D)9.103
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, the p-value for the regression model as a whole is

A)0.05
B)0.01
C)0.001
D)None of the above.
Question
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, for these data, what is the estimated coefficient for the variable representing years an employee has been with the company, b1?

A)0.998
B)3.103
C)4.698
D)21.293
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, when the economist used a simple linear regression model with consumption as the dependent variable and GDP as the independent variable, he obtained an r2 value of 0.971.What additional percentage of the total variation of consumption has been explained by including aggregate prices in the multiple regression?

A)98.2
B)11.1
C)2.8
D)1.1
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, what is the estimated mean consumption level for an economy with GDP equal to $2 billion and an aggregate price index of 90?

A)$1.39 billion
B)$2.89 billion
C)$4.75 billion
D)$9.45 billion
Question
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, for these data, what is the value for the regression constant, b0?

A)0.998
B)3.103
C)4.698
D)21.293
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, one economy in the sample had an aggregate consumption level of $4 billion, a GDP of $6 billion, and an aggregate price level of 200.What is the residual for this data point?

A)$4.39 billion
B)$0.39 billion
C)- $0.39 billion
D)- $1.33 billion
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which the regression model as a whole is significant?

A)0.0005
B)0.001
C)0.01
D)0.05
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test whether aggregate price index has a positive impact on consumption, the p-value is

A)0.0001
B)0.4165
C)0.5835
D)0.8330
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test whether gross domestic product has a positive impact on consumption, the p-value is

A)0.00005
B)0.0001
C)0.9999
D)0.99995
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test for the significance of the coefficient on aggregate price index, the p-value is

A)0.0001
B)0.8330
C)0.8837
D)0.9999
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, one individual in the sample had an annual income of $100,000 and a family size of 10.This individual owned a home with an area of 7,000 square feet (House =70.00).What is the residual (in hundreds of square feet) for this data point?<div style=padding-top: 35px>
Referring to SCENARIO 13-4, one individual in the sample had an annual income of $100,000 and a family size of 10.This individual owned a home with an area of 7,000 square feet (House =70.00).What is the residual (in hundreds of square feet) for this data point?
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 4 need to attain a predicted 10,000 square foot home (House = 100)?<div style=padding-top: 35px>
Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 4 need to attain a predicted 10,000 square foot home (House = 100)?
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which each explanatory variable is significant individually?

A)0.001
B)0.010
C)0.025
D)0.050
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, when the builder used a simple linear regression model with house size (House) as the dependent variable and family size (Size) as the independent variable, he obtained an r2 value of 1.25%.What additional percentage of the total variation in house size has been explained by including income in the multiple regression?

A)15.00%
B)70.64%
C)71.50%
D)73.62%
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which at most one explanatory variable is significant individually?

A)0.001
B)0.010
C)0.025
D)0.050
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test for the significance of the coefficient on gross domestic product, the p-value is

A)0.0001
B)0.8330
C)0.8837
D)0.9999
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, what fraction of the variability in house size is explained by income and size of family?

A)17.56%
B)70.69%
C)71.89%
D)84.79%
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test for the significance of the coefficient on aggregate price, the value of the relevant t-statistic is

A)2.365
B)0.143
C)- 0.219
D)- 1.960
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what is the predicted house size (in hundreds of square feet) for an individual earning an annual income of $40,000 and having a family size of 4?<div style=padding-top: 35px>
Referring to SCENARIO 13-4, what is the predicted house size (in hundreds of square feet) for an individual earning an annual income of $40,000 and having a family size of 4?
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 9 need to attain a predicted 5,000 square foot home (House = 50)?<div style=padding-top: 35px>
Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 9 need to attain a predicted 5,000 square foot home (House = 50)?
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which at least one explanatory variable is significant individually?

A)0.005
B)0.010
C)0.025
D)0.050
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the independent variables in the model are significant at the 5% level?

A)Income only
B)Size only
C)Income and Size
D)None
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, one individual in the sample had an annual income of $40,000 and a family size of 1.This individual owned a home with an area of 1,000 square feet (House =10.00).What is the residual (in hundreds of square feet) for this data point?<div style=padding-top: 35px>
Referring to SCENARIO 13-4, one individual in the sample had an annual income of $40,000 and a family size of 1.This individual owned a home with an area of 1,000 square feet (House =10.00).What is the residual (in hundreds of square feet) for this data point?
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test whether aggregate price index has a negative impact on consumption, the p-value is ?

A)0.0001
B)0.4165
C)0.8330
D)0.8837
Question
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, one economy in the sample had an aggregate consumption level of $3 billion, a GDP of $3.5 billion, and an aggregate price level of 125.What is the residual for this data point?

A)$2.52 billion
B)$0.48 billion
C)- $1.33 billion
D)- $2.52 billion
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, what are the regression degrees of freedom that are missing from the output?

A)2
B)47
C)49
D)50
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.<div style=padding-top: 35px>
Referring to SCENARIO 13-4, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family size while holding the family income constant.<div style=padding-top: 35px>
Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family size while holding the family income constant.
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what is the value of the calculated F test statistic that is missing from the output for testing whether the whole regression model is significant?<div style=padding-top: 35px>
Referring to SCENARIO 13-4, what is the value of the calculated F test statistic that is missing from the output for testing whether the whole regression model is significant?
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the partial F test forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included has and degrees of freedom.<div style=padding-top: 35px>
Referring to SCENARIO 13-4, the partial F test forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included has and degrees of freedom.
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for Wages?

A)0.01
B)0.05
C)0.0001
D)None of the above
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included<div style=padding-top: 35px>
Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, at the 0.01 level of significance, what conclusion should the builder draw regarding the inclusion of Size in the regression model?

A)Size is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B)Size is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C)Size is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D)Size is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, which of the independent variables in the model are significant at the 5% level?

A)Capital, Wages
B)Capital
C)Wages
D)None of the above
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, suppose the builder wants to test whether the coefficient onIncome is significantly different from 0.What is the value of the relevant t-statistic?

A)-0.7630
B)3.2708
C)10.8668
D)60.0864
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what fraction of the variability in sales is explained by spending on capital and wages?

A)27.0%
B)50.9%
C)68.9%
D)83.0%
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included<div style=padding-top: 35px>
Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, the observed value of the F-statistic is missing from the printout.What are the degrees of freedom for this F-statistic?

A)2 for the numerator, 47 for the denominator
B)2 for the numerator, 49 for the denominator
C)49 for the numerator, 47 for the denominator
D)47 for the numerator, 49 for the denominator
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, at the 0.01 level of significance, what conclusion should the builder reach regarding the inclusion of Income in the regression model?

A)Income is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B)Income is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C)Income is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D)Income is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4 and allowing for a 1% probability of committing a type I error,what is the decision and conclusion for the test H: β\beta 1 β\beta 2=0 vs.H : At least one β\beta j \neq 0, j- 1, 20 1 2 1 j?

A)Do not reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on house size.
B)Do not reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on house size.
C)Reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on house size.
D)Reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on house size.
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, suppose the builder wants to test whether the coefficient on Size is significantly different from 0.What is the value of the relevant t-statistic?

A)-0.7630
B)3.2708
C)10.8668
D)60.0864
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, when the microeconomist used a simple linear regression model with sales as the dependent variable and wages as the independent variable, she obtained an r2 value of 0.601.What additional percentage of the total variation of sales has been explained by including capital spending in the multiple regression?

A)60.1%
B)31.1%
C)22.9%
D)8.8%
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, what are the residual degrees of freedom that are missing from the output?

A)2
B)47
C)49
D)50
Question
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family income while holding the family size constant.<div style=padding-top: 35px>
Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family income while holding the family size constant.
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Wages have a positive impact on corporate sales?

A)0.01
B)0.05
C)0.0001
D)0.00005
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, one company in the sample had sales of $21.439 billion (Sales =21,439).This company spent $300 million on capital and $700 million on wages.What is the residual (in millions of dollars) for this data point?

A)790.69
B)648.31
C)-648.31
D)-790.69
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6 and allowing for a 1% probability of committing a type I error,what is the decision and conclusion for the testH : β\beta 1-2= 0 vs.H : At least one β\beta j \neq 0, j - 1, 20 1 2 1 j?

A)Do not reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on heating costs.
B)Do not reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on heating costs.
C)Reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on heating costs.
D)Reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on heating costs.
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Wages have a negative impact on corporate sales?

A)0.05
B)0.0001
C)0.00005
D)0.99995
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, suppose the microeconomist wants to test whether the coefficient on Capital is significantly different from 0.What is the value of the relevant t-statistic?

A)0.609
B)2.617
C)4.804
D)25.432
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.<div style=padding-top: 35px> 13-22 Multiple Regression SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.<div style=padding-top: 35px>
Referring to SCENARIO 13-6, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what are the predicted sales (in millions of dollars) for a company spending $100 million on capital and $100 million on wages?

A)15,800.00
B)16,520.07
C)17,277.49
D)20,455.98
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, at the 0.01 level of significance, what conclusion should the microeconomist reach regarding the inclusion of Capital in the regression model?

A)Capital is significant in explaining corporate sales and should be included in the model because its p-value is less than 0.01.
B)Capital is significant in explaining corporate sales and should be included in the model because its p-value is more than 0.01.
C)Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is less than 0.01.
D)Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is more than 0.01.
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included<div style=padding-top: 35px> 13-22 Multiple Regression SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included<div style=padding-top: 35px>
Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, what is the 95% confidence interval for the expected change in heating costs as a result of a 1 degree Fahrenheit change in the daily minimum outside temperature?

A)[256.7522, 639.8328]
B)[204.7854, 497.1733]
C)[-5.3721, -0.1520]
D)[-37.1736, 5.2919]
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Capital has a positive influence on corporate sales?

A)0.025
B)0.05
C)0.2743
D)0.5485
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, what can we say about the regression model?

A)The model explains 17.12% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 27.78% of the sample variability of heating costs.
B)The model explains 19.28% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 27.78% of the sample variability of heating costs.
C)The model explains 27.78% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 19.28% of the sample variability of heating costs.
D)The model explains 19.28% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 17.12% of the sample variability of heating costs.
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Capital has a negative influence on corporate sales?

A)0.05
B)0.2743
C)0.5485
D)0.7258
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, one company in the sample had sales of $20 billion (Sales =20,000).This company spent $300 million on capital and $700 million on wages.What is the residual (in millions of dollars) for this data point?

A)874.55
B)622.87
C)-790.69
D)-983.56
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for Capital?

A)0.01
B)0.025
C)0.05
D)None of the above
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what are the predicted sales (in millions of dollars) for a company spending $500 million on capital and $200 million on wages?

A)15,800.00
B)16,520.07
C)17,277.49
D)20,455.98
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, the observed value of the F-statistic is given on the printout as25.432.What are the degrees of freedom for this F-statistic?

A)25 for the numerator, 2 for the denominator
B)2 for the numerator, 23 for the denominator
C)23 for the numerator, 25 for the denominator
D)2 for the numerator, 25 for the denominator
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, what is your decision and conclusion for the testH0 : β\beta 2 = 0 vs.H1 : β\beta 2 \neq 0 at the α\alpha = 0.01 level of significance?

A)Do not reject H0 and conclude that the amount of insulation has a linear effect on heating costs.
B)Reject H0 and conclude that the amount of insulation does not have a linear effect on heating costs.
C)Reject H0 and conclude that the amount of insulation has a linear effect on heating costs.
D)Do not reject H0 and conclude that the amount of insulation does not have a linear effect on heating costs.
Question
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, which of the following values for α\alpha is the smallest for which the regression model as a whole is significant?

A)0.00005
B)0.001
C)0.01
D)0.05
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included<div style=padding-top: 35px> 13-22 Multiple Regression SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included<div style=padding-top: 35px>
Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included
Question
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, the estimated value of the regression parameter β\beta 1 in means that

A)holding the effect of the amount of insulation constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature
By 2.76 degrees.
B)holding the effect of the amount of insulation constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $2.76.
C)holding the effect of the amount of insulation constant, a 1 degree increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by $2.76.
D)holding the effect of the amount of insulation constant, a 1% increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by 2.76%.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/307
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Multiple Regression
1
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, the p-value for GDP is

A)0.05
B)0.01
C)0.001
D)None of the above.
None of the above.
2
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, what is the predicted consumption level for an economy withGDP equal to $4 billion and an aggregate price index of 150?

A)$1.39 billion
B)$2.89 billion
C)$4.75 billion
D)$9.45 billion
$2.89 billion
3
In a multiple regression problem involving two independent variables, if b1 is computed to be+2.0, it means that

A)the relationship between X1 and Y is significant.
B)the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, holding X2 constant.
C)the estimated mean of Y increases by 2 units for each increase of 1 unit of X1, without regard to X2.
D)the estimated mean of Y is 2 when X1 equals zero.
B
4
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, what is the estimated mean consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A)$1.39 billion
B)$2.89 billion
C)$4.75 billion
D)$9.45 billion
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
5
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, an employee who took 12 economics courses scores 10 on the performance rating.What is her estimated expected wage rate?

A)10.90
B)12.20
C)24.87
D)25.70
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
6
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, suppose an employee had never taken an economics course and managed to score a 5 on his performance rating.What is his estimated expected wage rate?

A)10.90
B)12.20
C)17.23
D)25.11
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
7
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, for these data, what is the value for the regression constant, b0?

A)0.616
B)1.054
C)6.932
D)9.103
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
8
The variation attributable to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by

A)regression sum of squares.
B)error sum of squares.
C)total sum of squares.
D)regression mean squares.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
9
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, for these data, what is the estimated coefficient for performance rating, b1?

A)0.616
B)1.054
C)6.932
D)9.103
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
10
In a multiple regression model, the value of the coefficient of multiple determination

A)has to fall between -1 and +1.
B)has to fall between 0 and +1.
C)has to fall between -1 and 0.
D)can fall between any pair of real numbers.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
11
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, the p-value for the aggregated price index is

A)0.05
B)0.01
C)0.001
D)None of the above.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
12
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, if an employee who had been with the company 5 years scored a 9 on the aptitude test, what would his estimated expected sales be?

A)79.09
B)60.88
C)55.62
D)17.98
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
13
In a multiple regression model, which of the following is correct regarding the value of the adjusted r 2 ?

A)It can be negative.
B)It has to be positive.
C)It has to be larger than the coefficient of multiple determination.
D)It can be larger than 1.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
14
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, for these data, what is the estimated coefficient for the variable representing scores on the aptitude test, b2?

A)0.998
B)3.103
C)4.698
D)21.293
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
15
SCENARIO 13-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:  Employee Y($)X1X211030212153158141758520712625109\begin{array} { c c r r } \text { Employee } & { Y ( \$ ) } & \underline { X } _ { 1 } & X _ { 2 } \\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to SCENARIO 13-2, for these data, what is the estimated coefficient for the number of economics courses taken, b2?

A)0.616
B)1.054
C)6.932
D)9.103
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
16
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, the p-value for the regression model as a whole is

A)0.05
B)0.01
C)0.001
D)None of the above.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
17
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, for these data, what is the estimated coefficient for the variable representing years an employee has been with the company, b1?

A)0.998
B)3.103
C)4.698
D)21.293
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
18
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, when the economist used a simple linear regression model with consumption as the dependent variable and GDP as the independent variable, he obtained an r2 value of 0.971.What additional percentage of the total variation of consumption has been explained by including aggregate prices in the multiple regression?

A)98.2
B)11.1
C)2.8
D)1.1
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
19
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, what is the estimated mean consumption level for an economy with GDP equal to $2 billion and an aggregate price index of 90?

A)$1.39 billion
B)$2.89 billion
C)$4.75 billion
D)$9.45 billion
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
20
SCENARIO 13-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:  Emplovee YX1X21100107290310380894705456058650757401483011\begin{array} { c r r r } \text { Emplovee } & { Y } & { X _ { 1 } } & X _ { 2 } \\\hline 1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to SCENARIO 13-1, for these data, what is the value for the regression constant, b0?

A)0.998
B)3.103
C)4.698
D)21.293
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
21
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, one economy in the sample had an aggregate consumption level of $4 billion, a GDP of $6 billion, and an aggregate price level of 200.What is the residual for this data point?

A)$4.39 billion
B)$0.39 billion
C)- $0.39 billion
D)- $1.33 billion
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
22
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which the regression model as a whole is significant?

A)0.0005
B)0.001
C)0.01
D)0.05
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
23
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test whether aggregate price index has a positive impact on consumption, the p-value is

A)0.0001
B)0.4165
C)0.5835
D)0.8330
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
24
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test whether gross domestic product has a positive impact on consumption, the p-value is

A)0.00005
B)0.0001
C)0.9999
D)0.99995
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
25
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test for the significance of the coefficient on aggregate price index, the p-value is

A)0.0001
B)0.8330
C)0.8837
D)0.9999
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
26
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, one individual in the sample had an annual income of $100,000 and a family size of 10.This individual owned a home with an area of 7,000 square feet (House =70.00).What is the residual (in hundreds of square feet) for this data point?
Referring to SCENARIO 13-4, one individual in the sample had an annual income of $100,000 and a family size of 10.This individual owned a home with an area of 7,000 square feet (House =70.00).What is the residual (in hundreds of square feet) for this data point?
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
27
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 4 need to attain a predicted 10,000 square foot home (House = 100)?
Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 4 need to attain a predicted 10,000 square foot home (House = 100)?
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
28
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which each explanatory variable is significant individually?

A)0.001
B)0.010
C)0.025
D)0.050
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
29
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, when the builder used a simple linear regression model with house size (House) as the dependent variable and family size (Size) as the independent variable, he obtained an r2 value of 1.25%.What additional percentage of the total variation in house size has been explained by including income in the multiple regression?

A)15.00%
B)70.64%
C)71.50%
D)73.62%
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
30
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which at most one explanatory variable is significant individually?

A)0.001
B)0.010
C)0.025
D)0.050
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
31
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test for the significance of the coefficient on gross domestic product, the p-value is

A)0.0001
B)0.8330
C)0.8837
D)0.9999
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
32
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, what fraction of the variability in house size is explained by income and size of family?

A)17.56%
B)70.69%
C)71.89%
D)84.79%
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
33
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test for the significance of the coefficient on aggregate price, the value of the relevant t-statistic is

A)2.365
B)0.143
C)- 0.219
D)- 1.960
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
34
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what is the predicted house size (in hundreds of square feet) for an individual earning an annual income of $40,000 and having a family size of 4?
Referring to SCENARIO 13-4, what is the predicted house size (in hundreds of square feet) for an individual earning an annual income of $40,000 and having a family size of 4?
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
35
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 9 need to attain a predicted 5,000 square foot home (House = 50)?
Referring to SCENARIO 13-4, what annual income (in thousands of dollars) would an individual with a family size of 9 need to attain a predicted 5,000 square foot home (House = 50)?
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
36
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which at least one explanatory variable is significant individually?

A)0.005
B)0.010
C)0.025
D)0.050
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
37
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, which of the independent variables in the model are significant at the 5% level?

A)Income only
B)Size only
C)Income and Size
D)None
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
38
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, one individual in the sample had an annual income of $40,000 and a family size of 1.This individual owned a home with an area of 1,000 square feet (House =10.00).What is the residual (in hundreds of square feet) for this data point?
Referring to SCENARIO 13-4, one individual in the sample had an annual income of $40,000 and a family size of 1.This individual owned a home with an area of 1,000 square feet (House =10.00).What is the residual (in hundreds of square feet) for this data point?
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
39
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, to test whether aggregate price index has a negative impact on consumption, the p-value is ?

A)0.0001
B)0.4165
C)0.8330
D)0.8837
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
40
SCENARIO 13-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT }
 Regression Statistics  Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.991 \\\text { R Square } & 0.982 \\\text { Adjusted R Square } & 0.976 \\\text { Standard Error } & 0.299 \\\text { Observations } & 10\end{array}

ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{lccccc} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}

 Coeff  StdError t Stat P-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array}{lclcc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & -0.0861 & 0.5674 & -0.152 & 0.8837 \\\text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\\text { Price } & -0.0006 & 0.0028 & -0.219 & 0.8330\end{array}

-Referring to SCENARIO 13-3, one economy in the sample had an aggregate consumption level of $3 billion, a GDP of $3.5 billion, and an aggregate price level of 125.What is the residual for this data point?

A)$2.52 billion
B)$0.48 billion
C)- $1.33 billion
D)- $2.52 billion
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
41
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, what are the regression degrees of freedom that are missing from the output?

A)2
B)47
C)49
D)50
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
42
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.
Referring to SCENARIO 13-4, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
43
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family size while holding the family income constant.
Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family size while holding the family income constant.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
44
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, what is the value of the calculated F test statistic that is missing from the output for testing whether the whole regression model is significant?
Referring to SCENARIO 13-4, what is the value of the calculated F test statistic that is missing from the output for testing whether the whole regression model is significant?
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
45
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the partial F test forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included has and degrees of freedom.
Referring to SCENARIO 13-4, the partial F test forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included has and degrees of freedom.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
46
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for Wages?

A)0.01
B)0.05
C)0.0001
D)None of the above
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
47
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included
Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
48
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, at the 0.01 level of significance, what conclusion should the builder draw regarding the inclusion of Size in the regression model?

A)Size is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B)Size is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C)Size is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D)Size is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
49
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, which of the independent variables in the model are significant at the 5% level?

A)Capital, Wages
B)Capital
C)Wages
D)None of the above
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
50
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, suppose the builder wants to test whether the coefficient onIncome is significantly different from 0.What is the value of the relevant t-statistic?

A)-0.7630
B)3.2708
C)10.8668
D)60.0864
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
51
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what fraction of the variability in sales is explained by spending on capital and wages?

A)27.0%
B)50.9%
C)68.9%
D)83.0%
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
52
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included
Referring to SCENARIO 13-4, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
53
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, the observed value of the F-statistic is missing from the printout.What are the degrees of freedom for this F-statistic?

A)2 for the numerator, 47 for the denominator
B)2 for the numerator, 49 for the denominator
C)49 for the numerator, 47 for the denominator
D)47 for the numerator, 49 for the denominator
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
54
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, at the 0.01 level of significance, what conclusion should the builder reach regarding the inclusion of Income in the regression model?

A)Income is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B)Income is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C)Income is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D)Income is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
55
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4 and allowing for a 1% probability of committing a type I error,what is the decision and conclusion for the test H: β\beta 1 β\beta 2=0 vs.H : At least one β\beta j \neq 0, j- 1, 20 1 2 1 j?

A)Do not reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on house size.
B)Do not reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on house size.
C)Reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on house size.
D)Reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on house size.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
56
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, suppose the builder wants to test whether the coefficient on Size is significantly different from 0.What is the value of the relevant t-statistic?

A)-0.7630
B)3.2708
C)10.8668
D)60.0864
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
57
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, when the microeconomist used a simple linear regression model with sales as the dependent variable and wages as the independent variable, she obtained an r2 value of 0.601.What additional percentage of the total variation of sales has been explained by including capital spending in the multiple regression?

A)60.1%
B)31.1%
C)22.9%
D)8.8%
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
58
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50 \\\hline\end{array}
ANOVA
df SS  MS F Signif F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & &37043.3236 & 18521.6618 && 0.0000 \\\text { Residual } & &14487.7627 & 308.2503 & \\\text { Total } & 49 & 51531.0863\\\hline \end{array}

 Coefficients  Standard Error t Stat -value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } &{\text {-value }} \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\end{array}

 Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917

-Referring to SCENARIO 13-4, what are the residual degrees of freedom that are missing from the output?

A)2
B)47
C)49
D)50
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
59
SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:   Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family income while holding the family size constant.
Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family income while holding the family size constant.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
60
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Wages have a positive impact on corporate sales?

A)0.01
B)0.05
C)0.0001
D)0.00005
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
61
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, one company in the sample had sales of $21.439 billion (Sales =21,439).This company spent $300 million on capital and $700 million on wages.What is the residual (in millions of dollars) for this data point?

A)790.69
B)648.31
C)-648.31
D)-790.69
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
62
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6 and allowing for a 1% probability of committing a type I error,what is the decision and conclusion for the testH : β\beta 1-2= 0 vs.H : At least one β\beta j \neq 0, j - 1, 20 1 2 1 j?

A)Do not reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on heating costs.
B)Do not reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on heating costs.
C)Reject H0 and conclude that the 2 independent variables taken as a group have significant linear effects on heating costs.
D)Reject H0 and conclude that the 2 independent variables taken as a group do not have significant linear effects on heating costs.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
63
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Wages have a negative impact on corporate sales?

A)0.05
B)0.0001
C)0.00005
D)0.99995
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
64
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, suppose the microeconomist wants to test whether the coefficient on Capital is significantly different from 0.What is the value of the relevant t-statistic?

A)0.609
B)2.617
C)4.804
D)25.432
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
65
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom. 13-22 Multiple Regression SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.
Referring to SCENARIO 13-6, the partial F test forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included has and degrees of freedom.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
66
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what are the predicted sales (in millions of dollars) for a company spending $100 million on capital and $100 million on wages?

A)15,800.00
B)16,520.07
C)17,277.49
D)20,455.98
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
67
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, at the 0.01 level of significance, what conclusion should the microeconomist reach regarding the inclusion of Capital in the regression model?

A)Capital is significant in explaining corporate sales and should be included in the model because its p-value is less than 0.01.
B)Capital is significant in explaining corporate sales and should be included in the model because its p-value is more than 0.01.
C)Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is less than 0.01.
D)Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is more than 0.01.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
68
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included 13-22 Multiple Regression SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included
Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X1 does not significantly improve the model after variable X2 has been includedH1: Variable X1 significantly improves the model after variable X2 has been included
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
69
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, what is the 95% confidence interval for the expected change in heating costs as a result of a 1 degree Fahrenheit change in the daily minimum outside temperature?

A)[256.7522, 639.8328]
B)[204.7854, 497.1733]
C)[-5.3721, -0.1520]
D)[-37.1736, 5.2919]
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
70
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Capital has a positive influence on corporate sales?

A)0.025
B)0.05
C)0.2743
D)0.5485
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
71
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, what can we say about the regression model?

A)The model explains 17.12% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 27.78% of the sample variability of heating costs.
B)The model explains 19.28% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 27.78% of the sample variability of heating costs.
C)The model explains 27.78% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 19.28% of the sample variability of heating costs.
D)The model explains 19.28% of the variability of heating costs; after correcting for the degrees of freedom, the model explains 17.12% of the sample variability of heating costs.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
72
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for testing whether Capital has a negative influence on corporate sales?

A)0.05
B)0.2743
C)0.5485
D)0.7258
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
73
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, one company in the sample had sales of $20 billion (Sales =20,000).This company spent $300 million on capital and $700 million on wages.What is the residual (in millions of dollars) for this data point?

A)874.55
B)622.87
C)-790.69
D)-983.56
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
74
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what is the p-value for Capital?

A)0.01
B)0.025
C)0.05
D)None of the above
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
75
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, what are the predicted sales (in millions of dollars) for a company spending $500 million on capital and $200 million on wages?

A)15,800.00
B)16,520.07
C)17,277.49
D)20,455.98
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
76
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, the observed value of the F-statistic is given on the printout as25.432.What are the degrees of freedom for this F-statistic?

A)25 for the numerator, 2 for the denominator
B)2 for the numerator, 23 for the denominator
C)23 for the numerator, 25 for the denominator
D)2 for the numerator, 25 for the denominator
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
77
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, what is your decision and conclusion for the testH0 : β\beta 2 = 0 vs.H1 : β\beta 2 \neq 0 at the α\alpha = 0.01 level of significance?

A)Do not reject H0 and conclude that the amount of insulation has a linear effect on heating costs.
B)Reject H0 and conclude that the amount of insulation does not have a linear effect on heating costs.
C)Reject H0 and conclude that the amount of insulation has a linear effect on heating costs.
D)Do not reject H0 and conclude that the amount of insulation does not have a linear effect on heating costs.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
78
SCENARIO 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array} { l l } \text { Multiple R } & 0.830 \\ \text { R Square } & 0.689 \\ \text { Adjusted R Square } & 0.662 \\ \text { Standard Error } & 17501.643 \\ \text { Observations } & 26 \end{array}
ANOVA
df SS  MS F Signif F Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\ \text { Residual } & 23 & 7045072780 & 306307512 & & \\ \text { Total } & 25 & 22624849820 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array}{lrrrc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\\text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\\text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001\end{array}

-Referring to SCENARIO 13-5, which of the following values for α\alpha is the smallest for which the regression model as a whole is significant?

A)0.00005
B)0.001
C)0.01
D)0.05
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
79
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included 13-22 Multiple Regression SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.   13-22 Multiple Regression   Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included
Referring to SCENARIO 13-6, the value of the partial F test statistic is forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
80
SCENARIO 13-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model.  Regression Statistics  Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.5270 \\\text { R Square } & 0.2778 \\\text { Adjusted R Square } & 0.1928 \\\text { Standard Error } & 40.9107 \\\text { Observations } & 20 \\\hline\end{array}\\\text { ANOVA }\end{array}

df SS  MS F Signif F Regression 210943.01905471.50953.26910.0629 Residual 1728452.60271673.6825 Total 1939395.6218\begin{array} { l r c c c c }\hline & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \hline\text { Regression } & 2 & 10943.0190 & 5471.5095 & 3.2691 & 0.0629 \\\text { Residual } & 17 & 28452.6027 & 1673.6825 & & \\\text { Total } & 19 & 39395.6218 & &\\\hline \end{array}
13-22 Multiple Regression  Coefficients  Standard Error  t Stat  P-volue  Lower 95%  Upper 95%  Intercept 448.292590.78534.93790.0001256.7522639.8328 Temperature 2.76211.23712.23270.03935.37210.1520 Insulation 15.940810.06381.58400.131637.17365.2919 Also SSR(X1X2)=8343.3572 and SSR(X2X1)=4199.2672\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & { \text { Standard Error } } & { \text { t Stat } } & \text { P-volue } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 448.2925 & 90.7853 & 4.9379 & 0.0001 & 256.7522 & 639.8328 \\\text { Temperature } & - 2.7621 & 1.2371 & - 2.2327 & 0.0393 & - 5.3721 & - 0.1520 \\\text { Insulation } & - 15.9408 & 10.0638 & - 1.5840 & 0.1316 & - 37.1736 & 5.2919 \\\hline\end{array}\\\text { Also } \operatorname { SSR } \left( X _ { 1 } \mid X _ { 2 } \right) = 8343.3572 \text { and } \operatorname { SSR } \left( X _ { 2 } \mid X _ { 1 } \right) = 4199.2672\end{array}

-Referring to SCENARIO 13-6, the estimated value of the regression parameter β\beta 1 in means that

A)holding the effect of the amount of insulation constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature
By 2.76 degrees.
B)holding the effect of the amount of insulation constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $2.76.
C)holding the effect of the amount of insulation constant, a 1 degree increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by $2.76.
D)holding the effect of the amount of insulation constant, a 1% increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by 2.76%.
Unlock Deck
Unlock for access to all 307 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 307 flashcards in this deck.