Deck 10: The Conic Sections

Full screen (f)
exit full mode
Question
Find the standard form of the equation of the following conic section.
center (6,1);r=11( - 6 , - 1 ) ; r = 11

A) (x+6)2+(y+1)2=121( x + 6 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 121
B) (x1)2+(y6)2=11( x - 1 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 11
C) (x+1)2+(y+6)2=11( x + 1 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 11
D) (x6)2+(y1)2=121( x - 6 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 121
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the value of the unknown coordinate so that the distance between the points is as given.
(3,4)( 3,4 ) and (x,7)( x , 7 ) ; distance is 3.613.61

A) x=6,x=5x = 6 , x = 5
B) x=1,x=5x = 1 , x = 5
C) x=1,x=13x = 1 , x = 13
D) x=6,x=5x = - 6 , x = 5
Question
Give the center and radius of the circle. Then sketch its graph.
(x+4)2+(y+2)2=25( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25

 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5   <div style=padding-top: 35px>  A) center (4,2),r=5( 4,2 ) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5   <div style=padding-top: 35px>
B) center (4,2),r=5( - 4 , - 2 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5   <div style=padding-top: 35px>
C) center (4,2),r=5( 4 , - 2 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5   <div style=padding-top: 35px>
D) center (4,2),r=5( - 4,2 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5   <div style=padding-top: 35px>
Question
Find the standard form of the equation of the following conic section.
center (5,0);r=22( 5,0 ) ; r = 2 \sqrt { 2 }

A) (x5)2+y2=22( x - 5 ) ^ { 2 } + y ^ { 2 } = 2 \sqrt { 2 }
B) (x5)2+y2=64( x - 5 ) ^ { 2 } + y ^ { 2 } = 64
C) (x5)2+y2=8( x - 5 ) ^ { 2 } + y ^ { 2 } = 8
D) (x+5)2+y2=8( x + 5 ) ^ { 2 } + y ^ { 2 } = 8
Question
Give the center and radius of the circle. Then sketch its graph.
(x1)2+(y2)2=9( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3   <div style=padding-top: 35px>  A) center (1,2),r=3( - 1 , - 2 ) , r = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3   <div style=padding-top: 35px>
B) center (1,2),r=3( 1 , - 2 ) , \mathrm { r } = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3   <div style=padding-top: 35px>
C) center (1,2),r=3( - 1,2 ) , \mathrm { r } = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3   <div style=padding-top: 35px>
D) center (1,2),r=3( 1,2 ) , r = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3   <div style=padding-top: 35px>
Question
Find the standard form of the equation of the following conic section.
center (4,1);r=3( - 4 , - 1 ) ; r = \sqrt { 3 }

A) (x1)2+(y4)2=9( x - 1 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 9
B) (x4)2+(y1)2=3( x - 4 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 3
C) (x+1)2+(y+4)2=9( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 9
D) (x+4)2+(y+1)2=3( x + 4 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 3
Question
Find the distance between the pair of points. Give an exact answer.
(4, 4)and (-1, 16)

A)14 units
B)13 units
C)26 units
D)169 units
Question
Find the distance between the pair of points. Give an exact answer.
(4,4)( 4,4 ) and (5,7)( - 5 , - 7 )

A) 2102 \sqrt { 10 } units
B) 99 units
C) 202 units
D) 202\sqrt { 202 } units
Question
Give the center and radius of the circle. Then sketch its graph.
x2+y2=16x ^ { 2 } + y ^ { 2 } = 16
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4   <div style=padding-top: 35px>
A) center (1,1),r=16( 1,1 ) , r = 16
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4   <div style=padding-top: 35px>
B) center (0,0),r=4( 0,0 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4   <div style=padding-top: 35px>
C) center (0,0),r=16( 0,0 ) , r = 16
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4   <div style=padding-top: 35px>
D) center (1,1),r=4( 1,1 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4   <div style=padding-top: 35px>
Question
Give the center and radius of the circle. Then sketch its graph.
(x+3)2+(y4)2=16( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16
 Give the center and radius of the circle. Then sketch its graph.  ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16    A) center  ( - 3 , - 4 ) , \mathrm { r } = 4\ )  B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center  ( - 3,4 ) , r = 4    D) center  ( 3 , - 4 ) , r = 4   <div style=padding-top: 35px>  A) center B) center \(( 3,4 ) , \mathrm { r } = 4">( - 3 , - 4 ) , \mathrm { r } = 4\)<img src="https://storage.examlex.com/TB6914/11ecb33d_8774_ac61_a9b7_7d2e48059aeb_TB6914_00.jpg" alt=" Give the center and radius of the circle. Then sketch its graph. ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16 A) center ( - 3 , - 4 ) , \mathrm { r } = 4\ ) B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center ( - 3,4 ) , r = 4 D) center ( 3 , - 4 ) , r = 4 <div style=padding-top: 35px> " class="answers-bank-image d-block" loading="lazy" >B) center \(( 3,4 ) , \mathrm { r } = 4 11
ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00
C) center (3,4),r=4( - 3,4 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16    A) center  ( - 3 , - 4 ) , \mathrm { r } = 4\ )  B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center  ( - 3,4 ) , r = 4    D) center  ( 3 , - 4 ) , r = 4   <div style=padding-top: 35px>
D) center (3,4),r=4( 3 , - 4 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16    A) center  ( - 3 , - 4 ) , \mathrm { r } = 4\ )  B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center  ( - 3,4 ) , r = 4    D) center  ( 3 , - 4 ) , r = 4   <div style=padding-top: 35px>
Question
Find the distance between the pair of points. Give an exact answer.
(5,1)( - 5 , - 1 ) and (2,2)( 2 , - 2 )

A) 48 units
B) 525 \sqrt { 2 } units
C) 48348 \sqrt { 3 } units
D) 8 units
Question
Find the distance between the pair of points. Give an exact answer.
(2,5)( 2 , - 5 ) and (4,1)( 4 , - 1 )

A) 12312 \sqrt { 3 } units
B) 2 units
C) 12 units
D) 252 \sqrt { 5 } units
Question
Find the standard form of the equation of the following conic section.
center (0,98);r=14\left( 0 , \frac { 9 } { 8 } \right) ; r = \frac { 1 } { 4 }

A) x2+(y+98)2=14x ^ { 2 } + \left( y + \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 4 }
B) x2+(y+98)2=116x ^ { 2 } + \left( y + \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 16 }
C) x2+(y98)2=14x ^ { 2 } + \left( y - \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 4 }
D) x2+(y98)2=116x ^ { 2 } + \left( y - \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 16 }
Question
Find the value of the unknown coordinate so that the distance between the points is as given.
(1.5,2)( 1.5 , - 2 ) and (0,y)( 0 , y ) ; distance is 2.52.5

A) y=4.5,y=0.5\mathrm { y } = - 4.5 , \mathrm { y } = 0.5
B) y=0,y=0.5\mathrm { y } = 0 , \mathrm { y } = - 0.5
C) y=0,y=4\mathrm { y } = 0 , \mathrm { y } = - 4
D) y=0,y=3.5y = 0 , y = 3.5
Question
Find the value of the unknown coordinate so that the distance between the points is as given.
(3,6.25)( 3,6.25 ) and (x,1.75)( x , - 1.75 ) ; distance is 10

A) x=3,x=9x = - 3 , x = 9
B) x=2,x=10x = - 2 , x = 10
C) x=0,x=12x = 0 , x = 12
D) x=1,x=13x = 1 , x = 13
Question
Find the distance between the pair of points. Round to the nearest thousandth.
(-4, -3.9)and (-9, 9.3)

A)18.3
B)14.115
C)199.24
D)14.077
Question
Find the distance between the pair of points. Give an exact answer.
(3,7)( - 3 , - 7 ) and (3,2)( 3,2 )

A) 45 units
B) 45545 \sqrt { 5 } units
C) 3133 \sqrt { 13 } units
D) 3 units
Question
Find the value of the unknown coordinate so that the distance between the points is as given.
(1,4)( 1,4 ) and (6,y)( 6 , y ) ; distance is 13

A) y=148,y=190y = 148 , y = - 190
B) y=12,y=4y = 12 , y = - 4
C) y=16,y=8y = 16 , y = - 8
D) y=17.93,y=9.93y = 17.93 , y = - 9.93
Question
Find the standard form of the equation of the following conic section.
center (1.3,0);r=3( - 1.3,0 ) ; r = 3

A) (x+1.3)2+y2=9( x + 1.3 ) ^ { 2 } + y ^ { 2 } = 9
B) (x1.3)2+y2=3( x - 1.3 ) ^ { 2 } + y ^ { 2 } = 3
C) (x+1.3)2+y2=3( x + 1.3 ) ^ { 2 } + y ^ { 2 } = 3
D) (x1.3)2+y2=9( x - 1.3 ) ^ { 2 } + y ^ { 2 } = 9
Question
Find the distance between the pair of points. Round to the nearest thousandth.
(12,17)\left( \frac { 1 } { 2 } , \frac { 1 } { 7 } \right) and (34,87)\left( \frac { 3 } { 4 } , \frac { 8 } { 7 } \right)

A) 0.2500.250
B) 4
C) 1.0311.031
D) 0.9700.970
Question
Graph the parabola and label the vertex. Find the x-intercept.
x=34y2x = \frac { 3 } { 4 } y ^ { 2 }
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )   <div style=padding-top: 35px>  A) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )   <div style=padding-top: 35px>
B) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )   <div style=padding-top: 35px>
C) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )   <div style=padding-top: 35px>
D) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )   <div style=padding-top: 35px>
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+4x96=0x ^ { 2 } + y ^ { 2 } + 4 x - 96 = 0

A) (x+2)2+y2=100( x + 2 ) ^ { 2 } + y ^ { 2 } = 100
center (2,0),r=10( - 2,0 ) , \mathrm { r } = 10
B) (x+2)2+y2=100( x + 2 ) ^ { 2 } + y ^ { 2 } = 100
center (2,0),r=10( 2,0 ) , r = 10
C) x2+(y+2)2=100x ^ { 2 } + ( y + 2 ) ^ { 2 } = 100
center (0,2),r=10( 0 , - 2 ) , \mathrm { r } = 10
D) (x2)2+y2=100( x - 2 ) ^ { 2 } + y ^ { 2 } = 100
center (2,0),r=10( 2,0 ) , r = 10
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y212x12y+59=0x ^ { 2 } + y ^ { 2 } - 12 x - 12 y + 59 = 0

A) (x+6)2+(y+6)2=13( x + 6 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 13
center (6,6),r=13( - 6 , - 6 ) , r = \sqrt { 13 }
B) (x6)2+(y6)2=13( x - 6 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 13
center (6,6),r=13( 6,6 ) , r = \sqrt { 13 }
C) (x6)2+(y6)2=13( x - 6 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 13
center (6,6),r=13( - 6 , - 6 ) , r = \sqrt { 13 }
D) (x6)2+(y6)2=13( x - 6 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 13
center (6,6),r=13( 6,6 ) , r = 13
Question
Give the center and radius of the circle. Then sketch its graph.
(x25)2+(y+5)2=25\left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5   <div style=padding-top: 35px>  A) center (25,5),r=5\left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5   <div style=padding-top: 35px>
B) center (25,5),r=5\left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5   <div style=padding-top: 35px>
C) center (25,5),r=5\left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5   <div style=padding-top: 35px>
D) center (25,5),r=5\left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5   <div style=padding-top: 35px>
Question
Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located
at point R. The maximum range at which the radar can detect a plane is 4 miles from point R.
Assume that R is 2 miles east of O and 7 miles north of O. In other words, R is located at the point (2, 7). An airplane is flying parallel to and 1 miles east of the north axis. (In other words, the plane is flying along the path
X = 1.)What is the greatest distance north of the airport at which the plane can still be detected by the radar
Tower at R? Round your answer to the nearest tenth of a mile.

A)10.9 miles
B)10 miles
C)3)1 miles
D)9)2 miles
Question
Graph the parabola and label the vertex. Find the y-intercept.
y=5x2y=-5 x^{2}
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )   <div style=padding-top: 35px>  A) vertex (0,0),y( 0,0 ) , y -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )   <div style=padding-top: 35px>
B) vertex (0,0)( 0,0 ) , y-intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )   <div style=padding-top: 35px>
C) vertex (0,0),y( 0,0 ) , y -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )   <div style=padding-top: 35px>
D) vertex (0,0)( 0,0 ) , y-intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )   <div style=padding-top: 35px>
Question
Give the center and radius of the circle. Then sketch its graph.
(x2)2+(y+5)2=25( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5   <div style=padding-top: 35px>  A) center (2,5),r=5( 2,5 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5   <div style=padding-top: 35px>
B) center (2,5),r=5( - 2,5 ) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5   <div style=padding-top: 35px>
C) center (2,5),r=5( 2 , - 5 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5   <div style=padding-top: 35px>
D) center (2,5),r=5( - 2 , - 5 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5   <div style=padding-top: 35px>
Question
Graph the parabola and label the vertex. Find the x-intercept.
x=14y2+5x = \frac { 1 } { 4 } y ^ { 2 } + 5
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )   <div style=padding-top: 35px>  A) vertex (5,0),x( 5,0 ) , x -intercept (5,0)( 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )   <div style=padding-top: 35px>
B) vertex (5,0),x( - 5,0 ) , x -intercept (5,0)( - 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )   <div style=padding-top: 35px>
C) vertex (5,0),x( - 5,0 ) , x -intercept (5,0)( - 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )   <div style=padding-top: 35px>
D) vertex (5,0),x( 5,0 ) , x -intercept (5,0)( 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )   <div style=padding-top: 35px>
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+12x6y164=0x ^ { 2 } + y ^ { 2 } + 12 x - 6 y - 164 = 0

A) (x12)2+(y+6)2=16( x - 12 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 16
center (12,6),r=4( 12 , - 6 ) , r = 4
B) (x12)2+(y+6)2=16( x - 12 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 16
center (12,6),r=4( - 12,6 ) , r = 4
C) (x+12)2+(y6)2=16( x + 12 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (12,6),r=4( - 12,6 ) , r = 4
D) (x+12)2+(y6)2=16( x + 12 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (12,6),r=4( 12 , - 6 ) , \mathrm { r } = 4
Question
Graph the parabola and label the vertex. Find the y-intercept.
y=x2+8y=x^{2}+8
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )   <div style=padding-top: 35px>  A) vertex (0,8),y( 0 , - 8 ) , y -intercept (0,8)( 0 , - 8 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )   <div style=padding-top: 35px>
B) vertex (0,),y( 0 , \quad ) , y -intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )   <div style=padding-top: 35px>
C) vertex (0,),y( 0 , \quad ) , y -intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )   <div style=padding-top: 35px>
D) vertex (0,8),y( 0 , - 8 ) , y -intercept (0,8)( 0 , - 8 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )   <div style=padding-top: 35px>
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y216x+39=0x ^ { 2 } + y ^ { 2 } - 16 x + 39 = 0

A) (x8)2+y2=25( x - 8 ) ^ { 2 } + y ^ { 2 } = 25
center (8,0),r=5( - 8,0 ) , r = 5
B) x2+(y8)2=25x ^ { 2 } + ( y - 8 ) ^ { 2 } = 25
center (0,8),r=5( 0,8 ) , r = 5
C) (x8)2+y2=25( x - 8 ) ^ { 2 } + y ^ { 2 } = 25
center (8,0),r=5( 8,0 ) , \mathrm { r } = 5
D) (x+8)2+y2=25( x + 8 ) ^ { 2 } + y ^ { 2 } = 25
center (8,0),r=5( - 8,0 ) , r = 5
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y26x16y+73=49x ^ { 2 } + y ^ { 2 } - 6 x - 16 y + 73 = 49

A) ( x + 3 ) ^ { 2 } + ( y + 8 ) ^ { 2 } = 49 center \(( - 3 , - 8 ) , r = 49B)\(( x - 3 ) ^ { 2 } + ( y - 8 ) ^ { 2 } = 49center \(( 3,8 ) , { r } = 7C) \(( x - 8 ) ^ { 2 } + ( y - 3 ) ^ { 2 } = 49 center \(( 8,3 ) , r = 7D) \(( x - 3 ) ^ { 2 } + ( y - 8 ) ^ { 2 } = 49 center (3,8),r=49( 3,8 ) , r = 49
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+6x8y56=0x ^ { 2 } + y ^ { 2 } + 6 x - 8 y - 56 = 0

A) ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 81 center \(( - 3,4 ) , r = 9B) \(( x - 3 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 81 center \(( 3 , - 4 ) , r = 9C) \(( x - 4 ) ^ { 2 } + ( y + 3 ) ^ { 2 } = 81center \(( 4 , - 3 ) , \ { r } = 9
D) ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 81 center \(( - 3,4 ) , r = 81
Question
Graph the parabola and label the vertex. Find the y-intercept.
y=4(x132)23y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )   <div style=padding-top: 35px>  A) vertex (132,3),y\left( \frac { 13 } { 2 } , - 3 \right) , y -intercept (0,172)( 0,172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )   <div style=padding-top: 35px>
B) vertex (132,3)\left( \frac { 13 } { 2 } , - 3 \right) , y-intercept (0,172)( 0 , - 172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )   <div style=padding-top: 35px>
C) vertex (132,3),y\left( \frac { 13 } { 2 } , 3 \right) , y -intercept (0,172)( 0 , - 172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )   <div style=padding-top: 35px>
D) vertex (132,3)\left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept (0,172)( 0 , - 172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )   <div style=padding-top: 35px>
Question
Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located
at point R. The maximum range at which the radar can detect a plane is 4 miles from point R.
A Ferris wheel has a radius r of 25.8 feet. The height of the tower t is 49.7 feet. The distance d from the origin to the base is 43.9 feet. Find the standard form equation of the circle represented by the Ferris wheel.  <strong>Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located at point R. The maximum range at which the radar can detect a plane is 4 miles from point R. A Ferris wheel has a radius r of 25.8 feet. The height of the tower t is 49.7 feet. The distance d from the origin to the base is 43.9 feet. Find the standard form equation of the circle represented by the Ferris wheel.  </strong> A)  ( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 25.8  B)  ( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 665.64  C)  ( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 25.8  D)  ( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 665.64  <div style=padding-top: 35px>

A) (x+43.9)2+(y+49.7)2=25.8( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 25.8
B) (x+43.9)2+(y+49.7)2=665.64( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 665.64
C) (x43.9)2+(y49.7)2=25.8( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 25.8
D) (x43.9)2+(y49.7)2=665.64( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 665.64
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+14y+40=0x ^ { 2 } + y ^ { 2 } + 14 y + 40 = 0

A) (x+7)2+y2=9( x + 7 ) ^ { 2 } + y ^ { 2 } = 9
center (7,0),r=3( - 7,0 ) , \mathrm { r } = 3
B) x2+(y+7)2=9x ^ { 2 } + ( y + 7 ) ^ { 2 } = 9
center (0,7),r=3( 0 , - 7 ) , r = 3
C) x2+(y7)2=9x ^ { 2 } + ( y - 7 ) ^ { 2 } = 9
center (0,7),r=3( 0,7 ) , \mathrm { r } = 3
D) x2+(y+7)2=9x ^ { 2 } + ( y + 7 ) ^ { 2 } = 9
center (0,7),r=3( 0,7 ) , r = 3
Question
Graph the parabola and label the vertex. Find the y-intercept.
y=4(x8)2112y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )   <div style=padding-top: 35px>  A) vertex (8,112),y\left( 8 , - \frac { 11 } { 2 } \right) , y -intercept (0,250.5)( 0 , - 250.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )   <div style=padding-top: 35px>
B) vertex (8,112),y\left( 8 , - \frac { 11 } { 2 } \right) , y -intercept (0,250.5)( 0,250.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )   <div style=padding-top: 35px>
C) vertex (8,112),y\left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept (0,250.5)( 0,250.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )   <div style=padding-top: 35px>
D) vertex (8,112),y\left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept (0,261.5)( 0,261.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )   <div style=padding-top: 35px>
Question
Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located
at point R. The maximum range at which the radar can detect a plane is 4 miles from point R.
Assume that R is 7 miles east of O and 11 miles north of O. In other words, R is located at the point (7, 11). An airplane is flying parallel to and 9 miles east of the north axis. (In other words, the plane is flying along the path
X = 9.)What is the shortest distance north of the airport at which the plane can still be detected by the radar
Tower at R? Round your answer to the nearest tenth of a mile.

A)24.8 miles
B)14.5 miles
C)7)5 miles
D)25.5 miles
Question
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y212y+20=0x ^ { 2 } + y ^ { 2 } - 12 y + 20 = 0

A) x2+(y+6)2=16x ^ { 2 } + ( y + 6 ) ^ { 2 } = 16
center (0,6),r=4( 0 , - 6 ) , \mathrm { r } = 4
B) x2+(y6)2=16x ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (0,6),r=4( 0,6 ) , \mathrm { r } = 4
C) (x6)2+y2=16( x - 6 ) ^ { 2 } + y ^ { 2 } = 16
center (6,0),r=4( 6,0 ) , \mathrm { r } = 4
D) x2+(y6)2=16x ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (0,6),r=4( 0 , - 6 ) , \mathrm { r } = 4



Question
Graph the parabola and label the vertex. Find the y-intercept.
y=12x2+1y = \frac { 1 } { 2 } x ^ { 2 } + 1
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00<div style=padding-top: 35px>  A) vertex (0, ), y-intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00<div style=padding-top: 35px>
B) vertex (0,),y( 0 , \quad ) , y -intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00<div style=padding-top: 35px>
C) vertex (0,1)( 0 , - 1 ) , y-intercept (0,1)( 0 , - 1 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00<div style=padding-top: 35px>
D) vertex (0,1)( 0 , - 1 ) , yy -intercept (0,1)( 0 , - 1 )
1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00
Question
Rewrite the equation in standard form. Determine whether the parabola is horizontal or vertical, the direction it opens,
and the vertex.
y=x214x+39y = x ^ { 2 } - 14 x + 39

A) y=(x+7)2+10y = ( x + 7 ) ^ { 2 } + 10
vertical, opens upward, vertex (7,10)( - 7,10 )
B) y=(x+10)2+7y = ( x + 10 ) ^ { 2 } + 7
vertical, opens upward, vertex (10,7)( - 10,7 )
C) y=(x10)27y = ( x - 10 ) ^ { 2 } - 7
vertical, opens upward, vertex (10,7)( 10 , - 7 )
D) y=(x7)210y = ( x - 7 ) ^ { 2 } - 10
vertical, opens upward, vertex (7,10)( 7 , - 10 )
Question
Rewrite the equation in standard form. Determine whether the parabola is horizontal or vertical, the direction it opens,
and the vertex.
y=3x2+72x441y = - 3 x ^ { 2 } + 72 x - 441

A) y=(x+12)29y = ( x + 12 ) ^ { 2 } - 9
vertical, opens downward, vertex (12,9)( - 12 , - 9 )
B) y=(x12)29y = ( x - 12 ) ^ { 2 } - 9
vertical, opens upward, vertex (12,9)( 12 , - 9 )
C) y=(x+12)29y = ( x + 12 ) ^ { 2 } - 9
vertical, opens upward, vertex (12,9)( - 12 , - 9 )
D) y=(x12)29y = ( x - 12 ) ^ { 2 } - 9
vertical, opens downward, vertex (12,9)( 12 , - 9 )
Question
Graph the ellipse. Label the intercepts.
x294+y2254=1\frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)    <div style=padding-top: 35px>

A) (32,0),(32,0),(0,52),(0,52)\left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)    <div style=padding-top: 35px>
B) (23,0),(23,0),(0,25),(0,25)\left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)    <div style=padding-top: 35px>
C) (25,0),(25,0),(0,23),(0,23)\left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)    <div style=padding-top: 35px>
D) (0,32),(0,32),(52,0),(52,0)\left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)    <div style=padding-top: 35px>
Question
Rewrite the equation in standard form. Determine whether the parabola is horizontal or vertical, the direction it opens,
and the vertex.
x=y2+14y+44x = y ^ { 2 } + 14 y + 44

A) x=(y+7)25x = ( y + 7 ) ^ { 2 } - 5
horizontal, opens to the right, vertex (5,7)( - 5 , - 7 )
B) x=(y+7)25x = ( y + 7 ) ^ { 2 } - 5
horizontal, opens to the right, vertex (7,5)( - 7 , - 5 )
C) x=(y+7)25x = ( y + 7 ) ^ { 2 } - 5
horizontal, opens to the left, vertex (5,7)( - 5 , - 7 )
D) x=(y+5)27x = ( y + 5 ) ^ { 2 } - 7
horizontal, opens to the left, vertex (7,5)( - 7 , - 5 )
Question
Graph the ellipse and label the center.
(x11)264+y236=1\frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )    <div style=padding-top: 35px>

A) C(11,0)\mathrm { C } ( 11,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )    <div style=padding-top: 35px>
B) C(11,0)\mathrm { C } ( - 11,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )    <div style=padding-top: 35px>
C) C (0,11)( 0 , - 11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )    <div style=padding-top: 35px>
D) C(0,11)\mathrm { C } ( 0,11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )    <div style=padding-top: 35px>
Question
Graph the ellipse and label the center.
x236+(y10)216=1\frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )    <div style=padding-top: 35px>

A) C(0,10)C ( 0,10 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )    <div style=padding-top: 35px>
B) C(10,0)\mathrm { C } ( - 10,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )    <div style=padding-top: 35px>
C) C(0,10)C ( 0 , - 10 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )    <div style=padding-top: 35px>
D) C(10,0)\mathrm { C } ( 10,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )    <div style=padding-top: 35px>
Question
Graph the ellipse and label the center.
(x2)29+(y9)236=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )    <div style=padding-top: 35px>

A) C(2,9)C ( - 2 , - 9 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )    <div style=padding-top: 35px>
B) C(3,6)\mathrm { C } ( - 3 , - 6 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )    <div style=padding-top: 35px>
C) C(2,9)\mathrm { C } ( 2,9 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )    <div style=padding-top: 35px>
D) C(3,6)\mathrm { C } ( 3,6 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )    <div style=padding-top: 35px>
Question
Graph the ellipse. Label the intercepts.
45x2+y2=22545 x ^ { 2 } + y ^ { 2 } = 225
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )    <div style=padding-top: 35px>

A) (5,0),(5,0),(0,15),(0,15)( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )    <div style=padding-top: 35px>
В) (5,0),(5,0),(0,15),(0,15)( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )    <div style=padding-top: 35px>
C) (5,0),(5,0),(0,15),(0,15)( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )    <div style=padding-top: 35px>
D) (5,0),(5,0),(0,15),(0,15)( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )    <div style=padding-top: 35px>
Question
Graph the parabola and label the vertex. Find the x-intercept.
x=2(y+1)27x = - 2 ( y + 1 ) ^ { 2 } - 7
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )   <div style=padding-top: 35px>  A) vertex (7,1),x( - 7 , - 1 ) , x -intercept (5,0)( - 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )   <div style=padding-top: 35px>
B) vertex (7,1),x( 7 , - 1 ) , x -intercept (9,0)( - 9,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )   <div style=padding-top: 35px>
C) vertex (7,1),x( 7 , - 1 ) , x -intercept (9,0)( 9,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )   <div style=padding-top: 35px>
D) vertex (7,1),x( - 7 , - 1 ) , x -intercept (,0)( , 0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )   <div style=padding-top: 35px>
Question
Graph the ellipse. Label the intercepts.
x2+4y2=64x ^ { 2 } + 4 y ^ { 2 } = 64
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    <div style=padding-top: 35px>

A) (8,0),(8,0),(0,2),(0,2)( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    <div style=padding-top: 35px>
B) (4,0),(4,0),(0,8),(0,8)( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    <div style=padding-top: 35px>
C) (8,0),(8,0),(0,4),(0,4)( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    <div style=padding-top: 35px>
D) (2,0),(2,0),(0,8),(0,8)( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    <div style=padding-top: 35px>
Question
Graph the ellipse and label the center.
x236+(y+8)2100=1\frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )    <div style=padding-top: 35px>

A) C(8,0)\mathrm { C } ( - 8,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )    <div style=padding-top: 35px>
B) C(8,0)\mathrm { C } ( 8,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )    <div style=padding-top: 35px>
C) C(0,8)C ( 0,8 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )    <div style=padding-top: 35px>
D) C(0,8)C ( 0 , - 8 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )    <div style=padding-top: 35px>
Question
Graph the ellipse. Label the intercepts.
16x2+y264=016 x ^ { 2 } + y ^ { 2 } - 64 = 0
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>

A) (2,0),(2,0),(0,4),(0,4)( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
B) (2,0),(2,0),(0,8),(0,8)( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
C) (4,0),(4,0),(0,2),(0,2)( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
D) (8,0),(8,0),(0,2),(0,2)( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
Question
Graph the ellipse. Label the intercepts.
x24+y281=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>

A) (2,0),(2,0),(0,2),(0,2)( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
B) (9,0),(9,0),(0,9),(0,9)( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
C) (2,0),(2,0),(0,9),(0,9)( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
D) (9,0),(9,0),(0,2),(0,2)( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )    <div style=padding-top: 35px>
Question
Solve.
Find an equation of the form y=ax2y = a x ^ { 2 } that describes the outline of a satellite dish such that the bottom of the dish passes through (0,0)( 0,0 ) , the diameter of the dish is 20 inches, and the depth of the dish is 7 inches

A) y=7400x2y = \frac { 7 } { 400 } x ^ { 2 }
B) y=720x2y = \frac { 7 } { 20 } x ^ { 2 }
C) y=7100x2y = \frac { 7 } { 100 } x ^ { 2 }
D) y=710x2y = \frac { 7 } { 10 } x ^ { 2 }
Question
Graph the ellipse. Label the intercepts.
9x2+16y2=1449 x ^ { 2 } + 16 y ^ { 2 } = 144
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    <div style=padding-top: 35px>

A) (3,0),(3,0),(0,4),(0,4)( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    <div style=padding-top: 35px>
B) (4,0),(4,0),(0,3),(0,3)( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    <div style=padding-top: 35px>
C) (3,0),(3,0),(0,4),(0,4)( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    <div style=padding-top: 35px>
D) (4,0),(4,0),(0,3),(0,3)( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    <div style=padding-top: 35px>
Question
Determine the center of the ellipse.
(x+5)29+(y5)225=1\frac { ( \mathrm { x } + 5 ) ^ { 2 } } { 9 } + \frac { ( \mathrm { y } - 5 ) ^ { 2 } } { 25 } = 1

A) (-5,-5)
B)(,5)
C) (,-5)
D) (-5,5)
Question
Solve.
The effective yield from a grove of miniature pear trees is described by the equation E=x(800x)\mathrm { E } = x ( 800 - x ) , where xx is the number of pear trees per acre. What is the maximum effective yield? How many pear trees per acre should be planted to achieve the maximum yield?

A) Maximum yield =160,000= 160,000
number of trees per acre planted =800= 800
B) Maximum yield =160,000= 160,000
number of trees per acre planted =400= 400
C) Maximum yield =160,000= 160,000
number of trees per acre planted =200= 200
D) Maximum yield =40,000= 40,000
number of trees per acre planted =200= 200
Question
Graph the parabola and label the vertex. Find the x-intercept.
x=(y5)2+8x = ( y - 5 ) ^ { 2 } + 8
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )   <div style=padding-top: 35px>  A) vertex (8,5),x( 8,5 ) , x -intercept (33,0)( 33,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )   <div style=padding-top: 35px>
B) vertex (8,5),x( - 8 , - 5 ) , x -intercept (17,0)( 17,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )   <div style=padding-top: 35px>
C) vertex (8,5),x( 8 , - 5 ) , x -intercept (33,0)( 33,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )   <div style=padding-top: 35px>
D) vertex (8,5),x( - 8,5 ) , x -intercept (17,0)( 17,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )   <div style=padding-top: 35px>
Question
Graph the parabola and label the vertex. Find the x-intercept.
x=y2+7x = - y ^ { 2 } + 7
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )   <div style=padding-top: 35px>  A) vertex (,0),x( , 0 ) , x -intercept (,0)( , 0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )   <div style=padding-top: 35px>
B) vertex (7,0),x( - 7,0 ) , x -intercept (7,0)( - 7,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )   <div style=padding-top: 35px>
C) vertex (,0),x( , 0 ) , x -intercept (,0)( , 0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )   <div style=padding-top: 35px>
D) vertex (7,0),x( - 7,0 ) , x -intercept (7,0)( - 7,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )   <div style=padding-top: 35px>
Question
Solve.
A specialty watch company's monthly profit equation is
P=2x2+1000x+50,000P = - 2 x ^ { 2 } + 1000 x + 50,000 \text {, }
where xx is the number of watches manufactured. Find the maximum monthly profit and the number of watches must be produced each month to attain the maximum profit.

A) Maximum profit =$50,000= \$ 50,000
number of watches produced =1000= 1000
B) Maximum profit =$175,000= \$ 175,000
number of watches produced =250= 250
C) Maximum profit =$175,000= \$ 175,000
number of watches produced =500= 500
D) Maximum profit =$50,000= \$ 50,000
number of watches produced =0= 0
Question
Graph the ellipse and label the center.
(x+2)249+(y10)216=1\frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )    <div style=padding-top: 35px>

A) C(2,10)\mathrm { C } ( - 2 , - 10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )    <div style=padding-top: 35px>
B) C(2,10)\mathrm { C } ( 2 , - 10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )    <div style=padding-top: 35px>
C) C(2,10)\mathrm { C } ( 2,10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )    <div style=padding-top: 35px>
D) C(2,10)\mathrm { C } ( - 2,10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )    <div style=padding-top: 35px>
Question
Graph the ellipse and label the center.
(x+4)249+(y+11)225=1\frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )    <div style=padding-top: 35px>

A) C(4,11)\mathrm { C } ( 4 , - 11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )    <div style=padding-top: 35px>
B) C(4,11)\mathrm { C } ( 4,11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )    <div style=padding-top: 35px>
C) C(4,11)\mathrm { C } ( - 4,11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )    <div style=padding-top: 35px>
D) C(4,11)\mathrm { C } ( - 4 , - 11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )    <div style=padding-top: 35px>
Question
Graph the ellipse and label the center.
(x11)2100+(y+4)24=1\frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )    <div style=padding-top: 35px>

A) C(11,4)C ( 11 , - 4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )    <div style=padding-top: 35px>
B) C(11,4)\mathrm { C } ( - 11,4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )    <div style=padding-top: 35px>
C) C(11,4)\mathrm { C } ( 11,4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )    <div style=padding-top: 35px>
D) C(11,4)C ( - 11 , - 4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )    <div style=padding-top: 35px>
Question
Graph the ellipse and label the center.
(x+4)236+y29=1\frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )    <div style=padding-top: 35px>

A) C(0,4)\mathrm { C } ( 0,4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )    <div style=padding-top: 35px>
B) C(4,0)\mathrm { C } ( - 4,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )    <div style=padding-top: 35px>
C) C(0,4)\mathrm { C } ( 0 , - 4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )    <div style=padding-top: 35px>
D) C(4,0)\mathrm { C } ( 4,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )    <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/64
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: The Conic Sections
1
Find the standard form of the equation of the following conic section.
center (6,1);r=11( - 6 , - 1 ) ; r = 11

A) (x+6)2+(y+1)2=121( x + 6 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 121
B) (x1)2+(y6)2=11( x - 1 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 11
C) (x+1)2+(y+6)2=11( x + 1 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 11
D) (x6)2+(y1)2=121( x - 6 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 121
A
2
Find the value of the unknown coordinate so that the distance between the points is as given.
(3,4)( 3,4 ) and (x,7)( x , 7 ) ; distance is 3.613.61

A) x=6,x=5x = 6 , x = 5
B) x=1,x=5x = 1 , x = 5
C) x=1,x=13x = 1 , x = 13
D) x=6,x=5x = - 6 , x = 5
B
3
Give the center and radius of the circle. Then sketch its graph.
(x+4)2+(y+2)2=25( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25

 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5    A) center (4,2),r=5( 4,2 ) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5
B) center (4,2),r=5( - 4 , - 2 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5
C) center (4,2),r=5( 4 , - 2 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5
D) center (4,2),r=5( - 4,2 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x + 4 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25     A) center  ( 4,2 ) , \mathrm { r } = 5    B) center  ( - 4 , - 2 ) , r = 5    C) center  ( 4 , - 2 ) , r = 5    D) center  ( - 4,2 ) , r = 5
B
4
Find the standard form of the equation of the following conic section.
center (5,0);r=22( 5,0 ) ; r = 2 \sqrt { 2 }

A) (x5)2+y2=22( x - 5 ) ^ { 2 } + y ^ { 2 } = 2 \sqrt { 2 }
B) (x5)2+y2=64( x - 5 ) ^ { 2 } + y ^ { 2 } = 64
C) (x5)2+y2=8( x - 5 ) ^ { 2 } + y ^ { 2 } = 8
D) (x+5)2+y2=8( x + 5 ) ^ { 2 } + y ^ { 2 } = 8
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
5
Give the center and radius of the circle. Then sketch its graph.
(x1)2+(y2)2=9( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3    A) center (1,2),r=3( - 1 , - 2 ) , r = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3
B) center (1,2),r=3( 1 , - 2 ) , \mathrm { r } = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3
C) center (1,2),r=3( - 1,2 ) , \mathrm { r } = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3
D) center (1,2),r=3( 1,2 ) , r = 3
 Give the center and radius of the circle. Then sketch its graph.  ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 9    A) center  ( - 1 , - 2 ) , r = 3    B) center  ( 1 , - 2 ) , \mathrm { r } = 3    C) center  ( - 1,2 ) , \mathrm { r } = 3    D) center  ( 1,2 ) , r = 3
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
6
Find the standard form of the equation of the following conic section.
center (4,1);r=3( - 4 , - 1 ) ; r = \sqrt { 3 }

A) (x1)2+(y4)2=9( x - 1 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 9
B) (x4)2+(y1)2=3( x - 4 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 3
C) (x+1)2+(y+4)2=9( x + 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 9
D) (x+4)2+(y+1)2=3( x + 4 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 3
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
7
Find the distance between the pair of points. Give an exact answer.
(4, 4)and (-1, 16)

A)14 units
B)13 units
C)26 units
D)169 units
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
8
Find the distance between the pair of points. Give an exact answer.
(4,4)( 4,4 ) and (5,7)( - 5 , - 7 )

A) 2102 \sqrt { 10 } units
B) 99 units
C) 202 units
D) 202\sqrt { 202 } units
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
9
Give the center and radius of the circle. Then sketch its graph.
x2+y2=16x ^ { 2 } + y ^ { 2 } = 16
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4
A) center (1,1),r=16( 1,1 ) , r = 16
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4
B) center (0,0),r=4( 0,0 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4
C) center (0,0),r=16( 0,0 ) , r = 16
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4
D) center (1,1),r=4( 1,1 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  x ^ { 2 } + y ^ { 2 } = 16    A) center  ( 1,1 ) , r = 16    B) center  ( 0,0 ) , r = 4    C) center  ( 0,0 ) , r = 16    D) center  ( 1,1 ) , r = 4
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
10
Give the center and radius of the circle. Then sketch its graph.
(x+3)2+(y4)2=16( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16
 Give the center and radius of the circle. Then sketch its graph.  ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16    A) center  ( - 3 , - 4 ) , \mathrm { r } = 4\ )  B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center  ( - 3,4 ) , r = 4    D) center  ( 3 , - 4 ) , r = 4    A) center B) center \(( 3,4 ) , \mathrm { r } = 4">( - 3 , - 4 ) , \mathrm { r } = 4\)<img src="https://storage.examlex.com/TB6914/11ecb33d_8774_ac61_a9b7_7d2e48059aeb_TB6914_00.jpg" alt=" Give the center and radius of the circle. Then sketch its graph. ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16 A) center ( - 3 , - 4 ) , \mathrm { r } = 4\ ) B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center ( - 3,4 ) , r = 4 D) center ( 3 , - 4 ) , r = 4 " class="answers-bank-image d-block" loading="lazy" >B) center \(( 3,4 ) , \mathrm { r } = 4 11
ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00
C) center (3,4),r=4( - 3,4 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16    A) center  ( - 3 , - 4 ) , \mathrm { r } = 4\ )  B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center  ( - 3,4 ) , r = 4    D) center  ( 3 , - 4 ) , r = 4
D) center (3,4),r=4( 3 , - 4 ) , r = 4
 Give the center and radius of the circle. Then sketch its graph.  ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 16    A) center  ( - 3 , - 4 ) , \mathrm { r } = 4\ )  B) center ( 3,4 ) , \mathrm { r } = 4 11 ecb33d_8d39_9252_a9b7_155027a344e9_TB6914_00 C) center  ( - 3,4 ) , r = 4    D) center  ( 3 , - 4 ) , r = 4
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
11
Find the distance between the pair of points. Give an exact answer.
(5,1)( - 5 , - 1 ) and (2,2)( 2 , - 2 )

A) 48 units
B) 525 \sqrt { 2 } units
C) 48348 \sqrt { 3 } units
D) 8 units
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
12
Find the distance between the pair of points. Give an exact answer.
(2,5)( 2 , - 5 ) and (4,1)( 4 , - 1 )

A) 12312 \sqrt { 3 } units
B) 2 units
C) 12 units
D) 252 \sqrt { 5 } units
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
13
Find the standard form of the equation of the following conic section.
center (0,98);r=14\left( 0 , \frac { 9 } { 8 } \right) ; r = \frac { 1 } { 4 }

A) x2+(y+98)2=14x ^ { 2 } + \left( y + \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 4 }
B) x2+(y+98)2=116x ^ { 2 } + \left( y + \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 16 }
C) x2+(y98)2=14x ^ { 2 } + \left( y - \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 4 }
D) x2+(y98)2=116x ^ { 2 } + \left( y - \frac { 9 } { 8 } \right) ^ { 2 } = \frac { 1 } { 16 }
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
14
Find the value of the unknown coordinate so that the distance between the points is as given.
(1.5,2)( 1.5 , - 2 ) and (0,y)( 0 , y ) ; distance is 2.52.5

A) y=4.5,y=0.5\mathrm { y } = - 4.5 , \mathrm { y } = 0.5
B) y=0,y=0.5\mathrm { y } = 0 , \mathrm { y } = - 0.5
C) y=0,y=4\mathrm { y } = 0 , \mathrm { y } = - 4
D) y=0,y=3.5y = 0 , y = 3.5
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
15
Find the value of the unknown coordinate so that the distance between the points is as given.
(3,6.25)( 3,6.25 ) and (x,1.75)( x , - 1.75 ) ; distance is 10

A) x=3,x=9x = - 3 , x = 9
B) x=2,x=10x = - 2 , x = 10
C) x=0,x=12x = 0 , x = 12
D) x=1,x=13x = 1 , x = 13
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
16
Find the distance between the pair of points. Round to the nearest thousandth.
(-4, -3.9)and (-9, 9.3)

A)18.3
B)14.115
C)199.24
D)14.077
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
17
Find the distance between the pair of points. Give an exact answer.
(3,7)( - 3 , - 7 ) and (3,2)( 3,2 )

A) 45 units
B) 45545 \sqrt { 5 } units
C) 3133 \sqrt { 13 } units
D) 3 units
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
18
Find the value of the unknown coordinate so that the distance between the points is as given.
(1,4)( 1,4 ) and (6,y)( 6 , y ) ; distance is 13

A) y=148,y=190y = 148 , y = - 190
B) y=12,y=4y = 12 , y = - 4
C) y=16,y=8y = 16 , y = - 8
D) y=17.93,y=9.93y = 17.93 , y = - 9.93
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
19
Find the standard form of the equation of the following conic section.
center (1.3,0);r=3( - 1.3,0 ) ; r = 3

A) (x+1.3)2+y2=9( x + 1.3 ) ^ { 2 } + y ^ { 2 } = 9
B) (x1.3)2+y2=3( x - 1.3 ) ^ { 2 } + y ^ { 2 } = 3
C) (x+1.3)2+y2=3( x + 1.3 ) ^ { 2 } + y ^ { 2 } = 3
D) (x1.3)2+y2=9( x - 1.3 ) ^ { 2 } + y ^ { 2 } = 9
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
20
Find the distance between the pair of points. Round to the nearest thousandth.
(12,17)\left( \frac { 1 } { 2 } , \frac { 1 } { 7 } \right) and (34,87)\left( \frac { 3 } { 4 } , \frac { 8 } { 7 } \right)

A) 0.2500.250
B) 4
C) 1.0311.031
D) 0.9700.970
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
21
Graph the parabola and label the vertex. Find the x-intercept.
x=34y2x = \frac { 3 } { 4 } y ^ { 2 }
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    A) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )
B) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )
C) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )
D) vertex (0,0),x( 0,0 ) , x -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 3 } { 4 } y ^ { 2 }    A) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    C) vertex  ( 0,0 ) , x -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , x -intercept  ( 0,0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
22
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+4x96=0x ^ { 2 } + y ^ { 2 } + 4 x - 96 = 0

A) (x+2)2+y2=100( x + 2 ) ^ { 2 } + y ^ { 2 } = 100
center (2,0),r=10( - 2,0 ) , \mathrm { r } = 10
B) (x+2)2+y2=100( x + 2 ) ^ { 2 } + y ^ { 2 } = 100
center (2,0),r=10( 2,0 ) , r = 10
C) x2+(y+2)2=100x ^ { 2 } + ( y + 2 ) ^ { 2 } = 100
center (0,2),r=10( 0 , - 2 ) , \mathrm { r } = 10
D) (x2)2+y2=100( x - 2 ) ^ { 2 } + y ^ { 2 } = 100
center (2,0),r=10( 2,0 ) , r = 10
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
23
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y212x12y+59=0x ^ { 2 } + y ^ { 2 } - 12 x - 12 y + 59 = 0

A) (x+6)2+(y+6)2=13( x + 6 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 13
center (6,6),r=13( - 6 , - 6 ) , r = \sqrt { 13 }
B) (x6)2+(y6)2=13( x - 6 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 13
center (6,6),r=13( 6,6 ) , r = \sqrt { 13 }
C) (x6)2+(y6)2=13( x - 6 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 13
center (6,6),r=13( - 6 , - 6 ) , r = \sqrt { 13 }
D) (x6)2+(y6)2=13( x - 6 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 13
center (6,6),r=13( 6,6 ) , r = 13
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
24
Give the center and radius of the circle. Then sketch its graph.
(x25)2+(y+5)2=25\left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    A) center (25,5),r=5\left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
B) center (25,5),r=5\left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
C) center (25,5),r=5\left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
D) center (25,5),r=5\left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  \left( x - \frac { 2 } { 5 } \right) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  \left( - \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    B) center  \left( \frac { 2 } { 5 } , - 5 \right) , \mathrm { r } = 5    C) center  \left( \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5    D) center  \left( - \frac { 2 } { 5 } , 5 \right) , \mathrm { r } = 5
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
25
Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located
at point R. The maximum range at which the radar can detect a plane is 4 miles from point R.
Assume that R is 2 miles east of O and 7 miles north of O. In other words, R is located at the point (2, 7). An airplane is flying parallel to and 1 miles east of the north axis. (In other words, the plane is flying along the path
X = 1.)What is the greatest distance north of the airport at which the plane can still be detected by the radar
Tower at R? Round your answer to the nearest tenth of a mile.

A)10.9 miles
B)10 miles
C)3)1 miles
D)9)2 miles
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
26
Graph the parabola and label the vertex. Find the y-intercept.
y=5x2y=-5 x^{2}
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    A) vertex (0,0),y( 0,0 ) , y -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )
B) vertex (0,0)( 0,0 ) , y-intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )
C) vertex (0,0),y( 0,0 ) , y -intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )
D) vertex (0,0)( 0,0 ) , y-intercept (0,0)( 0,0 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=-5 x^{2}    A) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    B) vertex  ( 0,0 ) , y-intercept  ( 0,0 )    C) vertex  ( 0,0 ) , y -intercept  ( 0,0 )    D) vertex  ( 0,0 ) , y-intercept  ( 0,0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
27
Give the center and radius of the circle. Then sketch its graph.
(x2)2+(y+5)2=25( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5    A) center (2,5),r=5( 2,5 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5
B) center (2,5),r=5( - 2,5 ) , \mathrm { r } = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5
C) center (2,5),r=5( 2 , - 5 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5
D) center (2,5),r=5( - 2 , - 5 ) , r = 5
 Give the center and radius of the circle. Then sketch its graph.  ( x - 2 ) ^ { 2 } + ( y + 5 ) ^ { 2 } = 25    A) center  ( 2,5 ) , r = 5    B) center  ( - 2,5 ) , \mathrm { r } = 5    C) center  ( 2 , - 5 ) , r = 5    D) center  ( - 2 , - 5 ) , r = 5
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
28
Graph the parabola and label the vertex. Find the x-intercept.
x=14y2+5x = \frac { 1 } { 4 } y ^ { 2 } + 5
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    A) vertex (5,0),x( 5,0 ) , x -intercept (5,0)( 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )
B) vertex (5,0),x( - 5,0 ) , x -intercept (5,0)( - 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )
C) vertex (5,0),x( - 5,0 ) , x -intercept (5,0)( - 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )
D) vertex (5,0),x( 5,0 ) , x -intercept (5,0)( 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = \frac { 1 } { 4 } y ^ { 2 } + 5    A) vertex  ( 5,0 ) , x -intercept  ( 5,0 )    B) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    C) vertex  ( - 5,0 ) , x -intercept  ( - 5,0 )    D) vertex  ( 5,0 ) , x -intercept  ( 5,0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
29
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+12x6y164=0x ^ { 2 } + y ^ { 2 } + 12 x - 6 y - 164 = 0

A) (x12)2+(y+6)2=16( x - 12 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 16
center (12,6),r=4( 12 , - 6 ) , r = 4
B) (x12)2+(y+6)2=16( x - 12 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = 16
center (12,6),r=4( - 12,6 ) , r = 4
C) (x+12)2+(y6)2=16( x + 12 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (12,6),r=4( - 12,6 ) , r = 4
D) (x+12)2+(y6)2=16( x + 12 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (12,6),r=4( 12 , - 6 ) , \mathrm { r } = 4
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
30
Graph the parabola and label the vertex. Find the y-intercept.
y=x2+8y=x^{2}+8
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    A) vertex (0,8),y( 0 , - 8 ) , y -intercept (0,8)( 0 , - 8 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )
B) vertex (0,),y( 0 , \quad ) , y -intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )
C) vertex (0,),y( 0 , \quad ) , y -intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )
D) vertex (0,8),y( 0 , - 8 ) , y -intercept (0,8)( 0 , - 8 )
 Graph the parabola and label the vertex. Find the y-intercept.  y=x^{2}+8    A) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    D) vertex  ( 0 , - 8 ) , y -intercept  ( 0 , - 8 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
31
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y216x+39=0x ^ { 2 } + y ^ { 2 } - 16 x + 39 = 0

A) (x8)2+y2=25( x - 8 ) ^ { 2 } + y ^ { 2 } = 25
center (8,0),r=5( - 8,0 ) , r = 5
B) x2+(y8)2=25x ^ { 2 } + ( y - 8 ) ^ { 2 } = 25
center (0,8),r=5( 0,8 ) , r = 5
C) (x8)2+y2=25( x - 8 ) ^ { 2 } + y ^ { 2 } = 25
center (8,0),r=5( 8,0 ) , \mathrm { r } = 5
D) (x+8)2+y2=25( x + 8 ) ^ { 2 } + y ^ { 2 } = 25
center (8,0),r=5( - 8,0 ) , r = 5
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
32
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y26x16y+73=49x ^ { 2 } + y ^ { 2 } - 6 x - 16 y + 73 = 49

A) ( x + 3 ) ^ { 2 } + ( y + 8 ) ^ { 2 } = 49 center \(( - 3 , - 8 ) , r = 49B)\(( x - 3 ) ^ { 2 } + ( y - 8 ) ^ { 2 } = 49center \(( 3,8 ) , { r } = 7C) \(( x - 8 ) ^ { 2 } + ( y - 3 ) ^ { 2 } = 49 center \(( 8,3 ) , r = 7D) \(( x - 3 ) ^ { 2 } + ( y - 8 ) ^ { 2 } = 49 center (3,8),r=49( 3,8 ) , r = 49
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
33
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+6x8y56=0x ^ { 2 } + y ^ { 2 } + 6 x - 8 y - 56 = 0

A) ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 81 center \(( - 3,4 ) , r = 9B) \(( x - 3 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 81 center \(( 3 , - 4 ) , r = 9C) \(( x - 4 ) ^ { 2 } + ( y + 3 ) ^ { 2 } = 81center \(( 4 , - 3 ) , \ { r } = 9
D) ( x + 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 81 center \(( - 3,4 ) , r = 81
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
34
Graph the parabola and label the vertex. Find the y-intercept.
y=4(x132)23y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    A) vertex (132,3),y\left( \frac { 13 } { 2 } , - 3 \right) , y -intercept (0,172)( 0,172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )
B) vertex (132,3)\left( \frac { 13 } { 2 } , - 3 \right) , y-intercept (0,172)( 0 , - 172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )
C) vertex (132,3),y\left( \frac { 13 } { 2 } , 3 \right) , y -intercept (0,172)( 0 , - 172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )
D) vertex (132,3)\left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept (0,172)( 0 , - 172 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = - 4 \left( x - \frac { 13 } { 2 } \right) ^ { 2 } - 3    A) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y -intercept  ( 0,172 )    B) vertex  \left( \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )    C) vertex  \left( \frac { 13 } { 2 } , 3 \right) , y -intercept  ( 0 , - 172 )    D) vertex  \left( - \frac { 13 } { 2 } , - 3 \right) , y-intercept  ( 0 , - 172 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
35
Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located
at point R. The maximum range at which the radar can detect a plane is 4 miles from point R.
A Ferris wheel has a radius r of 25.8 feet. The height of the tower t is 49.7 feet. The distance d from the origin to the base is 43.9 feet. Find the standard form equation of the circle represented by the Ferris wheel.  <strong>Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located at point R. The maximum range at which the radar can detect a plane is 4 miles from point R. A Ferris wheel has a radius r of 25.8 feet. The height of the tower t is 49.7 feet. The distance d from the origin to the base is 43.9 feet. Find the standard form equation of the circle represented by the Ferris wheel.  </strong> A)  ( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 25.8  B)  ( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 665.64  C)  ( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 25.8  D)  ( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 665.64

A) (x+43.9)2+(y+49.7)2=25.8( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 25.8
B) (x+43.9)2+(y+49.7)2=665.64( x + 43.9 ) ^ { 2 } + ( y + 49.7 ) ^ { 2 } = 665.64
C) (x43.9)2+(y49.7)2=25.8( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 25.8
D) (x43.9)2+(y49.7)2=665.64( x - 43.9 ) ^ { 2 } + ( y - 49.7 ) ^ { 2 } = 665.64
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
36
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y2+14y+40=0x ^ { 2 } + y ^ { 2 } + 14 y + 40 = 0

A) (x+7)2+y2=9( x + 7 ) ^ { 2 } + y ^ { 2 } = 9
center (7,0),r=3( - 7,0 ) , \mathrm { r } = 3
B) x2+(y+7)2=9x ^ { 2 } + ( y + 7 ) ^ { 2 } = 9
center (0,7),r=3( 0 , - 7 ) , r = 3
C) x2+(y7)2=9x ^ { 2 } + ( y - 7 ) ^ { 2 } = 9
center (0,7),r=3( 0,7 ) , \mathrm { r } = 3
D) x2+(y+7)2=9x ^ { 2 } + ( y + 7 ) ^ { 2 } = 9
center (0,7),r=3( 0,7 ) , r = 3
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
37
Graph the parabola and label the vertex. Find the y-intercept.
y=4(x8)2112y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )    A) vertex (8,112),y\left( 8 , - \frac { 11 } { 2 } \right) , y -intercept (0,250.5)( 0 , - 250.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )
B) vertex (8,112),y\left( 8 , - \frac { 11 } { 2 } \right) , y -intercept (0,250.5)( 0,250.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )
C) vertex (8,112),y\left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept (0,250.5)( 0,250.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )
D) vertex (8,112),y\left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept (0,261.5)( 0,261.5 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = 4 ( x - 8 ) ^ { 2 } - \frac { 11 } { 2 }    A) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0 , - 250.5 )    B) vertex  \left( 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    C) vertex  \left( - 8 , - \frac { 11 } { 2 } \right) , y -intercept  ( 0,250.5 )    D) vertex  \left( 8 , \frac { 11 } { 2 } \right) , \mathrm { y } -intercept  ( 0,261.5 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
38
Use the following information to solve the problem. An airport is located at point O. A short-range radar tower is located
at point R. The maximum range at which the radar can detect a plane is 4 miles from point R.
Assume that R is 7 miles east of O and 11 miles north of O. In other words, R is located at the point (7, 11). An airplane is flying parallel to and 9 miles east of the north axis. (In other words, the plane is flying along the path
X = 9.)What is the shortest distance north of the airport at which the plane can still be detected by the radar
Tower at R? Round your answer to the nearest tenth of a mile.

A)24.8 miles
B)14.5 miles
C)7)5 miles
D)25.5 miles
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
39
Rewrite the equation in standard form. Find the center and radius of the circle.
x2+y212y+20=0x ^ { 2 } + y ^ { 2 } - 12 y + 20 = 0

A) x2+(y+6)2=16x ^ { 2 } + ( y + 6 ) ^ { 2 } = 16
center (0,6),r=4( 0 , - 6 ) , \mathrm { r } = 4
B) x2+(y6)2=16x ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (0,6),r=4( 0,6 ) , \mathrm { r } = 4
C) (x6)2+y2=16( x - 6 ) ^ { 2 } + y ^ { 2 } = 16
center (6,0),r=4( 6,0 ) , \mathrm { r } = 4
D) x2+(y6)2=16x ^ { 2 } + ( y - 6 ) ^ { 2 } = 16
center (0,6),r=4( 0 , - 6 ) , \mathrm { r } = 4



Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
40
Graph the parabola and label the vertex. Find the y-intercept.
y=12x2+1y = \frac { 1 } { 2 } x ^ { 2 } + 1
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00 A) vertex (0, ), y-intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00
B) vertex (0,),y( 0 , \quad ) , y -intercept (0,)( 0 , \quad )
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00
C) vertex (0,1)( 0 , - 1 ) , y-intercept (0,1)( 0 , - 1 )
 Graph the parabola and label the vertex. Find the y-intercept.  y = \frac { 1 } { 2 } x ^ { 2 } + 1    A) vertex (0, ), y-intercept  ( 0 , \quad )    B) vertex  ( 0 , \quad ) , y -intercept  ( 0 , \quad )    C) vertex  ( 0 , - 1 ) , y-intercept  ( 0 , - 1 )    D) vertex  ( 0 , - 1 ) ,  y -intercept  ( 0 , - 1 )  1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00
D) vertex (0,1)( 0 , - 1 ) , yy -intercept (0,1)( 0 , - 1 )
1ecb33f_bda8_cb3c_a9b7_9b5b3a1737fa_TB6914_00
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
41
Rewrite the equation in standard form. Determine whether the parabola is horizontal or vertical, the direction it opens,
and the vertex.
y=x214x+39y = x ^ { 2 } - 14 x + 39

A) y=(x+7)2+10y = ( x + 7 ) ^ { 2 } + 10
vertical, opens upward, vertex (7,10)( - 7,10 )
B) y=(x+10)2+7y = ( x + 10 ) ^ { 2 } + 7
vertical, opens upward, vertex (10,7)( - 10,7 )
C) y=(x10)27y = ( x - 10 ) ^ { 2 } - 7
vertical, opens upward, vertex (10,7)( 10 , - 7 )
D) y=(x7)210y = ( x - 7 ) ^ { 2 } - 10
vertical, opens upward, vertex (7,10)( 7 , - 10 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
42
Rewrite the equation in standard form. Determine whether the parabola is horizontal or vertical, the direction it opens,
and the vertex.
y=3x2+72x441y = - 3 x ^ { 2 } + 72 x - 441

A) y=(x+12)29y = ( x + 12 ) ^ { 2 } - 9
vertical, opens downward, vertex (12,9)( - 12 , - 9 )
B) y=(x12)29y = ( x - 12 ) ^ { 2 } - 9
vertical, opens upward, vertex (12,9)( 12 , - 9 )
C) y=(x+12)29y = ( x + 12 ) ^ { 2 } - 9
vertical, opens upward, vertex (12,9)( - 12 , - 9 )
D) y=(x12)29y = ( x - 12 ) ^ { 2 } - 9
vertical, opens downward, vertex (12,9)( 12 , - 9 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
43
Graph the ellipse. Label the intercepts.
x294+y2254=1\frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)

A) (32,0),(32,0),(0,52),(0,52)\left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)
B) (23,0),(23,0),(0,25),(0,25)\left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)
C) (25,0),(25,0),(0,23),(0,23)\left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)
D) (0,32),(0,32),(52,0),(52,0)\left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { \frac { 9 } { 4 } } + \frac { y ^ { 2 } } { \frac { 25 } { 4 } } = 1   </strong> A)  \left( - \frac { 3 } { 2 } , 0 \right) , \left( \frac { 3 } { 2 } , 0 \right) , \left( 0 , - \frac { 5 } { 2 } \right) , \left( 0 , \frac { 5 } { 2 } \right)    B)  \left( - \frac { 2 } { 3 } , 0 \right) , \left( \frac { 2 } { 3 } , 0 \right) , \left( 0 , - \frac { 2 } { 5 } \right) , \left( 0 , \frac { 2 } { 5 } \right)    C)  \left( - \frac { 2 } { 5 } , 0 \right) , \left( \frac { 2 } { 5 } , 0 \right) , \left( 0 , - \frac { 2 } { 3 } \right) , \left( 0 , \frac { 2 } { 3 } \right)    D)  \left( 0 , - \frac { 3 } { 2 } \right) , \left( 0 , \frac { 3 } { 2 } \right) , \left( - \frac { 5 } { 2 } , 0 \right) , \left( \frac { 5 } { 2 } , 0 \right)
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
44
Rewrite the equation in standard form. Determine whether the parabola is horizontal or vertical, the direction it opens,
and the vertex.
x=y2+14y+44x = y ^ { 2 } + 14 y + 44

A) x=(y+7)25x = ( y + 7 ) ^ { 2 } - 5
horizontal, opens to the right, vertex (5,7)( - 5 , - 7 )
B) x=(y+7)25x = ( y + 7 ) ^ { 2 } - 5
horizontal, opens to the right, vertex (7,5)( - 7 , - 5 )
C) x=(y+7)25x = ( y + 7 ) ^ { 2 } - 5
horizontal, opens to the left, vertex (5,7)( - 5 , - 7 )
D) x=(y+5)27x = ( y + 5 ) ^ { 2 } - 7
horizontal, opens to the left, vertex (7,5)( - 7 , - 5 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
45
Graph the ellipse and label the center.
(x11)264+y236=1\frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )

A) C(11,0)\mathrm { C } ( 11,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )
B) C(11,0)\mathrm { C } ( - 11,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )
C) C (0,11)( 0 , - 11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )
D) C(0,11)\mathrm { C } ( 0,11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A)  \mathrm { C } ( 11,0 )    B)  \mathrm { C } ( - 11,0 )    C) C  ( 0 , - 11 )    D)  \mathrm { C } ( 0,11 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
46
Graph the ellipse and label the center.
x236+(y10)216=1\frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )

A) C(0,10)C ( 0,10 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )
B) C(10,0)\mathrm { C } ( - 10,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )
C) C(0,10)C ( 0 , - 10 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )
D) C(10,0)\mathrm { C } ( 10,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  C ( 0,10 )    B)  \mathrm { C } ( - 10,0 )    C)  C ( 0 , - 10 )    D)  \mathrm { C } ( 10,0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
47
Graph the ellipse and label the center.
(x2)29+(y9)236=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )

A) C(2,9)C ( - 2 , - 9 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )
B) C(3,6)\mathrm { C } ( - 3 , - 6 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )
C) C(2,9)\mathrm { C } ( 2,9 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )
D) C(3,6)\mathrm { C } ( 3,6 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 9 ) ^ { 2 } } { 36 } = 1   </strong> A)  C ( - 2 , - 9 )    B)  \mathrm { C } ( - 3 , - 6 )    C)  \mathrm { C } ( 2,9 )    D)  \mathrm { C } ( 3,6 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
48
Graph the ellipse. Label the intercepts.
45x2+y2=22545 x ^ { 2 } + y ^ { 2 } = 225
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )

A) (5,0),(5,0),(0,15),(0,15)( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )
В) (5,0),(5,0),(0,15),(0,15)( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )
C) (5,0),(5,0),(0,15),(0,15)( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )
D) (5,0),(5,0),(0,15),(0,15)( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )
 <strong>Graph the ellipse. Label the intercepts.  45 x ^ { 2 } + y ^ { 2 } = 225   </strong> A)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    В)  ( - \sqrt { 5 } , 0 ) , ( \sqrt { 5 } , 0 ) , ( 0 , - 15 ) , ( 0,15 )    C)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - \sqrt { 15 } ) , ( 0 , \sqrt { 15 } )    D)  ( - 5,0 ) , ( 5,0 ) , ( 0 , - 15 ) , ( 0,15 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
49
Graph the parabola and label the vertex. Find the x-intercept.
x=2(y+1)27x = - 2 ( y + 1 ) ^ { 2 } - 7
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )    A) vertex (7,1),x( - 7 , - 1 ) , x -intercept (5,0)( - 5,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )
B) vertex (7,1),x( 7 , - 1 ) , x -intercept (9,0)( - 9,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )
C) vertex (7,1),x( 7 , - 1 ) , x -intercept (9,0)( 9,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )
D) vertex (7,1),x( - 7 , - 1 ) , x -intercept (,0)( , 0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - 2 ( y + 1 ) ^ { 2 } - 7    A) vertex  ( - 7 , - 1 ) , x -intercept  ( - 5,0 )    B) vertex  ( 7 , - 1 ) , x -intercept  ( - 9,0 )    C) vertex  ( 7 , - 1 ) , x -intercept  ( 9,0 )    D) vertex  ( - 7 , - 1 ) , x -intercept  ( , 0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
50
Graph the ellipse. Label the intercepts.
x2+4y2=64x ^ { 2 } + 4 y ^ { 2 } = 64
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )

A) (8,0),(8,0),(0,2),(0,2)( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
B) (4,0),(4,0),(0,8),(0,8)( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
C) (8,0),(8,0),(0,4),(0,4)( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
D) (2,0),(2,0),(0,8),(0,8)( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
 <strong>Graph the ellipse. Label the intercepts.  x ^ { 2 } + 4 y ^ { 2 } = 64   </strong> A)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
51
Graph the ellipse and label the center.
x236+(y+8)2100=1\frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )

A) C(8,0)\mathrm { C } ( - 8,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )
B) C(8,0)\mathrm { C } ( 8,0 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )
C) C(0,8)C ( 0,8 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )
D) C(0,8)C ( 0 , - 8 )
 <strong>Graph the ellipse and label the center.  \frac { x ^ { 2 } } { 36 } + \frac { ( y + 8 ) ^ { 2 } } { 100 } = 1   </strong> A)  \mathrm { C } ( - 8,0 )    B)  \mathrm { C } ( 8,0 )    C)  C ( 0,8 )    D)  C ( 0 , - 8 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
52
Graph the ellipse. Label the intercepts.
16x2+y264=016 x ^ { 2 } + y ^ { 2 } - 64 = 0
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )

A) (2,0),(2,0),(0,4),(0,4)( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
B) (2,0),(2,0),(0,8),(0,8)( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
C) (4,0),(4,0),(0,2),(0,2)( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
D) (8,0),(8,0),(0,2),(0,2)( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  16 x ^ { 2 } + y ^ { 2 } - 64 = 0   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 8 ) , ( 0,8 )    C)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 2 ) , ( 0,2 )    D)  ( - 8,0 ) , ( 8,0 ) , ( 0 , - 2 ) , ( 0,2 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
53
Graph the ellipse. Label the intercepts.
x24+y281=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )

A) (2,0),(2,0),(0,2),(0,2)( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )
B) (9,0),(9,0),(0,9),(0,9)( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )
C) (2,0),(2,0),(0,9),(0,9)( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )
D) (9,0),(9,0),(0,2),(0,2)( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )
 <strong>Graph the ellipse. Label the intercepts.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 81 } = 1   </strong> A)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 2 ) , ( 0,2 )    B)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 9 ) , ( 0,9 )    C)  ( - 2,0 ) , ( 2,0 ) , ( 0 , - 9 ) , ( 0,9 )    D)  ( - 9,0 ) , ( 9,0 ) , ( 0 , - 2 ) , ( 0,2 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
54
Solve.
Find an equation of the form y=ax2y = a x ^ { 2 } that describes the outline of a satellite dish such that the bottom of the dish passes through (0,0)( 0,0 ) , the diameter of the dish is 20 inches, and the depth of the dish is 7 inches

A) y=7400x2y = \frac { 7 } { 400 } x ^ { 2 }
B) y=720x2y = \frac { 7 } { 20 } x ^ { 2 }
C) y=7100x2y = \frac { 7 } { 100 } x ^ { 2 }
D) y=710x2y = \frac { 7 } { 10 } x ^ { 2 }
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
55
Graph the ellipse. Label the intercepts.
9x2+16y2=1449 x ^ { 2 } + 16 y ^ { 2 } = 144
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )

A) (3,0),(3,0),(0,4),(0,4)( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
B) (4,0),(4,0),(0,3),(0,3)( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
C) (3,0),(3,0),(0,4),(0,4)( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
D) (4,0),(4,0),(0,3),(0,3)( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
 <strong>Graph the ellipse. Label the intercepts.  9 x ^ { 2 } + 16 y ^ { 2 } = 144   </strong> A)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    B)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )    C)  ( - 3,0 ) , ( 3,0 ) , ( 0 , - 4 ) , ( 0,4 )    D)  ( - 4,0 ) , ( 4,0 ) , ( 0 , - 3 ) , ( 0,3 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
56
Determine the center of the ellipse.
(x+5)29+(y5)225=1\frac { ( \mathrm { x } + 5 ) ^ { 2 } } { 9 } + \frac { ( \mathrm { y } - 5 ) ^ { 2 } } { 25 } = 1

A) (-5,-5)
B)(,5)
C) (,-5)
D) (-5,5)
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
57
Solve.
The effective yield from a grove of miniature pear trees is described by the equation E=x(800x)\mathrm { E } = x ( 800 - x ) , where xx is the number of pear trees per acre. What is the maximum effective yield? How many pear trees per acre should be planted to achieve the maximum yield?

A) Maximum yield =160,000= 160,000
number of trees per acre planted =800= 800
B) Maximum yield =160,000= 160,000
number of trees per acre planted =400= 400
C) Maximum yield =160,000= 160,000
number of trees per acre planted =200= 200
D) Maximum yield =40,000= 40,000
number of trees per acre planted =200= 200
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
58
Graph the parabola and label the vertex. Find the x-intercept.
x=(y5)2+8x = ( y - 5 ) ^ { 2 } + 8
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )    A) vertex (8,5),x( 8,5 ) , x -intercept (33,0)( 33,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )
B) vertex (8,5),x( - 8 , - 5 ) , x -intercept (17,0)( 17,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )
C) vertex (8,5),x( 8 , - 5 ) , x -intercept (33,0)( 33,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )
D) vertex (8,5),x( - 8,5 ) , x -intercept (17,0)( 17,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = ( y - 5 ) ^ { 2 } + 8    A) vertex  ( 8,5 ) , x -intercept  ( 33,0 )    B) vertex  ( - 8 , - 5 ) , x -intercept  ( 17,0 )    C) vertex  ( 8 , - 5 ) , x -intercept  ( 33,0 )    D) vertex  ( - 8,5 ) , x -intercept  ( 17,0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
59
Graph the parabola and label the vertex. Find the x-intercept.
x=y2+7x = - y ^ { 2 } + 7
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    A) vertex (,0),x( , 0 ) , x -intercept (,0)( , 0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )
B) vertex (7,0),x( - 7,0 ) , x -intercept (7,0)( - 7,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )
C) vertex (,0),x( , 0 ) , x -intercept (,0)( , 0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )
D) vertex (7,0),x( - 7,0 ) , x -intercept (7,0)( - 7,0 )
 Graph the parabola and label the vertex. Find the x-intercept.  x = - y ^ { 2 } + 7    A) vertex  ( , 0 ) , x -intercept  ( , 0 )    B) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )    C) vertex  ( , 0 ) , x -intercept  ( , 0 )    D) vertex  ( - 7,0 ) , x -intercept  ( - 7,0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
60
Solve.
A specialty watch company's monthly profit equation is
P=2x2+1000x+50,000P = - 2 x ^ { 2 } + 1000 x + 50,000 \text {, }
where xx is the number of watches manufactured. Find the maximum monthly profit and the number of watches must be produced each month to attain the maximum profit.

A) Maximum profit =$50,000= \$ 50,000
number of watches produced =1000= 1000
B) Maximum profit =$175,000= \$ 175,000
number of watches produced =250= 250
C) Maximum profit =$175,000= \$ 175,000
number of watches produced =500= 500
D) Maximum profit =$50,000= \$ 50,000
number of watches produced =0= 0
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
61
Graph the ellipse and label the center.
(x+2)249+(y10)216=1\frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )

A) C(2,10)\mathrm { C } ( - 2 , - 10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )
B) C(2,10)\mathrm { C } ( 2 , - 10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )
C) C(2,10)\mathrm { C } ( 2,10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )
D) C(2,10)\mathrm { C } ( - 2,10 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 2 ) ^ { 2 } } { 49 } + \frac { ( y - 10 ) ^ { 2 } } { 16 } = 1   </strong> A)  \mathrm { C } ( - 2 , - 10 )    B)  \mathrm { C } ( 2 , - 10 )    C)  \mathrm { C } ( 2,10 )    D)  \mathrm { C } ( - 2,10 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
62
Graph the ellipse and label the center.
(x+4)249+(y+11)225=1\frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )

A) C(4,11)\mathrm { C } ( 4 , - 11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )
B) C(4,11)\mathrm { C } ( 4,11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )
C) C(4,11)\mathrm { C } ( - 4,11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )
D) C(4,11)\mathrm { C } ( - 4 , - 11 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 49 } + \frac { ( y + 11 ) ^ { 2 } } { 25 } = 1   </strong> A)  \mathrm { C } ( 4 , - 11 )    B)  \mathrm { C } ( 4,11 )    C)  \mathrm { C } ( - 4,11 )    D)  \mathrm { C } ( - 4 , - 11 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
63
Graph the ellipse and label the center.
(x11)2100+(y+4)24=1\frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )

A) C(11,4)C ( 11 , - 4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )
B) C(11,4)\mathrm { C } ( - 11,4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )
C) C(11,4)\mathrm { C } ( 11,4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )
D) C(11,4)C ( - 11 , - 4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x - 11 ) ^ { 2 } } { 100 } + \frac { ( y + 4 ) ^ { 2 } } { 4 } = 1   </strong> A)  C ( 11 , - 4 )    B)  \mathrm { C } ( - 11,4 )    C)  \mathrm { C } ( 11,4 )    D)  C ( - 11 , - 4 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
64
Graph the ellipse and label the center.
(x+4)236+y29=1\frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )

A) C(0,4)\mathrm { C } ( 0,4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )
B) C(4,0)\mathrm { C } ( - 4,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )
C) C(0,4)\mathrm { C } ( 0 , - 4 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )
D) C(4,0)\mathrm { C } ( 4,0 )
 <strong>Graph the ellipse and label the center.  \frac { ( x + 4 ) ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A)  \mathrm { C } ( 0,4 )    B)  \mathrm { C } ( - 4,0 )    C)  \mathrm { C } ( 0 , - 4 )    D)  \mathrm { C } ( 4,0 )
Unlock Deck
Unlock for access to all 64 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 64 flashcards in this deck.