Deck 5: Exponents and Polynomials

Full screen (f)
exit full mode
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
17x6+7x−117 x ^ { 6 } + 7 x - 1

A) Trinomial, degree 6
B) Binomial, degree 7
C) Trinomial, degree 7
D) Trinomial, degree 8
Use Space or
up arrow
down arrow
to flip the card.
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
19y919 y ^ { 9 }

A) Binomial, degree 19
B) Binomial, degree 9
C) Monomial, degree 19
D) Monomial, degree 9
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
8

A) Monomial, degree 0
B) Monomial, degree 1
C) Monomial, degree 8
D) Binomial, degree 0
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
−16y+3- 16 y + 3

A) Binomial, degree 0
B) Monomial, degree -16
C) Binomial, degree 2
D) Binomial, degree 1
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
−13x2- 13 x ^ { 2 }

A) Binomial, degree -13
B) Binomial, degree 0
C) Monomial, degree 2
D) Monomial, degree -13
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
13y3+9y2+313 y ^ { 3 } + 9 y ^ { 2 } + 3

A) Trinomial, degree 3
B) Trinomial, degree 5
C) Trinomial, degree 6
D) Binomial, degree 3
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
5x4+3x3−7x25 x ^ { 4 } + 3 x ^ { 3 } - 7 x ^ { 2 }

A) Binomial, degree 9
B) Trinomial, degree 9
C) Trinomial, degree 4
D) Binomial, degree 3
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
-14x

A) Monomial, degree 1
B) Monomial, degree 0
C) Monomial, degree -14
D) Binomial, degree 0
Question
Use a vertical format to add the polynomials.
9y5+3y33y5−5y3\begin{array} { r } 9 y ^ { 5 } + 3 y ^ { 3 } \\3 y ^ { 5 } - 5 y ^ { 3 } \\\hline\end{array}

A) 10y810 y ^ { 8 }
B) 12y5−2y312 y ^ { 5 } - 2 y ^ { 3 }
C) 12y10−2y612 y ^ { 10 } - 2 y ^ { 6 }
D) 10y1610 \mathrm { y } ^ { 16 }
Question
Add the polynomials.
(9x3+5x+7)+(8x2+4x+5)\left( 9 x ^ { 3 } + 5 x + 7 \right) + \left( 8 x ^ { 2 } + 4 x + 5 \right)

A) 17x3+9x+1217 x ^ { 3 } + 9 x + 12
B) 17x3+13x2+7x+517 x ^ { 3 } + 13 x ^ { 2 } + 7 x + 5
C) 9x3+13x2+11x+59 x ^ { 3 } + 13 x ^ { 2 } + 11 x + 5
D) 9x3+8x2+9x+129 x ^ { 3 } + 8 x ^ { 2 } + 9 x + 12
Question
Add the polynomials.
(7y5+8y3)+(6y5−4y3)\left( 7 y ^ { 5 } + 8 y ^ { 3 } \right) + \left( 6 y ^ { 5 } - 4 y ^ { 3 } \right)

A) 17y1617 y ^ { 16 }
B) 13y10+4y613 y ^ { 10 } + 4 y ^ { 6 }
C) 17y817 y ^ { 8 }
D) 13y5+4y313 y ^ { 5 } + 4 y ^ { 3 }
Question
Add the polynomials.
(−15x2−14x−14)+(−13x2−12x−14)\left( - \frac { 1 } { 5 } x ^ { 2 } - \frac { 1 } { 4 } x - \frac { 1 } { 4 } \right) + \left( - \frac { 1 } { 3 } x ^ { 2 } - \frac { 1 } { 2 } x - \frac { 1 } { 4 } \right)

A) −815x4−34x2−12- \frac { 8 } { 15 } x ^ { 4 } - \frac { 3 } { 4 } x ^ { 2 } - \frac { 1 } { 2 }
B) −7760x6−12- \frac { 77 } { 60 } x ^ { 6 } - \frac { 1 } { 2 }
C) 23x2+54x+58\frac { 2 } { 3 } x ^ { 2 } + \frac { 5 } { 4 } x + \frac { 5 } { 8 }
D) −815x2−34x−12- \frac { 8 } { 15 } x ^ { 2 } - \frac { 3 } { 4 } x - \frac { 1 } { 2 }
Question
Use a vertical format to add the polynomials.
2y5+9y2+59y5−4y2+8\begin{array} { l } 2 y ^ { 5 } + 9 y ^ { 2 } + 5 \\9 y ^ { 5 } - 4 y ^ { 2 } + 8 \\\hline\end{array}

A) 14y5−2y2+1714 y ^ { 5 } - 2 y ^ { 2 } + 17
B) 11y5+5y2+1311 y ^ { 5 } + 5 y ^ { 2 } + 13
C) 11+5y5+13y211 + 5 y ^ { 5 } + 13 y ^ { 2 }
D) 29y729 y ^ { 7 }
Question
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
−8y6+3- 8 y ^ { 6 } + 3

A) Monomial, degree -8
B) Binomial, degree 0
C) Binomial, degree 7
D) Binomial, degree 6
Question
Use a vertical format to add the polynomials.
9x4+2x36x4+7x3\begin{array} { r } 9 x ^ { 4 } + 2 x ^ { 3 } \\6 x ^ { 4 } + 7 x ^ { 3 } \\\hline\end{array}

A) 15x4+9x315 x ^ { 4 } + 9 x ^ { 3 }
B) 24x724 x ^ { 7 }
C) 15x8+9x615 x ^ { 8 } + 9 x ^ { 6 }
D) 24x1424 \mathrm { x } ^ { 14 }
Question
Add the polynomials.
(2y7−2y5−2y)+(7y7−7y5+5y)\left( 2 y ^ { 7 } - 2 y ^ { 5 } - 2 y \right) + \left( 7 y ^ { 7 } - 7 y ^ { 5 } + 5 y \right)

A) 5y7−5y5+3y5 y ^ { 7 } - 5 y ^ { 5 } + 3 y
B) 3y133 y 13
C) 9y−9y7+3y59 y - 9 y ^ { 7 } + 3 y ^ { 5 }
D) 9y7−9y5+3y9 y ^ { 7 } - 9 y ^ { 5 } + 3 y
Question
Add the polynomials.
(6x2−3x+8)+(3x2−3x−2)\left( 6 x ^ { 2 } - 3 x + 8 \right) + \left( 3 x ^ { 2 } - 3 x - 2 \right)

A) 9x4−6x2+69 x ^ { 4 } - 6 x ^ { 2 } + 6
B) 9x2−3x+69 x ^ { 2 } - 3 x + 6
C) 18x2−3x+618 x ^ { 2 } - 3 x + 6
D) 9x2−6x+69 x ^ { 2 } - 6 x + 6
Question
Use a vertical format to add the polynomials.
5x8+2x7−8x6+69x8+2x7+6x6−9\begin{array} { l } 5 x ^ { 8 } + 2 x ^ { 7 } - 8 x ^ { 6 } + 6 \\9 x ^ { 8 } + 2 x ^ { 7 } + 6 x ^ { 6 } - 9 \\\hline\end{array}

A) 8x8+8x7−4x6+118 x ^ { 8 } + 8 x ^ { 7 } - 4 x ^ { 6 } + 11
B) 16x42−316 x ^ { 42 } - 3
C) 14x8+4x7−2x6−314 x ^ { 8 } + 4 x ^ { 7 } - 2 x ^ { 6 } - 3
D) 14x16+4x14−2x12−314 x ^ { 16 } + 4 x ^ { 14 } - 2 x ^ { 12 } - 3
Question
Add the polynomials.
(5y+3)+(2y+14)( 5 y + 3 ) + ( 2 y + 14 )

A) 7y2+177 y ^ { 2 } + 17
B) 7y+177 y + 17
C) 10y2+4210 y ^ { 2 } + 42
D) 7y−177 y - 17
Question
Add the polynomials.
(5x6+9x5−3)+(7x6+9x5+4)\left( 5 x ^ { 6 } + 9 x ^ { 5 } - 3 \right) + \left( 7 x ^ { 6 } + 9 x ^ { 5 } + 4 \right)

A) 12+18x6+1x512 + 18 x ^ { 6 } + 1 x ^ { 5 }
B) 12x6+18x5+112 x ^ { 6 } + 18 x ^ { 5 } + 1
C) 31x1131 \mathrm { x } ^ { 11 }
D) 4x6+14x5+134 x ^ { 6 } + 14 x ^ { 5 } + 13
Question
Perform the indicated operations.
[(1.1x3+7.9x2+4.2)+(6.2x−2.3)]−(3.7x2−x−9.9)\left[ \left( 1.1 x ^ { 3 } + 7.9 x ^ { 2 } + 4.2 \right) + ( 6.2 x - 2.3 ) \right] - \left( 3.7 x ^ { 2 } - x - 9.9 \right)

A) 1.1x3+4.2x2+6.2x+11.81.1 x ^ { 3 } + 4.2 x ^ { 2 } + 6.2 x + 11.8
B) 12.5x6+11.812.5 x ^ { 6 } + 11.8
C) 1.1x3+11.6x2+5.2x−81.1 x ^ { 3 } + 11.6 x ^ { 2 } + 5.2 x - 8
D) 1.1x3+4.2x2+7.2x+11.81.1 x ^ { 3 } + 4.2 x ^ { 2 } + 7.2 x + 11.8
Question
Use a vertical format to subtract the polynomials.
0.07y3−0.09y2+0.02y−(0.02y3−0.07y2−y)\begin{array} { r } 0.07 y ^ { 3 } - 0.09 y ^ { 2 } + 0.02 y \\- \left( 0.02 y ^ { 3 } - 0.07 y ^ { 2 } - \quad y \right) \\\hline\end{array}

A) 0.5y3−0.16y2+0.03y0.5 y ^ { 3 } - 0.16 y ^ { 2 } + 0.03 y
B) 0.05y3−0.02y2+1.02y0.05 \mathrm { y } ^ { 3 } - 0.02 \mathrm { y } ^ { 2 } + 1.02 \mathrm { y }
C) 0.5y3−0.02y2+0.01y0.5 y ^ { 3 } - 0.02 y ^ { 2 } + 0.01 y
D) 0.05y3−0.16y2−0.98y0.05 y ^ { 3 } - 0.16 y ^ { 2 } - 0.98 y
Question
Use a vertical format to subtract the polynomials.
4x4−4x3+7x2−(−x3−9x2+x−14)\begin{array} { l } 4 x ^ { 4 } - 4 x ^ { 3 } + 7 x ^ { 2 } \\- \left( \quad - x ^ { 3 } - 9 x ^ { 2 } + x - 14 \right) \\\hline\end{array}

A) 4x4−3x3−2x2+x−144 x ^ { 4 } - 3 x ^ { 3 } - 2 x ^ { 2 } + x - 14
B) 4x4−3x3+16x2−x+144 x ^ { 4 } - 3 x ^ { 3 } + 16 x ^ { 2 } - x + 14
C) 4x4−5x3+16x2+x−144 x ^ { 4 } - 5 x ^ { 3 } + 16 x ^ { 2 } + x - 14
D) 4x4−5x3−2x2−x+144 x ^ { 4 } - 5 x ^ { 3 } - 2 x ^ { 2 } - x + 14
Question
Subtract the polynomials.
(y6−y2)−(y4−y)\left( y ^ { 6 } - y ^ { 2 } \right) - \left( y ^ { 4 } - y \right)

A) y6−y4−y2+yy ^ { 6 } - y ^ { 4 } - y ^ { 2 } + y
B) y6−y2+y4+yy ^ { 6 } - y ^ { 2 } + y ^ { 4 } + y
C) y6−y4−y2−yy ^ { 6 } - y ^ { 4 } - y ^ { 2 } - y
D) y6−y4+y2−yy ^ { 6 } - y ^ { 4 } + y ^ { 2 } - y
Question
Use a vertical format to add the polynomials.
−7x3+7x−65x2+8x−5\begin{array} { r r } - 7 x ^ { 3 } & + 7 x - 6 \\5 x ^ { 2 } & + 8 x - 5 \\\hline\end{array}

A) −7x3+12x2+2x−5- 7 x ^ { 3 } + 12 x ^ { 2 } + 2 x - 5
B) −7x3+5x2+15x−11- 7 x ^ { 3 } + 5 x ^ { 2 } + 15 x - 11
C) −2x3+15x−11- 2 x ^ { 3 } + 15 x - 11
D) −2x3+12x2−6x−5- 2 x ^ { 3 } + 12 x ^ { 2 } - 6 x - 5
Question
Use a vertical format to add the polynomials.
3x7+6x6−5x2x7+3x6−4x\begin{array} { l } 3 x ^ { 7 } + 6 x ^ { 6 } - 5 x \\2 x ^ { 7 } + 3 x ^ { 6 } - 4 x \\\hline\end{array}

A) 5x7+9x6−9x5 x ^ { 7 } + 9 x ^ { 6 } - 9 x
B) 5×145 \times ^ { 14 }
C) −3x7+6x6+2x- 3 x ^ { 7 } + 6 x ^ { 6 } + 2 x
D) 5x+9x7−9x65 x + 9 x ^ { 7 } - 9 x ^ { 6 }
Question
Subtract the polynomials.
(7x2+3x4−6−2x3)−(−8+8x3+8x4+3x2)\left( 7 x ^ { 2 } + 3 x ^ { 4 } - 6 - 2 x ^ { 3 } \right) - \left( - 8 + 8 x ^ { 3 } + 8 x ^ { 4 } + 3 x ^ { 2 } \right)

A) −5x4+6x3+10x2−14- 5 x ^ { 4 } + 6 x ^ { 3 } + 10 x ^ { 2 } - 14
B) 11x4+6x3+10x2+211 x ^ { 4 } + 6 x ^ { 3 } + 10 x ^ { 2 } + 2
C) −5x4−10x3+4x2+2- 5 x ^ { 4 } - 10 x ^ { 3 } + 4 x ^ { 2 } + 2
D) 11x4+6x3+10x2−1411 x ^ { 4 } + 6 x ^ { 3 } + 10 x ^ { 2 } - 14
Question
Use a vertical format to subtract the polynomials.

- 12x3+6x2−(16x3−2x2)\begin{array} { r } 12 x ^ { 3 } + 6 x ^ { 2 } \\- \left( 16 x ^ { 3 } - 2 x ^ { 2 } \right) \\\hline\end{array}

A) 3y7−18y6−93 y ^ { 7 } - 18 y ^ { 6 } - 9
B) 3y7−6y6−153 y ^ { 7 } - 6 y ^ { 6 } - 15
C) 3y7−18y6−153 y ^ { 7 } - 18 y ^ { 6 } - 15
D) 3y7−6y6−93 y ^ { 7 } - 6 y ^ { 6 } - 9
Question
Subtract the polynomials.
(18y4−15y3)−(−8y4−19y3)\left( 18 y ^ { 4 } - 15 y ^ { 3 } \right) - \left( - 8 y ^ { 4 } - 19 y ^ { 3 } \right)

A) 26y4−34y326 y ^ { 4 } - 34 y ^ { 3 }
B) 30y730 y ^ { 7 }
C) 10y4−34y310 y ^ { 4 } - 34 y ^ { 3 }
D) 26y4+4y326 y ^ { 4 } + 4 y ^ { 3 }
Question
Use a vertical format to add the polynomials.
−15x2+23x+25−35x2+34x−13\begin{array} { l } - \frac { 1 } { 5 } x ^ { 2 } + \frac { 2 } { 3 } x + \frac { 2 } { 5 } \\- \frac { 3 } { 5 } x ^ { 2 } + \frac { 3 } { 4 } x - \frac { 1 } { 3 } \\\hline\end{array}

A) −45x2+1712x+115- \frac { 4 } { 5 } x ^ { 2 } + \frac { 17 } { 12 } x + \frac { 1 } { 15 }
B) −45x4+1712x2+115- \frac { 4 } { 5 } x ^ { 4 } + \frac { 17 } { 12 } x ^ { 2 } + \frac { 1 } { 15 }
C) 65x2+5x−43\frac { 6 } { 5 } x ^ { 2 } + 5 x - \frac { 4 } { 3 }
D) 3760x6+115\frac { 37 } { 60 } x ^ { 6 } + \frac { 1 } { 15 }
Question
Perform the indicated operations.
[(3x9+2)−(−12x7+9x3)]−[(7x9−7x5+9x)+(11x3−9x−10)]\left[ \left( 3 x ^ { 9 } + 2 \right) - \left( - 12 x ^ { 7 } + 9 x ^ { 3 } \right) \right] - \left[ \left( 7 x ^ { 9 } - 7 x ^ { 5 } + 9 x \right) + \left( 11 x ^ { 3 } - 9 x - 10 \right) \right]

A) 4x9+12x7+7x5−20x3+124 x ^ { 9 } + 12 x ^ { 7 } + 7 x ^ { 5 } - 20 x ^ { 3 } + 12
B) −4x9+12x7−7x5−20x3+12- 4 x ^ { 9 } + 12 x ^ { 7 } - 7 x ^ { 5 } - 20 x ^ { 3 } + 12
C) −4x9+12x7+7x5−20x3+12- 4 x ^ { 9 } + 12 x ^ { 7 } + 7 x ^ { 5 } - 20 x ^ { 3 } + 12
D) 4x9+12x7−7x5−20x3+124 x ^ { 9 } + 12 x ^ { 7 } - 7 x ^ { 5 } - 20 x ^ { 3 } + 12
Question
Use a vertical format to add the polynomials.

- 1.5x3+7.7x2+4.1−3.4x−2.7−3.5x2+x+9.7\begin{array} { r r } 1.5 x ^ { 3 } + 7.7 x ^ { 2 } + & 4.1 \\&- 3.4 x - 2.7 \\- 3.5 x ^ { 2 } + & x + 9.7 \\\hline\end{array}

A) 1.5x3+11.2x2+5.4x−8.31.5 x ^ { 3 } + 11.2 x ^ { 2 } + 5.4 x - 8.3
B) 13.1x6+11.113.1 x ^ { 6 } + 11.1
C) 1.5x3+4.2x2+6.4x+11.11.5 \mathrm { x } ^ { 3 } + 4.2 \mathrm { x } ^ { 2 } + 6.4 \mathrm { x } + 11.1
D) 1.5x3+4.2x2+7.4x+11.11.5 \mathrm { x } ^ { 3 } + 4.2 \mathrm { x } ^ { 2 } + 7.4 \mathrm { x } + 11.1
Question
Subtract the polynomials.
(4x6−15x5−19)−(8x5+2x6+2)\left( 4 x ^ { 6 } - 15 x ^ { 5 } - 19 \right) - \left( 8 x ^ { 5 } + 2 x ^ { 6 } + 2 \right)

A) 2x6−23x5−172 x ^ { 6 } - 23 x ^ { 5 } - 17
B) 2x6−13x5−172 x ^ { 6 } - 13 x ^ { 5 } - 17
C) −42x11- 42 x ^ { 11 }
D) 2x6−23x5−212 x ^ { 6 } - 23 x ^ { 5 } - 21
Question
Use a vertical format to subtract the polynomials.

- 12x3+6x2−(16x3−2x2)\begin{array} { r } 12 x ^ { 3 } + 6 x ^ { 2 } \\- \left( 16 x ^ { 3 } - 2 x ^ { 2 } \right) \\\hline\end{array}

A) −4x3+8x2- 4 x ^ { 3 } + 8 x ^ { 2 } \end{tabular}
B) 28x3+4x228 x ^ { 3 } + 4 x ^ { 2 }
C) −4x3+4x2- 4 x ^ { 3 } + 4 x ^ { 2 }
D) 28x3+8x228 x ^ { 3 } + 8 x ^ { 2 }
Question
Use a vertical format to subtract the polynomials.

- 9y6+5y4+3y−(2y6−18y4+9y)\begin{array} { r } 9 y ^ { 6 } + 5 y ^ { 4 } + 3 y \\- \left( 2 y ^ { 6 } - 18 y ^ { 4 } + 9 y \right) \\\hline\end{array}

A) 7y6+7y4−6y7 y ^ { 6 } + 7 y ^ { 4 } - 6 y
B) 7y6+7y4+12y7 y ^ { 6 } + 7 y ^ { 4 } + 12 y
C) 7y6+23y4−6y7 y ^ { 6 } + 23 y ^ { 4 } - 6 y
D) 7y6+23y4+12y7 y ^ { 6 } + 23 y ^ { 4 } + 12 y
Question
Subtract the polynomials.
(8x6−8x4+12)−(4x6+13x4−8)\left( 8 x ^ { 6 } - 8 x ^ { 4 } + 12 \right) - \left( 4 x ^ { 6 } + 13 x ^ { 4 } - 8 \right)

A) 4x6−21x4+204 x ^ { 6 } - 21 x ^ { 4 } + 20
B) 4x6−4x4+44 x ^ { 6 } - 4 x ^ { 4 } + 4
C) 3x103 x ^ { 10 }
D) 4x6−21x4+44 x ^ { 6 } - 21 x ^ { 4 } + 4
Question
Perform the indicated operations.
The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have
Completed x years of education. M=−23x3+1170x2−13,808x+72,566W=8x3−56x2+511x+14,763\begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763\end{array} Find a mathematical model for M - W and use it to calculate the difference in the median annual income between
Men and women with 10 years of education. Does the model underestimate or overestimate the actual
Difference?  <strong>Perform the indicated operations. The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have Completed x years of education.  \begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\ W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763 \end{array}  Find a mathematical model for M - W and use it to calculate the difference in the median annual income between Men and women with 10 years of education. Does the model underestimate or overestimate the actual Difference?  </strong> A) $16,433; overestimates B) $4987; underestimates C) $6213; underestimates D) $9653; overestimates <div style=padding-top: 35px>

A) $16,433; overestimates
B) $4987; underestimates
C) $6213; underestimates
D) $9653; overestimates
Question
Subtract the polynomials.
(4x−7)−(20x+19)( 4 x - 7 ) - ( 20 x + 19 )

A) −16x+12- 16 x + 12
B) 24x+1224 x + 12
C) −42x2- 42 x ^ { 2 }
D) −16x−26- 16 x - 26
Question
Perform the indicated operations.
Subtract -6 - 2x7 + 5x8 - 9x6 + 9x from the sum of -4x6 + 9x + 9 and 9x8 + 4x7.

A) 4x8 + 6x7 + 5x6 + 15
B) 14x8 + 2x7 - 13x6 + 15
C) 14x8 + 2x7 - 13x6 + 3
D) 4x8 + 2x7 - 13x6 + 3
Question
Use a vertical format to subtract the polynomials.
5x6+3x5+2x4−6−(2x6−7x5+4x4−5)\begin{array} { r } 5 x ^ { 6 } + 3 x ^ { 5 } + 2 x ^ { 4 } - 6 \\- \left( 2 x ^ { 6 } - 7 x ^ { 5 } + 4 x ^ { 4 } - 5 \right) \\\hline\end{array}

A) 3x6−4x5+6x4−113 x ^ { 6 } - 4 x ^ { 5 } + 6 x ^ { 4 } - 11
B) 7x6−4x5+6x4−117 x ^ { 6 } - 4 x ^ { 5 } + 6 x ^ { 4 } - 11
C) 7x6−4x5+6x4−17 x ^ { 6 } - 4 x ^ { 5 } + 6 x ^ { 4 } - 1
D) 3x6+10x5−2x4−13 x ^ { 6 } + 10 x ^ { 5 } - 2 x ^ { 4 } - 1
Question
Multiply the monomials.
(6x7)(4x2)\left( 6 x ^ { 7 } \right) \left( 4 x ^ { 2 } \right)

A) 24x1424 x ^ { 14 }
B) −24x14- 24 x ^ { 14 }
C) −24x9- 24 x ^ { 9 }
D) 24x924 x ^ { 9 }
Question
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.

- y=4−x2y = 4 - x ^ { 2 }
x4−x2−3−2−10123\begin{array} { r | l } x & 4 - x ^ { 2 } \\\hline - 3 & \\- 2 & \\- 1 & \\0 & \\1 & \\2 & \\3 &\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>


A) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Simplify the expression using the products-to-powers rule.
(−4x)3( - 4 x ) ^ { 3 }

A) −64x- 64 x
B) −12x3- 12 x ^ { 3 }
C) −64x3- 64 x ^ { 3 }
D) −12x- 12 \mathrm { x }
Question
Multiply the expression using the product rule.
48â‹…464 ^ { 8 } \cdot 4 ^ { 6 }

A) 164816 ^ { 48 }
B) 4484 ^ { 48 }
C) 161416 ^ { 14 }
D) 4144 ^ { 14 }
Question
Multiply the expression using the product rule.
y10â‹…y2y ^ { 10 } \cdot y ^ { 2 }

A) y20y ^ { 20 }
B) 2y202 y ^ { 20 }
C) y12\mathrm { y } ^ { 12 }
D) 2y122 \mathrm { y } ^ { 12 }
Question
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.
A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and
For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the
Graphs of the polynomial models. Identify the median annual income for a man with 10 years of education as a
Point on the appropriate graph. M=224x2−1266x+20,106 W=287x2−4030x+33,761\begin{array} { l } \mathrm { M } = 224 \mathrm { x } ^ { 2 } - 1266 \mathrm { x } + 20,106 \\\mathrm {~W} = 287 \mathrm { x } ^ { 2 } - 4030 \mathrm { x } + 33,761\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3. A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the Graphs of the polynomial models. Identify the median annual income for a man with 10 years of education as a Point on the appropriate graph.  \begin{array} { l } \mathrm { M } = 224 \mathrm { x } ^ { 2 } - 1266 \mathrm { x } + 20,106 \\ \mathrm {~W} = 287 \mathrm { x } ^ { 2 } - 4030 \mathrm { x } + 33,761 \end{array}   </strong> A) (10, 41,240) B) (10, 58,431) C) (10, 29,846) D) (10, 22,161) <div style=padding-top: 35px>

A) (10, 41,240)
B) (10, 58,431)
C) (10, 29,846)
D) (10, 22,161)
Question
Multiply the expression using the product rule.
xâ‹…x2x \cdot x ^ { 2 }

A) x3x ^ { 3 }
B) 2x22 x ^ { 2 }
C) 2x32 x ^ { 3 }
D) x2x ^ { 2 }
Question
Simplify the expression using the products-to-powers rule.
(−3x2)4\left( - 3 x ^ { 2 } \right) ^ { 4 }

A) −3x8- 3 x ^ { 8 }
B) −81x8- 81 x ^ { 8 }
C) 81x681 x ^ { 6 }
D) 81x881 x ^ { 8 }
Question
Simplify the expression using the power rule.
[(−75)]10\left[ \left( - 7 ^ { 5 } \right) \right] ^ { 10 }

A) (−7)50( - 7 ) ^ { 50 }
B) (−49)50( - 49 ) ^ { 50 }
C) (−49)5( - 49 ) ^ { 5 }
D) (−7)15( - 7 ) ^{ 15 }
Question
Perform the indicated operations.
The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have
Completed x years of education. M=−23x3+1170x2−13,808x+72,566W=8x3−56x2+511x+14,763\begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763\end{array} Find a mathematical model for M - W and use it to calculate the difference in the median annual income between
Men and women with 8 years of education. Does the model underestimate or overestimate the actual
Difference?  <strong>Perform the indicated operations. The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have Completed x years of education.  \begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\ W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763 \end{array}  Find a mathematical model for M - W and use it to calculate the difference in the median annual income between Men and women with 8 years of education. Does the model underestimate or overestimate the actual Difference?  </strong> A) $4533; underestimates B) $1325; underestimates C) $14,019; overestimates D) $5843; overestimates <div style=padding-top: 35px>

A) $4533; underestimates
B) $1325; underestimates
C) $14,019; overestimates
D) $5843; overestimates
Question
Multiply the monomials.
(−6x5)(5x3)\left( - 6 x ^ { 5 } \right) \left( 5 x ^ { 3 } \right)

A) −30x15- 30 x ^ { 15 }
B) 30x1530 x ^ { 15 }
C) 30x830 x ^ { 8 }
D) −30x8- 30 x ^ { 8 }
Question
Multiply the expression using the product rule.
x7â‹…x7â‹…x8x ^ { 7 } \cdot x ^ { 7 } \cdot x ^ { 8 }

A) x57x ^ { 57 }
B) x15x ^ { 15 }
C) x14x ^ { 14 }
D) x22x ^ { 22 }
Question
Simplify the expression using the products-to-powers rule.
(2x7)3\left( 2 x ^ { 7 } \right) ^ { 3 }

A) 2x212 x ^ { 21 }
B) 2x102 x ^ { 10 }
C) 8x218 x ^ { 21 }
D) 8x108 \mathrm { x } ^ { 10 }
Question
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.

- y=x2−3y = x ^ { 2 } - 3
xx2−3−3−2−10123\begin{array} { r | r } x & x ^ { 2 } - 3 \\\hline - 3 & \\- 2 & \\- 1 & \\0 & \\1 & \\2 & \\3 &\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>


A) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.
A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and
For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the
Graphs of the polynomial models. Identify the median annual income for a woman with 13 years of education as
A point on the appropriate graph. M=224x2−1266x+20,106W=287x2−4030x+33,761\begin{array} { l } M = 224 x ^ { 2 } - 1266 x + 20,106 \\W = 287 x ^ { 2 } - 4030 x + 33,761\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3. A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the Graphs of the polynomial models. Identify the median annual income for a woman with 13 years of education as A point on the appropriate graph.  \begin{array} { l } M = 224 x ^ { 2 } - 1266 x + 20,106 \\ W = 287 x ^ { 2 } - 4030 x + 33,761 \end{array}   </strong> A) (13, 41,504) B) (13, 56,696) C) (13, 29,874) D) (13, 78,234) <div style=padding-top: 35px>

A) (13, 41,504)
B) (13, 56,696)
C) (13, 29,874)
D) (13, 78,234)
Question
Simplify the expression using the power rule.
(y2)8\left( y ^ { 2 } \right) ^ { 8 }

A) y10\mathrm { y } ^ { 10 }
B) 8y168 \mathrm { y } ^ { 16 }
C) y16\mathrm { y } ^ { 16 }
D) 8y28 \mathrm { y } ^ { 2 }
Question
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.

- y=x2+4y = x ^ { 2 } + 4
xx2+4−3−2−10123\begin{array} { r | r } x & x ^ { 2 } + 4 \\\hline - 3 & \\- 2 & \\- 1 & \\0 & \\1 & \\2 & \\3 &\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Simplify the expression using the products-to-powers rule.
(−3x6)3\left( - 3 x ^ { 6 } \right) ^ { 3 }

A) −3x18- 3 x ^ { 18 }
B) −27x18- 27 x ^ { 18 }
C) 27x1827 x ^ { 18 }
D) −27x9- 27 x ^ { 9 }
Question
Simplify the expression using the products-to-powers rule.
(3x)2( 3 x ) ^ { 2 }

A) 9x29 x ^ { 2 }
B) 9x9 x
C) 6x6 x
D) 6x26 x ^ { 2 }
Question
Simplify the expression using the power rule.
(56)5\left( 5 ^ { 6 } \right) ^ { 5 }

A) 5305 ^ { 30 }
B) 25625 ^ { 6 }
C) 253025 ^ { 30 }
D) 5115 ^ { 11 }
Question
Find the product.
(9x−1)(x2−5x+1)( 9 x - 1 ) \left( x ^ { 2 } - 5 x + 1 \right)

A) 9x3−44x2+4x−19 x ^ { 3 } - 44 x ^ { 2 } + 4 x - 1
B) 9x3+46x2−14x+19 x ^ { 3 } + 46 x ^ { 2 } - 14 x + 1
C) 9x3−46x2+14x−19 x ^ { 3 } - 46 x ^ { 2 } + 14 x - 1
D) 9x3−45x2+9x+19 x ^ { 3 } - 45 x ^ { 2 } + 9 x + 1
Question
Find the product.
(x+9)(x+11)( x + 9 ) ( x + 11 )

A) x2+99x+20x ^ { 2 } + 99 x + 20
B) x2+20x+19x ^ { 2 } + 20 x + 19
C) x2+20x+99x ^ { 2 } + 20 x + 99
D) x2+19x+99x ^ { 2 } + 19 x + 99
Question
Find the product.
(2x−10)(x+9)( 2 x - 10 ) ( x + 9 )

A) x2−90x+8x ^ { 2 } - 90 x + 8
B) 2x2+7x−902 x ^ { 2 } + 7 x - 90
C) x2+8x+7x ^ { 2 } + 8 x + 7
D) 2x2+8x−902 x ^ { 2 } + 8 x - 90
Question
Solve the problem.
Find the area of a triangle with a base of 7x inches and a height of (10x + 4) inches.

A) (17x2+11x)\left( 17 x ^ { 2 } + 11 x \right) sq. in.
B) (35x2+14x)\left( 35 x ^ { 2 } + 14 x \right) sq. in.
C) (70x2+28x)\left( 70 x ^ { 2 } + 28 x \right) sq. in.
D) (35x+14)( 35 x + 14 ) sq. in.
Question
Multiply the monomials.
(14x8)(15x2)\left( \frac { 1 } { 4 } x ^ { 8 } \right) \left( \frac { 1 } { 5 } x ^ { 2 } \right)

A) −120x16- \frac { 1 } { 20 } x ^ { 16 }
B) −120x10- \frac { 1 } { 20 } x ^ { 10 }
C) 120x10\frac { 1 } { 20 } x ^ { 10 }
D) 120x16\frac { 1 } { 20 } x ^ { 16 }
Question
Find the product.
11x7(5x7−10x5−11)11 x ^ { 7 } \left( 5 x ^ { 7 } - 10 x ^ { 5 } - 11 \right)

A) 55x14−110x12−121x755 x ^ { 14 } - 110 x ^ { 12 } - 121 x ^ { 7 }
B) 55x14−110x1255 \mathrm { x } ^ { 14 } - 110 \mathrm { x } ^ { 12 }
C) 55x7−110x5−12155 x ^ { 7 } - 110 x ^ { 5 } - 121
D) 55x14−10x5−1155 x ^ { 14 } - 10 x ^ { 5 } - 11
Question
Find the product.
6x5(2x+8)6 x ^ { 5 } ( 2 x + 8 )

A) 12x6+48x512 x ^ { 6 } + 48 x ^ { 5 }
B) 12x+4812 x + 48
C) 60x560 x ^ { 5 }
D) 12x6+812 x ^ { 6 } + 8
Question
Multiply the monomials.
(−15x7)(14x9)\left( - \frac { 1 } { 5 } x ^ { 7 } \right) \left( \frac { 1 } { 4 } x ^ { 9 } \right)

A) 120x16\frac { 1 } { 20 } x ^ { 16 }
B) −120x16- \frac { 1 } { 20 } x ^ { 16 }
C) - \frac { 1 } { 20 } x ^ { 63 }\)
D) 120x63\frac { 1 } { 20 } x ^ { 63 }
Question
Multiply the monomials.
(4x5)(−9x4)\left( 4 x ^ { 5 } \right) \left( - 9 x ^ { 4 } \right)

A) 36x936 x ^ { 9 }
B) −36x9- 36 x ^ { 9 }
C) 36x2036 x ^ { 20}
D) −36x20- 36 x ^ { 20 }
Question
Multiply the monomials.
(−8x9)(−3x2)\left( - 8 x ^ { 9 } \right) \left( - 3 x ^ { 2 } \right)

A) −24x18- 24 x ^ { 18 }
B) 24x1124 \mathrm { x } ^ { 11 }
C) −24x11- 24 x ^ { 11}
D) 24x1824 \mathrm { x } ^ { 18 }
Question
Find the product.
−6x4(8x5+7)- 6 x ^ { 4 } \left( 8 x ^ { 5 } + 7 \right)

A) −48x5−42- 48 x ^ { 5 } - 42
B) −48x9−42x4- 48 x ^ { 9 } - 42 x ^ { 4 }
C) −48x9+7- 48 x ^ { 9 } + 7
D) −90x4- 90 x ^ { 4 }
Question
Multiply the monomials.
(−18x9)(−19x8)\left( - \frac { 1 } { 8 } x ^ { 9 } \right) \left( - \frac { 1 } { 9 } x ^ { 8 } \right)

A) 172x72\frac { 1 } { 72 } x ^ { 72 }
B) 172x17\frac { 1 } { 72 } x ^ { 17 }
C) =−172x72=- \frac { 1 } { 72 } x ^ { 72 }
D) =−172x17=- \frac { 1 } { 72 } x ^ { 17 }
Question
Find the product.
(x2−3x+1)(5x)\left( x ^ { 2 } - 3 x + 1 \right) ( 5 x )

A) 5x3−15x2+5x5 x ^ { 3 } - 15 x ^ { 2 } + 5 x
B) 5x3−14x2+2x5 x ^ { 3 } - 14 x ^ { 2 } + 2 x
C) 5x3−15x2−8x5 x ^ { 3 } - 15 x ^ { 2 } - 8 x
D) 5x3+16x2+5x5 x ^ { 3 } + 16 x ^ { 2 } + 5 x
Question
Find the product.
−7x(x−8)- 7 x ( x - 8 )

A) −7x2+56x- 7 x ^ { 2 } + 56 x
B) x2+56xx ^ { 2 } + 56 x
C) −7x2−8x- 7 x ^ { 2 } - 8 x
D) 49x249 \mathrm { x } ^ { 2 }
Question
Find the product.
(x−5)(x2+5x−9)( x - 5 ) \left( x ^ { 2 } + 5 x - 9 \right)

A) x3+16x−45x ^ { 3 } + 16 x - 45
B) x3−34x+45x ^ { 3 } - 34 x + 45
C) x3+10x2+34x−45x ^ { 3 } + 10 x ^ { 2 } + 34 x - 45
D) x3−10x2−34x+45x ^ { 3 } - 10 x ^ { 2 } - 34 x + 45
Question
Find the product.
x(x−5)x ( x - 5 )

A) −4x2- 4 x ^ { 2 }
B) 2x−52 x - 5
C) x2−5x ^ { 2 } - 5
D) x2−5xx ^ { 2 } - 5 x
Question
Multiply the monomials.
(18x3)(−13x8)\left( \frac { 1 } { 8 } x ^ { 3 } \right) \left( - \frac { 1 } { 3 } x ^ { 8 } \right)

A) =124x24= \frac { 1 } { 24 } x ^ { 24 }
B) =124x11= \frac { 1 } { 24 } x ^ { 11 }
C) 124x24\frac { 1 } { 24 } x ^ { 24 }
D) 124x11\frac { 1 } { 24 } x ^ { 11 }
Question
Find the product.
5x6(12x7+8x5)5 x ^ { 6 } \left( 12 x ^ { 7 } + 8 x ^ { 5 } \right)

A) 100x6100 x ^ { 6 }
B) 60x13+8x560 x ^ { 13 } + 8 x ^ { 5 }
C) 60x13+40x1160 x ^ { 13 } + 40 x ^ { 11 }
D) 100x13+100x11100 x ^ { 13 } + 100 x ^ { 11 }
Question
Find the product.
(14x−9)(13x+8)\left( \frac { 1 } { 4 } x - 9 \right) \left( \frac { 1 } { 3 } x + 8 \right)

A) 112x2−12x−12\frac { 1 } { 12 } x ^ { 2 } - 12 x - 12
B) 112x2−36x−72\frac { 1 } { 12 } x ^ { 2 } - 36 x - 72
C) −112x2−1x−72- \frac { 1 } { 12 } x ^ { 2 } - 1 x - 72
D) 112x2−1x−72\frac { 1 } { 12 } x ^ { 2 } - 1 x - 72
Question
Solve the problem.
Write an expression for the area of the larger rectangle below in two different ways.  <strong>Solve the problem. Write an expression for the area of the larger rectangle below in two different ways.  </strong> A)  y ( 3 y + 8 ) ; 3 y ^ { 2 } + 8 y  B)  8 ( 3 y + y ) ;  32 y  C)  3 y ( y + 8 ) ;  3 y ^ { 2 } + 24 y  D)  2 y ( 6 y + 16 ) ; 12 y ^ { 2 } + 32 y  <div style=padding-top: 35px>

A) y(3y+8);3y2+8yy ( 3 y + 8 ) ; 3 y ^ { 2 } + 8 y
B) 8(3y+y)8 ( 3 y + y ) ; 32y32 y
C) 3y(y+8)3 y ( y + 8 ) ; 3y2+24y3 y ^ { 2 } + 24 y
D) 2y(6y+16);12y2+32y2 y ( 6 y + 16 ) ; 12 y ^ { 2 } + 32 y
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/122
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Exponents and Polynomials
1
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
17x6+7x−117 x ^ { 6 } + 7 x - 1

A) Trinomial, degree 6
B) Binomial, degree 7
C) Trinomial, degree 7
D) Trinomial, degree 8
Trinomial, degree 6
2
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
19y919 y ^ { 9 }

A) Binomial, degree 19
B) Binomial, degree 9
C) Monomial, degree 19
D) Monomial, degree 9
Monomial, degree 9
3
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
8

A) Monomial, degree 0
B) Monomial, degree 1
C) Monomial, degree 8
D) Binomial, degree 0
Monomial, degree 0
4
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
−16y+3- 16 y + 3

A) Binomial, degree 0
B) Monomial, degree -16
C) Binomial, degree 2
D) Binomial, degree 1
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
5
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
−13x2- 13 x ^ { 2 }

A) Binomial, degree -13
B) Binomial, degree 0
C) Monomial, degree 2
D) Monomial, degree -13
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
6
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
13y3+9y2+313 y ^ { 3 } + 9 y ^ { 2 } + 3

A) Trinomial, degree 3
B) Trinomial, degree 5
C) Trinomial, degree 6
D) Binomial, degree 3
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
7
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
5x4+3x3−7x25 x ^ { 4 } + 3 x ^ { 3 } - 7 x ^ { 2 }

A) Binomial, degree 9
B) Trinomial, degree 9
C) Trinomial, degree 4
D) Binomial, degree 3
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
8
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
-14x

A) Monomial, degree 1
B) Monomial, degree 0
C) Monomial, degree -14
D) Binomial, degree 0
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
9
Use a vertical format to add the polynomials.
9y5+3y33y5−5y3\begin{array} { r } 9 y ^ { 5 } + 3 y ^ { 3 } \\3 y ^ { 5 } - 5 y ^ { 3 } \\\hline\end{array}

A) 10y810 y ^ { 8 }
B) 12y5−2y312 y ^ { 5 } - 2 y ^ { 3 }
C) 12y10−2y612 y ^ { 10 } - 2 y ^ { 6 }
D) 10y1610 \mathrm { y } ^ { 16 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
10
Add the polynomials.
(9x3+5x+7)+(8x2+4x+5)\left( 9 x ^ { 3 } + 5 x + 7 \right) + \left( 8 x ^ { 2 } + 4 x + 5 \right)

A) 17x3+9x+1217 x ^ { 3 } + 9 x + 12
B) 17x3+13x2+7x+517 x ^ { 3 } + 13 x ^ { 2 } + 7 x + 5
C) 9x3+13x2+11x+59 x ^ { 3 } + 13 x ^ { 2 } + 11 x + 5
D) 9x3+8x2+9x+129 x ^ { 3 } + 8 x ^ { 2 } + 9 x + 12
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
11
Add the polynomials.
(7y5+8y3)+(6y5−4y3)\left( 7 y ^ { 5 } + 8 y ^ { 3 } \right) + \left( 6 y ^ { 5 } - 4 y ^ { 3 } \right)

A) 17y1617 y ^ { 16 }
B) 13y10+4y613 y ^ { 10 } + 4 y ^ { 6 }
C) 17y817 y ^ { 8 }
D) 13y5+4y313 y ^ { 5 } + 4 y ^ { 3 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
12
Add the polynomials.
(−15x2−14x−14)+(−13x2−12x−14)\left( - \frac { 1 } { 5 } x ^ { 2 } - \frac { 1 } { 4 } x - \frac { 1 } { 4 } \right) + \left( - \frac { 1 } { 3 } x ^ { 2 } - \frac { 1 } { 2 } x - \frac { 1 } { 4 } \right)

A) −815x4−34x2−12- \frac { 8 } { 15 } x ^ { 4 } - \frac { 3 } { 4 } x ^ { 2 } - \frac { 1 } { 2 }
B) −7760x6−12- \frac { 77 } { 60 } x ^ { 6 } - \frac { 1 } { 2 }
C) 23x2+54x+58\frac { 2 } { 3 } x ^ { 2 } + \frac { 5 } { 4 } x + \frac { 5 } { 8 }
D) −815x2−34x−12- \frac { 8 } { 15 } x ^ { 2 } - \frac { 3 } { 4 } x - \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
13
Use a vertical format to add the polynomials.
2y5+9y2+59y5−4y2+8\begin{array} { l } 2 y ^ { 5 } + 9 y ^ { 2 } + 5 \\9 y ^ { 5 } - 4 y ^ { 2 } + 8 \\\hline\end{array}

A) 14y5−2y2+1714 y ^ { 5 } - 2 y ^ { 2 } + 17
B) 11y5+5y2+1311 y ^ { 5 } + 5 y ^ { 2 } + 13
C) 11+5y5+13y211 + 5 y ^ { 5 } + 13 y ^ { 2 }
D) 29y729 y ^ { 7 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
14
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
−8y6+3- 8 y ^ { 6 } + 3

A) Monomial, degree -8
B) Binomial, degree 0
C) Binomial, degree 7
D) Binomial, degree 6
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
15
Use a vertical format to add the polynomials.
9x4+2x36x4+7x3\begin{array} { r } 9 x ^ { 4 } + 2 x ^ { 3 } \\6 x ^ { 4 } + 7 x ^ { 3 } \\\hline\end{array}

A) 15x4+9x315 x ^ { 4 } + 9 x ^ { 3 }
B) 24x724 x ^ { 7 }
C) 15x8+9x615 x ^ { 8 } + 9 x ^ { 6 }
D) 24x1424 \mathrm { x } ^ { 14 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
16
Add the polynomials.
(2y7−2y5−2y)+(7y7−7y5+5y)\left( 2 y ^ { 7 } - 2 y ^ { 5 } - 2 y \right) + \left( 7 y ^ { 7 } - 7 y ^ { 5 } + 5 y \right)

A) 5y7−5y5+3y5 y ^ { 7 } - 5 y ^ { 5 } + 3 y
B) 3y133 y 13
C) 9y−9y7+3y59 y - 9 y ^ { 7 } + 3 y ^ { 5 }
D) 9y7−9y5+3y9 y ^ { 7 } - 9 y ^ { 5 } + 3 y
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
17
Add the polynomials.
(6x2−3x+8)+(3x2−3x−2)\left( 6 x ^ { 2 } - 3 x + 8 \right) + \left( 3 x ^ { 2 } - 3 x - 2 \right)

A) 9x4−6x2+69 x ^ { 4 } - 6 x ^ { 2 } + 6
B) 9x2−3x+69 x ^ { 2 } - 3 x + 6
C) 18x2−3x+618 x ^ { 2 } - 3 x + 6
D) 9x2−6x+69 x ^ { 2 } - 6 x + 6
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
18
Use a vertical format to add the polynomials.
5x8+2x7−8x6+69x8+2x7+6x6−9\begin{array} { l } 5 x ^ { 8 } + 2 x ^ { 7 } - 8 x ^ { 6 } + 6 \\9 x ^ { 8 } + 2 x ^ { 7 } + 6 x ^ { 6 } - 9 \\\hline\end{array}

A) 8x8+8x7−4x6+118 x ^ { 8 } + 8 x ^ { 7 } - 4 x ^ { 6 } + 11
B) 16x42−316 x ^ { 42 } - 3
C) 14x8+4x7−2x6−314 x ^ { 8 } + 4 x ^ { 7 } - 2 x ^ { 6 } - 3
D) 14x16+4x14−2x12−314 x ^ { 16 } + 4 x ^ { 14 } - 2 x ^ { 12 } - 3
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
19
Add the polynomials.
(5y+3)+(2y+14)( 5 y + 3 ) + ( 2 y + 14 )

A) 7y2+177 y ^ { 2 } + 17
B) 7y+177 y + 17
C) 10y2+4210 y ^ { 2 } + 42
D) 7y−177 y - 17
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
20
Add the polynomials.
(5x6+9x5−3)+(7x6+9x5+4)\left( 5 x ^ { 6 } + 9 x ^ { 5 } - 3 \right) + \left( 7 x ^ { 6 } + 9 x ^ { 5 } + 4 \right)

A) 12+18x6+1x512 + 18 x ^ { 6 } + 1 x ^ { 5 }
B) 12x6+18x5+112 x ^ { 6 } + 18 x ^ { 5 } + 1
C) 31x1131 \mathrm { x } ^ { 11 }
D) 4x6+14x5+134 x ^ { 6 } + 14 x ^ { 5 } + 13
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
21
Perform the indicated operations.
[(1.1x3+7.9x2+4.2)+(6.2x−2.3)]−(3.7x2−x−9.9)\left[ \left( 1.1 x ^ { 3 } + 7.9 x ^ { 2 } + 4.2 \right) + ( 6.2 x - 2.3 ) \right] - \left( 3.7 x ^ { 2 } - x - 9.9 \right)

A) 1.1x3+4.2x2+6.2x+11.81.1 x ^ { 3 } + 4.2 x ^ { 2 } + 6.2 x + 11.8
B) 12.5x6+11.812.5 x ^ { 6 } + 11.8
C) 1.1x3+11.6x2+5.2x−81.1 x ^ { 3 } + 11.6 x ^ { 2 } + 5.2 x - 8
D) 1.1x3+4.2x2+7.2x+11.81.1 x ^ { 3 } + 4.2 x ^ { 2 } + 7.2 x + 11.8
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
22
Use a vertical format to subtract the polynomials.
0.07y3−0.09y2+0.02y−(0.02y3−0.07y2−y)\begin{array} { r } 0.07 y ^ { 3 } - 0.09 y ^ { 2 } + 0.02 y \\- \left( 0.02 y ^ { 3 } - 0.07 y ^ { 2 } - \quad y \right) \\\hline\end{array}

A) 0.5y3−0.16y2+0.03y0.5 y ^ { 3 } - 0.16 y ^ { 2 } + 0.03 y
B) 0.05y3−0.02y2+1.02y0.05 \mathrm { y } ^ { 3 } - 0.02 \mathrm { y } ^ { 2 } + 1.02 \mathrm { y }
C) 0.5y3−0.02y2+0.01y0.5 y ^ { 3 } - 0.02 y ^ { 2 } + 0.01 y
D) 0.05y3−0.16y2−0.98y0.05 y ^ { 3 } - 0.16 y ^ { 2 } - 0.98 y
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
23
Use a vertical format to subtract the polynomials.
4x4−4x3+7x2−(−x3−9x2+x−14)\begin{array} { l } 4 x ^ { 4 } - 4 x ^ { 3 } + 7 x ^ { 2 } \\- \left( \quad - x ^ { 3 } - 9 x ^ { 2 } + x - 14 \right) \\\hline\end{array}

A) 4x4−3x3−2x2+x−144 x ^ { 4 } - 3 x ^ { 3 } - 2 x ^ { 2 } + x - 14
B) 4x4−3x3+16x2−x+144 x ^ { 4 } - 3 x ^ { 3 } + 16 x ^ { 2 } - x + 14
C) 4x4−5x3+16x2+x−144 x ^ { 4 } - 5 x ^ { 3 } + 16 x ^ { 2 } + x - 14
D) 4x4−5x3−2x2−x+144 x ^ { 4 } - 5 x ^ { 3 } - 2 x ^ { 2 } - x + 14
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
24
Subtract the polynomials.
(y6−y2)−(y4−y)\left( y ^ { 6 } - y ^ { 2 } \right) - \left( y ^ { 4 } - y \right)

A) y6−y4−y2+yy ^ { 6 } - y ^ { 4 } - y ^ { 2 } + y
B) y6−y2+y4+yy ^ { 6 } - y ^ { 2 } + y ^ { 4 } + y
C) y6−y4−y2−yy ^ { 6 } - y ^ { 4 } - y ^ { 2 } - y
D) y6−y4+y2−yy ^ { 6 } - y ^ { 4 } + y ^ { 2 } - y
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
25
Use a vertical format to add the polynomials.
−7x3+7x−65x2+8x−5\begin{array} { r r } - 7 x ^ { 3 } & + 7 x - 6 \\5 x ^ { 2 } & + 8 x - 5 \\\hline\end{array}

A) −7x3+12x2+2x−5- 7 x ^ { 3 } + 12 x ^ { 2 } + 2 x - 5
B) −7x3+5x2+15x−11- 7 x ^ { 3 } + 5 x ^ { 2 } + 15 x - 11
C) −2x3+15x−11- 2 x ^ { 3 } + 15 x - 11
D) −2x3+12x2−6x−5- 2 x ^ { 3 } + 12 x ^ { 2 } - 6 x - 5
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
26
Use a vertical format to add the polynomials.
3x7+6x6−5x2x7+3x6−4x\begin{array} { l } 3 x ^ { 7 } + 6 x ^ { 6 } - 5 x \\2 x ^ { 7 } + 3 x ^ { 6 } - 4 x \\\hline\end{array}

A) 5x7+9x6−9x5 x ^ { 7 } + 9 x ^ { 6 } - 9 x
B) 5×145 \times ^ { 14 }
C) −3x7+6x6+2x- 3 x ^ { 7 } + 6 x ^ { 6 } + 2 x
D) 5x+9x7−9x65 x + 9 x ^ { 7 } - 9 x ^ { 6 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
27
Subtract the polynomials.
(7x2+3x4−6−2x3)−(−8+8x3+8x4+3x2)\left( 7 x ^ { 2 } + 3 x ^ { 4 } - 6 - 2 x ^ { 3 } \right) - \left( - 8 + 8 x ^ { 3 } + 8 x ^ { 4 } + 3 x ^ { 2 } \right)

A) −5x4+6x3+10x2−14- 5 x ^ { 4 } + 6 x ^ { 3 } + 10 x ^ { 2 } - 14
B) 11x4+6x3+10x2+211 x ^ { 4 } + 6 x ^ { 3 } + 10 x ^ { 2 } + 2
C) −5x4−10x3+4x2+2- 5 x ^ { 4 } - 10 x ^ { 3 } + 4 x ^ { 2 } + 2
D) 11x4+6x3+10x2−1411 x ^ { 4 } + 6 x ^ { 3 } + 10 x ^ { 2 } - 14
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
28
Use a vertical format to subtract the polynomials.

- 12x3+6x2−(16x3−2x2)\begin{array} { r } 12 x ^ { 3 } + 6 x ^ { 2 } \\- \left( 16 x ^ { 3 } - 2 x ^ { 2 } \right) \\\hline\end{array}

A) 3y7−18y6−93 y ^ { 7 } - 18 y ^ { 6 } - 9
B) 3y7−6y6−153 y ^ { 7 } - 6 y ^ { 6 } - 15
C) 3y7−18y6−153 y ^ { 7 } - 18 y ^ { 6 } - 15
D) 3y7−6y6−93 y ^ { 7 } - 6 y ^ { 6 } - 9
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
29
Subtract the polynomials.
(18y4−15y3)−(−8y4−19y3)\left( 18 y ^ { 4 } - 15 y ^ { 3 } \right) - \left( - 8 y ^ { 4 } - 19 y ^ { 3 } \right)

A) 26y4−34y326 y ^ { 4 } - 34 y ^ { 3 }
B) 30y730 y ^ { 7 }
C) 10y4−34y310 y ^ { 4 } - 34 y ^ { 3 }
D) 26y4+4y326 y ^ { 4 } + 4 y ^ { 3 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
30
Use a vertical format to add the polynomials.
−15x2+23x+25−35x2+34x−13\begin{array} { l } - \frac { 1 } { 5 } x ^ { 2 } + \frac { 2 } { 3 } x + \frac { 2 } { 5 } \\- \frac { 3 } { 5 } x ^ { 2 } + \frac { 3 } { 4 } x - \frac { 1 } { 3 } \\\hline\end{array}

A) −45x2+1712x+115- \frac { 4 } { 5 } x ^ { 2 } + \frac { 17 } { 12 } x + \frac { 1 } { 15 }
B) −45x4+1712x2+115- \frac { 4 } { 5 } x ^ { 4 } + \frac { 17 } { 12 } x ^ { 2 } + \frac { 1 } { 15 }
C) 65x2+5x−43\frac { 6 } { 5 } x ^ { 2 } + 5 x - \frac { 4 } { 3 }
D) 3760x6+115\frac { 37 } { 60 } x ^ { 6 } + \frac { 1 } { 15 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
31
Perform the indicated operations.
[(3x9+2)−(−12x7+9x3)]−[(7x9−7x5+9x)+(11x3−9x−10)]\left[ \left( 3 x ^ { 9 } + 2 \right) - \left( - 12 x ^ { 7 } + 9 x ^ { 3 } \right) \right] - \left[ \left( 7 x ^ { 9 } - 7 x ^ { 5 } + 9 x \right) + \left( 11 x ^ { 3 } - 9 x - 10 \right) \right]

A) 4x9+12x7+7x5−20x3+124 x ^ { 9 } + 12 x ^ { 7 } + 7 x ^ { 5 } - 20 x ^ { 3 } + 12
B) −4x9+12x7−7x5−20x3+12- 4 x ^ { 9 } + 12 x ^ { 7 } - 7 x ^ { 5 } - 20 x ^ { 3 } + 12
C) −4x9+12x7+7x5−20x3+12- 4 x ^ { 9 } + 12 x ^ { 7 } + 7 x ^ { 5 } - 20 x ^ { 3 } + 12
D) 4x9+12x7−7x5−20x3+124 x ^ { 9 } + 12 x ^ { 7 } - 7 x ^ { 5 } - 20 x ^ { 3 } + 12
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
32
Use a vertical format to add the polynomials.

- 1.5x3+7.7x2+4.1−3.4x−2.7−3.5x2+x+9.7\begin{array} { r r } 1.5 x ^ { 3 } + 7.7 x ^ { 2 } + & 4.1 \\&- 3.4 x - 2.7 \\- 3.5 x ^ { 2 } + & x + 9.7 \\\hline\end{array}

A) 1.5x3+11.2x2+5.4x−8.31.5 x ^ { 3 } + 11.2 x ^ { 2 } + 5.4 x - 8.3
B) 13.1x6+11.113.1 x ^ { 6 } + 11.1
C) 1.5x3+4.2x2+6.4x+11.11.5 \mathrm { x } ^ { 3 } + 4.2 \mathrm { x } ^ { 2 } + 6.4 \mathrm { x } + 11.1
D) 1.5x3+4.2x2+7.4x+11.11.5 \mathrm { x } ^ { 3 } + 4.2 \mathrm { x } ^ { 2 } + 7.4 \mathrm { x } + 11.1
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
33
Subtract the polynomials.
(4x6−15x5−19)−(8x5+2x6+2)\left( 4 x ^ { 6 } - 15 x ^ { 5 } - 19 \right) - \left( 8 x ^ { 5 } + 2 x ^ { 6 } + 2 \right)

A) 2x6−23x5−172 x ^ { 6 } - 23 x ^ { 5 } - 17
B) 2x6−13x5−172 x ^ { 6 } - 13 x ^ { 5 } - 17
C) −42x11- 42 x ^ { 11 }
D) 2x6−23x5−212 x ^ { 6 } - 23 x ^ { 5 } - 21
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
34
Use a vertical format to subtract the polynomials.

- 12x3+6x2−(16x3−2x2)\begin{array} { r } 12 x ^ { 3 } + 6 x ^ { 2 } \\- \left( 16 x ^ { 3 } - 2 x ^ { 2 } \right) \\\hline\end{array}

A) −4x3+8x2- 4 x ^ { 3 } + 8 x ^ { 2 } \end{tabular}
B) 28x3+4x228 x ^ { 3 } + 4 x ^ { 2 }
C) −4x3+4x2- 4 x ^ { 3 } + 4 x ^ { 2 }
D) 28x3+8x228 x ^ { 3 } + 8 x ^ { 2 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
35
Use a vertical format to subtract the polynomials.

- 9y6+5y4+3y−(2y6−18y4+9y)\begin{array} { r } 9 y ^ { 6 } + 5 y ^ { 4 } + 3 y \\- \left( 2 y ^ { 6 } - 18 y ^ { 4 } + 9 y \right) \\\hline\end{array}

A) 7y6+7y4−6y7 y ^ { 6 } + 7 y ^ { 4 } - 6 y
B) 7y6+7y4+12y7 y ^ { 6 } + 7 y ^ { 4 } + 12 y
C) 7y6+23y4−6y7 y ^ { 6 } + 23 y ^ { 4 } - 6 y
D) 7y6+23y4+12y7 y ^ { 6 } + 23 y ^ { 4 } + 12 y
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
36
Subtract the polynomials.
(8x6−8x4+12)−(4x6+13x4−8)\left( 8 x ^ { 6 } - 8 x ^ { 4 } + 12 \right) - \left( 4 x ^ { 6 } + 13 x ^ { 4 } - 8 \right)

A) 4x6−21x4+204 x ^ { 6 } - 21 x ^ { 4 } + 20
B) 4x6−4x4+44 x ^ { 6 } - 4 x ^ { 4 } + 4
C) 3x103 x ^ { 10 }
D) 4x6−21x4+44 x ^ { 6 } - 21 x ^ { 4 } + 4
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
37
Perform the indicated operations.
The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have
Completed x years of education. M=−23x3+1170x2−13,808x+72,566W=8x3−56x2+511x+14,763\begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763\end{array} Find a mathematical model for M - W and use it to calculate the difference in the median annual income between
Men and women with 10 years of education. Does the model underestimate or overestimate the actual
Difference?  <strong>Perform the indicated operations. The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have Completed x years of education.  \begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\ W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763 \end{array}  Find a mathematical model for M - W and use it to calculate the difference in the median annual income between Men and women with 10 years of education. Does the model underestimate or overestimate the actual Difference?  </strong> A) $16,433; overestimates B) $4987; underestimates C) $6213; underestimates D) $9653; overestimates

A) $16,433; overestimates
B) $4987; underestimates
C) $6213; underestimates
D) $9653; overestimates
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
38
Subtract the polynomials.
(4x−7)−(20x+19)( 4 x - 7 ) - ( 20 x + 19 )

A) −16x+12- 16 x + 12
B) 24x+1224 x + 12
C) −42x2- 42 x ^ { 2 }
D) −16x−26- 16 x - 26
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
39
Perform the indicated operations.
Subtract -6 - 2x7 + 5x8 - 9x6 + 9x from the sum of -4x6 + 9x + 9 and 9x8 + 4x7.

A) 4x8 + 6x7 + 5x6 + 15
B) 14x8 + 2x7 - 13x6 + 15
C) 14x8 + 2x7 - 13x6 + 3
D) 4x8 + 2x7 - 13x6 + 3
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
40
Use a vertical format to subtract the polynomials.
5x6+3x5+2x4−6−(2x6−7x5+4x4−5)\begin{array} { r } 5 x ^ { 6 } + 3 x ^ { 5 } + 2 x ^ { 4 } - 6 \\- \left( 2 x ^ { 6 } - 7 x ^ { 5 } + 4 x ^ { 4 } - 5 \right) \\\hline\end{array}

A) 3x6−4x5+6x4−113 x ^ { 6 } - 4 x ^ { 5 } + 6 x ^ { 4 } - 11
B) 7x6−4x5+6x4−117 x ^ { 6 } - 4 x ^ { 5 } + 6 x ^ { 4 } - 11
C) 7x6−4x5+6x4−17 x ^ { 6 } - 4 x ^ { 5 } + 6 x ^ { 4 } - 1
D) 3x6+10x5−2x4−13 x ^ { 6 } + 10 x ^ { 5 } - 2 x ^ { 4 } - 1
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
41
Multiply the monomials.
(6x7)(4x2)\left( 6 x ^ { 7 } \right) \left( 4 x ^ { 2 } \right)

A) 24x1424 x ^ { 14 }
B) −24x14- 24 x ^ { 14 }
C) −24x9- 24 x ^ { 9 }
D) 24x924 x ^ { 9 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
42
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.

- y=4−x2y = 4 - x ^ { 2 }
x4−x2−3−2−10123\begin{array} { r | l } x & 4 - x ^ { 2 } \\\hline - 3 & \\- 2 & \\- 1 & \\0 & \\1 & \\2 & \\3 &\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)


A) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
B) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
C) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
D) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = 4 - x ^ { 2 }   \begin{array} { r | l } x & 4 - x ^ { 2 } \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
43
Simplify the expression using the products-to-powers rule.
(−4x)3( - 4 x ) ^ { 3 }

A) −64x- 64 x
B) −12x3- 12 x ^ { 3 }
C) −64x3- 64 x ^ { 3 }
D) −12x- 12 \mathrm { x }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
44
Multiply the expression using the product rule.
48â‹…464 ^ { 8 } \cdot 4 ^ { 6 }

A) 164816 ^ { 48 }
B) 4484 ^ { 48 }
C) 161416 ^ { 14 }
D) 4144 ^ { 14 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
45
Multiply the expression using the product rule.
y10â‹…y2y ^ { 10 } \cdot y ^ { 2 }

A) y20y ^ { 20 }
B) 2y202 y ^ { 20 }
C) y12\mathrm { y } ^ { 12 }
D) 2y122 \mathrm { y } ^ { 12 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
46
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.
A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and
For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the
Graphs of the polynomial models. Identify the median annual income for a man with 10 years of education as a
Point on the appropriate graph. M=224x2−1266x+20,106 W=287x2−4030x+33,761\begin{array} { l } \mathrm { M } = 224 \mathrm { x } ^ { 2 } - 1266 \mathrm { x } + 20,106 \\\mathrm {~W} = 287 \mathrm { x } ^ { 2 } - 4030 \mathrm { x } + 33,761\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3. A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the Graphs of the polynomial models. Identify the median annual income for a man with 10 years of education as a Point on the appropriate graph.  \begin{array} { l } \mathrm { M } = 224 \mathrm { x } ^ { 2 } - 1266 \mathrm { x } + 20,106 \\ \mathrm {~W} = 287 \mathrm { x } ^ { 2 } - 4030 \mathrm { x } + 33,761 \end{array}   </strong> A) (10, 41,240) B) (10, 58,431) C) (10, 29,846) D) (10, 22,161)

A) (10, 41,240)
B) (10, 58,431)
C) (10, 29,846)
D) (10, 22,161)
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
47
Multiply the expression using the product rule.
xâ‹…x2x \cdot x ^ { 2 }

A) x3x ^ { 3 }
B) 2x22 x ^ { 2 }
C) 2x32 x ^ { 3 }
D) x2x ^ { 2 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
48
Simplify the expression using the products-to-powers rule.
(−3x2)4\left( - 3 x ^ { 2 } \right) ^ { 4 }

A) −3x8- 3 x ^ { 8 }
B) −81x8- 81 x ^ { 8 }
C) 81x681 x ^ { 6 }
D) 81x881 x ^ { 8 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
49
Simplify the expression using the power rule.
[(−75)]10\left[ \left( - 7 ^ { 5 } \right) \right] ^ { 10 }

A) (−7)50( - 7 ) ^ { 50 }
B) (−49)50( - 49 ) ^ { 50 }
C) (−49)5( - 49 ) ^ { 5 }
D) (−7)15( - 7 ) ^{ 15 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
50
Perform the indicated operations.
The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have
Completed x years of education. M=−23x3+1170x2−13,808x+72,566W=8x3−56x2+511x+14,763\begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763\end{array} Find a mathematical model for M - W and use it to calculate the difference in the median annual income between
Men and women with 8 years of education. Does the model underestimate or overestimate the actual
Difference?  <strong>Perform the indicated operations. The bar graph shows the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and for women, W, who have Completed x years of education.  \begin{array} { l } M = - 23 x ^ { 3 } + 1170 x ^ { 2 } - 13,808 x + 72,566 \\ W = 8 x ^ { 3 } - 56 x ^ { 2 } + 511 x + 14,763 \end{array}  Find a mathematical model for M - W and use it to calculate the difference in the median annual income between Men and women with 8 years of education. Does the model underestimate or overestimate the actual Difference?  </strong> A) $4533; underestimates B) $1325; underestimates C) $14,019; overestimates D) $5843; overestimates

A) $4533; underestimates
B) $1325; underestimates
C) $14,019; overestimates
D) $5843; overestimates
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
51
Multiply the monomials.
(−6x5)(5x3)\left( - 6 x ^ { 5 } \right) \left( 5 x ^ { 3 } \right)

A) −30x15- 30 x ^ { 15 }
B) 30x1530 x ^ { 15 }
C) 30x830 x ^ { 8 }
D) −30x8- 30 x ^ { 8 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
52
Multiply the expression using the product rule.
x7â‹…x7â‹…x8x ^ { 7 } \cdot x ^ { 7 } \cdot x ^ { 8 }

A) x57x ^ { 57 }
B) x15x ^ { 15 }
C) x14x ^ { 14 }
D) x22x ^ { 22 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
53
Simplify the expression using the products-to-powers rule.
(2x7)3\left( 2 x ^ { 7 } \right) ^ { 3 }

A) 2x212 x ^ { 21 }
B) 2x102 x ^ { 10 }
C) 8x218 x ^ { 21 }
D) 8x108 \mathrm { x } ^ { 10 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
54
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.

- y=x2−3y = x ^ { 2 } - 3
xx2−3−3−2−10123\begin{array} { r | r } x & x ^ { 2 } - 3 \\\hline - 3 & \\- 2 & \\- 1 & \\0 & \\1 & \\2 & \\3 &\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)


A) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
B) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
C) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
D) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } - 3   \begin{array} { r | r } x & x ^ { 2 } - 3 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}     </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
55
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.
A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and
For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the
Graphs of the polynomial models. Identify the median annual income for a woman with 13 years of education as
A point on the appropriate graph. M=224x2−1266x+20,106W=287x2−4030x+33,761\begin{array} { l } M = 224 x ^ { 2 } - 1266 x + 20,106 \\W = 287 x ^ { 2 } - 4030 x + 33,761\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3. A census was taken to determine the median annual income for residents of a selected region of the United States, by level of education. The given polynomial models describe the median annual income for men, M, and For women, W, who have completed x years of education. Shown in a rectangular coordinate system are the Graphs of the polynomial models. Identify the median annual income for a woman with 13 years of education as A point on the appropriate graph.  \begin{array} { l } M = 224 x ^ { 2 } - 1266 x + 20,106 \\ W = 287 x ^ { 2 } - 4030 x + 33,761 \end{array}   </strong> A) (13, 41,504) B) (13, 56,696) C) (13, 29,874) D) (13, 78,234)

A) (13, 41,504)
B) (13, 56,696)
C) (13, 29,874)
D) (13, 78,234)
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
56
Simplify the expression using the power rule.
(y2)8\left( y ^ { 2 } \right) ^ { 8 }

A) y10\mathrm { y } ^ { 10 }
B) 8y168 \mathrm { y } ^ { 16 }
C) y16\mathrm { y } ^ { 16 }
D) 8y28 \mathrm { y } ^ { 2 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
57
Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3
and ending with 3.

- y=x2+4y = x ^ { 2 } + 4
xx2+4−3−2−10123\begin{array} { r | r } x & x ^ { 2 } + 4 \\\hline - 3 & \\- 2 & \\- 1 & \\0 & \\1 & \\2 & \\3 &\end{array}
 <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)

A) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)
B) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)
C) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)
D) <strong>Graph the equation. Find seven solutions in your table of values for the equation by using integers for x, starting with -3 and ending with 3.  - y = x ^ { 2 } + 4   \begin{array} { r | r } x & x ^ { 2 } + 4 \\ \hline - 3 & \\ - 2 & \\ - 1 & \\ 0 & \\ 1 & \\ 2 & \\ 3 & \end{array}    </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
58
Simplify the expression using the products-to-powers rule.
(−3x6)3\left( - 3 x ^ { 6 } \right) ^ { 3 }

A) −3x18- 3 x ^ { 18 }
B) −27x18- 27 x ^ { 18 }
C) 27x1827 x ^ { 18 }
D) −27x9- 27 x ^ { 9 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
59
Simplify the expression using the products-to-powers rule.
(3x)2( 3 x ) ^ { 2 }

A) 9x29 x ^ { 2 }
B) 9x9 x
C) 6x6 x
D) 6x26 x ^ { 2 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
60
Simplify the expression using the power rule.
(56)5\left( 5 ^ { 6 } \right) ^ { 5 }

A) 5305 ^ { 30 }
B) 25625 ^ { 6 }
C) 253025 ^ { 30 }
D) 5115 ^ { 11 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
61
Find the product.
(9x−1)(x2−5x+1)( 9 x - 1 ) \left( x ^ { 2 } - 5 x + 1 \right)

A) 9x3−44x2+4x−19 x ^ { 3 } - 44 x ^ { 2 } + 4 x - 1
B) 9x3+46x2−14x+19 x ^ { 3 } + 46 x ^ { 2 } - 14 x + 1
C) 9x3−46x2+14x−19 x ^ { 3 } - 46 x ^ { 2 } + 14 x - 1
D) 9x3−45x2+9x+19 x ^ { 3 } - 45 x ^ { 2 } + 9 x + 1
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
62
Find the product.
(x+9)(x+11)( x + 9 ) ( x + 11 )

A) x2+99x+20x ^ { 2 } + 99 x + 20
B) x2+20x+19x ^ { 2 } + 20 x + 19
C) x2+20x+99x ^ { 2 } + 20 x + 99
D) x2+19x+99x ^ { 2 } + 19 x + 99
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
63
Find the product.
(2x−10)(x+9)( 2 x - 10 ) ( x + 9 )

A) x2−90x+8x ^ { 2 } - 90 x + 8
B) 2x2+7x−902 x ^ { 2 } + 7 x - 90
C) x2+8x+7x ^ { 2 } + 8 x + 7
D) 2x2+8x−902 x ^ { 2 } + 8 x - 90
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
64
Solve the problem.
Find the area of a triangle with a base of 7x inches and a height of (10x + 4) inches.

A) (17x2+11x)\left( 17 x ^ { 2 } + 11 x \right) sq. in.
B) (35x2+14x)\left( 35 x ^ { 2 } + 14 x \right) sq. in.
C) (70x2+28x)\left( 70 x ^ { 2 } + 28 x \right) sq. in.
D) (35x+14)( 35 x + 14 ) sq. in.
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
65
Multiply the monomials.
(14x8)(15x2)\left( \frac { 1 } { 4 } x ^ { 8 } \right) \left( \frac { 1 } { 5 } x ^ { 2 } \right)

A) −120x16- \frac { 1 } { 20 } x ^ { 16 }
B) −120x10- \frac { 1 } { 20 } x ^ { 10 }
C) 120x10\frac { 1 } { 20 } x ^ { 10 }
D) 120x16\frac { 1 } { 20 } x ^ { 16 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
66
Find the product.
11x7(5x7−10x5−11)11 x ^ { 7 } \left( 5 x ^ { 7 } - 10 x ^ { 5 } - 11 \right)

A) 55x14−110x12−121x755 x ^ { 14 } - 110 x ^ { 12 } - 121 x ^ { 7 }
B) 55x14−110x1255 \mathrm { x } ^ { 14 } - 110 \mathrm { x } ^ { 12 }
C) 55x7−110x5−12155 x ^ { 7 } - 110 x ^ { 5 } - 121
D) 55x14−10x5−1155 x ^ { 14 } - 10 x ^ { 5 } - 11
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
67
Find the product.
6x5(2x+8)6 x ^ { 5 } ( 2 x + 8 )

A) 12x6+48x512 x ^ { 6 } + 48 x ^ { 5 }
B) 12x+4812 x + 48
C) 60x560 x ^ { 5 }
D) 12x6+812 x ^ { 6 } + 8
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
68
Multiply the monomials.
(−15x7)(14x9)\left( - \frac { 1 } { 5 } x ^ { 7 } \right) \left( \frac { 1 } { 4 } x ^ { 9 } \right)

A) 120x16\frac { 1 } { 20 } x ^ { 16 }
B) −120x16- \frac { 1 } { 20 } x ^ { 16 }
C) - \frac { 1 } { 20 } x ^ { 63 }\)
D) 120x63\frac { 1 } { 20 } x ^ { 63 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
69
Multiply the monomials.
(4x5)(−9x4)\left( 4 x ^ { 5 } \right) \left( - 9 x ^ { 4 } \right)

A) 36x936 x ^ { 9 }
B) −36x9- 36 x ^ { 9 }
C) 36x2036 x ^ { 20}
D) −36x20- 36 x ^ { 20 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
70
Multiply the monomials.
(−8x9)(−3x2)\left( - 8 x ^ { 9 } \right) \left( - 3 x ^ { 2 } \right)

A) −24x18- 24 x ^ { 18 }
B) 24x1124 \mathrm { x } ^ { 11 }
C) −24x11- 24 x ^ { 11}
D) 24x1824 \mathrm { x } ^ { 18 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
71
Find the product.
−6x4(8x5+7)- 6 x ^ { 4 } \left( 8 x ^ { 5 } + 7 \right)

A) −48x5−42- 48 x ^ { 5 } - 42
B) −48x9−42x4- 48 x ^ { 9 } - 42 x ^ { 4 }
C) −48x9+7- 48 x ^ { 9 } + 7
D) −90x4- 90 x ^ { 4 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
72
Multiply the monomials.
(−18x9)(−19x8)\left( - \frac { 1 } { 8 } x ^ { 9 } \right) \left( - \frac { 1 } { 9 } x ^ { 8 } \right)

A) 172x72\frac { 1 } { 72 } x ^ { 72 }
B) 172x17\frac { 1 } { 72 } x ^ { 17 }
C) =−172x72=- \frac { 1 } { 72 } x ^ { 72 }
D) =−172x17=- \frac { 1 } { 72 } x ^ { 17 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
73
Find the product.
(x2−3x+1)(5x)\left( x ^ { 2 } - 3 x + 1 \right) ( 5 x )

A) 5x3−15x2+5x5 x ^ { 3 } - 15 x ^ { 2 } + 5 x
B) 5x3−14x2+2x5 x ^ { 3 } - 14 x ^ { 2 } + 2 x
C) 5x3−15x2−8x5 x ^ { 3 } - 15 x ^ { 2 } - 8 x
D) 5x3+16x2+5x5 x ^ { 3 } + 16 x ^ { 2 } + 5 x
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
74
Find the product.
−7x(x−8)- 7 x ( x - 8 )

A) −7x2+56x- 7 x ^ { 2 } + 56 x
B) x2+56xx ^ { 2 } + 56 x
C) −7x2−8x- 7 x ^ { 2 } - 8 x
D) 49x249 \mathrm { x } ^ { 2 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
75
Find the product.
(x−5)(x2+5x−9)( x - 5 ) \left( x ^ { 2 } + 5 x - 9 \right)

A) x3+16x−45x ^ { 3 } + 16 x - 45
B) x3−34x+45x ^ { 3 } - 34 x + 45
C) x3+10x2+34x−45x ^ { 3 } + 10 x ^ { 2 } + 34 x - 45
D) x3−10x2−34x+45x ^ { 3 } - 10 x ^ { 2 } - 34 x + 45
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
76
Find the product.
x(x−5)x ( x - 5 )

A) −4x2- 4 x ^ { 2 }
B) 2x−52 x - 5
C) x2−5x ^ { 2 } - 5
D) x2−5xx ^ { 2 } - 5 x
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
77
Multiply the monomials.
(18x3)(−13x8)\left( \frac { 1 } { 8 } x ^ { 3 } \right) \left( - \frac { 1 } { 3 } x ^ { 8 } \right)

A) =124x24= \frac { 1 } { 24 } x ^ { 24 }
B) =124x11= \frac { 1 } { 24 } x ^ { 11 }
C) 124x24\frac { 1 } { 24 } x ^ { 24 }
D) 124x11\frac { 1 } { 24 } x ^ { 11 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
78
Find the product.
5x6(12x7+8x5)5 x ^ { 6 } \left( 12 x ^ { 7 } + 8 x ^ { 5 } \right)

A) 100x6100 x ^ { 6 }
B) 60x13+8x560 x ^ { 13 } + 8 x ^ { 5 }
C) 60x13+40x1160 x ^ { 13 } + 40 x ^ { 11 }
D) 100x13+100x11100 x ^ { 13 } + 100 x ^ { 11 }
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
79
Find the product.
(14x−9)(13x+8)\left( \frac { 1 } { 4 } x - 9 \right) \left( \frac { 1 } { 3 } x + 8 \right)

A) 112x2−12x−12\frac { 1 } { 12 } x ^ { 2 } - 12 x - 12
B) 112x2−36x−72\frac { 1 } { 12 } x ^ { 2 } - 36 x - 72
C) −112x2−1x−72- \frac { 1 } { 12 } x ^ { 2 } - 1 x - 72
D) 112x2−1x−72\frac { 1 } { 12 } x ^ { 2 } - 1 x - 72
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
80
Solve the problem.
Write an expression for the area of the larger rectangle below in two different ways.  <strong>Solve the problem. Write an expression for the area of the larger rectangle below in two different ways.  </strong> A)  y ( 3 y + 8 ) ; 3 y ^ { 2 } + 8 y  B)  8 ( 3 y + y ) ;  32 y  C)  3 y ( y + 8 ) ;  3 y ^ { 2 } + 24 y  D)  2 y ( 6 y + 16 ) ; 12 y ^ { 2 } + 32 y

A) y(3y+8);3y2+8yy ( 3 y + 8 ) ; 3 y ^ { 2 } + 8 y
B) 8(3y+y)8 ( 3 y + y ) ; 32y32 y
C) 3y(y+8)3 y ( y + 8 ) ; 3y2+24y3 y ^ { 2 } + 24 y
D) 2y(6y+16);12y2+32y2 y ( 6 y + 16 ) ; 12 y ^ { 2 } + 32 y
Unlock Deck
Unlock for access to all 122 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 122 flashcards in this deck.