Deck 1: Equations and Inequalities

Full screen (f)
exit full mode
Question
Graph the equation.
y=x3+4y=x^{3}+4
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Plot the given point in a rectangular coordinate system
(−6,0)(-6,0)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Plot the given point in a rectangular coordinate system
(2,1)(2,1)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
y=1xy=\frac{1}{x}
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation. <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation. <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation. <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation. <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation. <div style=padding-top: 35px>
Write the English sentence as an equation in two variables. Then graph the equation.
Question
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 10,10,2 ]  by  [ - 10,10,2 ]  B)  [ - 2,2,2 ]  by  [ - 2,2,2 ]  C)  [ - 20,10,2 ]  by  [ - 20,10,2 ]  D)  [ - 10,10,4 ]  by  [ - 10,10,4 ]  <div style=padding-top: 35px>

A) [−10,10,2][ - 10,10,2 ] by [−10,10,2][ - 10,10,2 ]
B) [−2,2,2][ - 2,2,2 ] by [−2,2,2][ - 2,2,2 ]
C) [−20,10,2][ - 20,10,2 ] by [−20,10,2][ - 20,10,2 ]
D) [−10,10,4][ - 10,10,4 ] by [−10,10,4][ - 10,10,4 ]
Question
Graph the equation.
y=−1y=-1
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
y=−15x−5y = - \frac { 1 } { 5 } x - 5
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
y=x+5y=x+5
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
y=x2+2y=x^{2}+2
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Plot the given point in a rectangular coordinate system
(0,−3)(0,-3)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Plot the given point in a rectangular coordinate system
(−52,0)\left( - \frac { 5 } { 2 } , 0 \right)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Plot the given point in a rectangular coordinate system
(−1,−4)(-1,-4)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
y=3x+6y=3 x+6
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
y=−5∣x∣y=-5|x|
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
The yy -value is two decreased by the square of the xx -value.
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2    <div style=padding-top: 35px>

A) y=2−x2y = 2 - x ^ { 2 }
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2    <div style=padding-top: 35px>
B) y=2−xy = 2 - x
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2    <div style=padding-top: 35px>
C) y=x2−2y = x ^ { 2 } - 2
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2    <div style=padding-top: 35px>
D) y=x−2y = x - 2
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2    <div style=padding-top: 35px>
Question
Plot the given point in a rectangular coordinate system
(−6,4)(-6,4)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

Question
Graph the equation.
y=−∣x∣+6y=-|x|+6
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Plot the given point in a rectangular coordinate system
(−4,−72)\left( - 4 , - \frac { 7 } { 2 } \right)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the equation.
The yy -value is three more than five times the xx -value.
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3    <div style=padding-top: 35px>

A) y=5x+3y = 5 x + 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3    <div style=padding-top: 35px>
B) y=−5x+3y = - 5 x + 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3    <div style=padding-top: 35px>
C) y=−5x−3y = - 5 x - 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3    <div style=padding-top: 35px>
D) y=5x−3y = 5 x - 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3    <div style=padding-top: 35px>
Question
Plot the given point in a rectangular coordinate system
(2,−6)(2,-6)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A) x-intercepts:  - 5,5 ; y-intercept:  - 5  B)  x -intercepts:  - 5,5  C)  \mathrm { y } -intercept:  - 5  D) x-intercepts:  - 5,5 ; y-intercept: 0 <div style=padding-top: 35px>

A) x-intercepts: −5,5- 5,5 ; y-intercept: −5- 5
B) xx -intercepts: −5,5- 5,5
C) y\mathrm { y } -intercept: −5- 5
D) x-intercepts: −5,5- 5,5 ; y-intercept: 0
Question
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 4,4,2 ]  by  [ - 80,80,8 ]  B)  [ - 16,16,4 ]  by  [ - 4,4,2 ]  C)  [ - 4,4,2 ]  by  [ - 4,4,2 ]  D)  [ - 20,20,2 ]  by  [ - 20,20,2 ]  <div style=padding-top: 35px>

A) [−4,4,2][ - 4,4,2 ] by [−80,80,8][ - 80,80,8 ]
B) [−16,16,4][ - 16,16,4 ] by [−4,4,2][ - 4,4,2 ]
C) [−4,4,2][ - 4,4,2 ] by [−4,4,2][ - 4,4,2 ]
D) [−20,20,2][ - 20,20,2 ] by [−20,20,2][ - 20,20,2 ]
Question
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 10,30,10 ]  by  [ - 400,500,100 ]  B)  [ - 1,8,1 ]  by  [ - 1,8,1 ]  C)  [ - 1,5,1 ]  by  [ - 4,8,1 ]  D)  [ - 10,5,1 ]  by  [ - 10,5,1 ]  <div style=padding-top: 35px>

A) [−10,30,10][ - 10,30,10 ] by [−400,500,100][ - 400,500,100 ]
B) [−1,8,1][ - 1,8,1 ] by [−1,8,1][ - 1,8,1 ]
C) [−1,5,1][ - 1,5,1 ] by [−4,8,1][ - 4,8,1 ]
D) [−10,5,1][ - 10,5,1 ] by [−10,5,1][ - 10,5,1 ]
Question
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
At which points do the graph of Y1Y _ { 1 } and Y2Y _ { 2 } intersect?

A) (−1,1)( - 1,1 ) and (3,9)( 3,9 )
B) (2,7)( 2,7 ) and (2,4)( 2,4 )
C) (−1,1)( - 1,1 ) and (2,7)( 2,7 )
D) (2,4)( 2,4 ) and (3,9)( 3,9 )
Question
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 1,8,1 ]  by  [ - 4,5,1 ]  B)  [ - 1,8,1 ]  by  [ - 1,8,1 ]  C)  [ - 4,5,1 ]  by  [ - 1,8,1 ]  D)  [ - 10,5,1 ]  by  [ - 10,5,1 ]  <div style=padding-top: 35px>

A) [−1,8,1][ - 1,8,1 ] by [−4,5,1][ - 4,5,1 ]
B) [−1,8,1][ - 1,8,1 ] by [−1,8,1][ - 1,8,1 ]
C) [−4,5,1][ - 4,5,1 ] by [−1,8,1][ - 1,8,1 ]
D) [−10,5,1][ - 10,5,1 ] by [−10,5,1][ - 10,5,1 ]
Question
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercepts:  - 3,3 ; y -intercepts:  - 2,2  B)  x -intercepts:  - 3,3  C)  \mathrm { y } -intercepts:  - 2,2  D)  x -intercepts:  - 2,2 ; y -intercepts:  - 3,3  <div style=padding-top: 35px>

A) xx -intercepts: −3,3;y- 3,3 ; y -intercepts: −2,2- 2,2
B) xx -intercepts: −3,3- 3,3
C) y\mathrm { y } -intercepts: −2,2- 2,2
D) xx -intercepts: −2,2;y- 2,2 ; y -intercepts: −3,3- 3,3
Question
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport. <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    During which hour did the temperature increase the most?</strong> A) 10 a.m. to 11 a.m. B) 1 p.m. to 2 p.m. C) 12 p.m. to 1 p.m. D) 9 a.m. to 10 a.m. <div style=padding-top: 35px>

During which hour did the temperature increase the most?

A) 10 a.m. to 11 a.m.
B) 1 p.m. to 2 p.m.
C) 12 p.m. to 1 p.m.
D) 9 a.m. to 10 a.m.
Question
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
Does the graph of Y2Y _ { 2 } pass through the origin?

A) No\mathrm { No }
B) Yes
Question
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercept:  - 1 ; -intercept: 8 B)  x -intercept: 1 ;  y -intercept: 8 C) x-intercept:  - 1 ; y -intercept:  - 8  D)  x -intercept:  - 8 ; y -intercept: 8 <div style=padding-top: 35px>

A) xx -intercept: −1- 1 ; -intercept: 8
B) xx -intercept: 1 ; yy -intercept: 8
C) x-intercept: −1;y- 1 ; y -intercept: −8- 8
D) xx -intercept: −8;y- 8 ; y -intercept: 8
Question
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.  <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    At what time was the temperature the highest?</strong> A) 1 p.m. B) 5 p.m. C)  11 \mathrm { a } . \mathrm { m } . D) 2 p.m. <div style=padding-top: 35px>

At what time was the temperature the highest?

A) 1 p.m.
B) 5 p.m.
C) 11a.m11 \mathrm { a } . \mathrm { m } .
D) 2 p.m.
Question
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.  <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    What temperature was recorded at 3 p.m.?</strong> A)  77 ^ { \circ } \mathrm { F }  B)  79 ^ { \circ } \mathrm { F }  C)  75 ^ { \circ } \mathrm { F }  D)  78 ^ { \circ } \mathrm { F }  <div style=padding-top: 35px>

What temperature was recorded at 3 p.m.?

A) 77∘F77 ^ { \circ } \mathrm { F }
B) 79∘F79 ^ { \circ } \mathrm { F }
C) 75∘F75 ^ { \circ } \mathrm { F }
D) 78∘F78 ^ { \circ } \mathrm { F }
Question
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
For which values of xx is Y1=Y2Y _ { 1 } = Y _ { 2 } ?

A) −1- 1 and 3
B) −2- 2 and 3
C) −1- 1 and −2- 2
D) −2- 2 and 0
Question
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercepts:  - 2,4 ; y -intercept: 8 B)  x -intercept:  - 2 ; y -intercepts: 4,8 C)  x -intercept:  8 ; y -intercepts:  - 2,4  D)  x -intercept:  4 ; y -intercept: 8 <div style=padding-top: 35px>

A) xx -intercepts: −2,4;y- 2,4 ; y -intercept: 8
B) xx -intercept: −2;y- 2 ; y -intercepts: 4,8
C) xx -intercept: 8;y8 ; y -intercepts: −2,4- 2,4
D) xx -intercept: 4;y4 ; y -intercept: 8
Question
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport. <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    During which two hour period did the temperature increase the most?</strong> A) 9 a.m. to 11 a.m. B) 10 a.m. to 11 a.m. C) 12 p.m. to 2 p.m. D) 10 a.m. to 12 p.m. <div style=padding-top: 35px>

During which two hour period did the temperature increase the most?

A) 9 a.m. to 11 a.m.
B) 10 a.m. to 11 a.m.
C) 12 p.m. to 2 p.m.
D) 10 a.m. to 12 p.m.
Question
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercept:  - 1  B)  y -intercept:  - 1  C) x-intercept: 1 D)  \mathrm { y } -intercept: 1 <div style=padding-top: 35px>

A) xx -intercept: −1- 1
B) yy -intercept: −1- 1
C) x-intercept: 1
D) y\mathrm { y } -intercept: 1
Question
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.  <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    At what time was the temperature  73 ^ { \circ }  ?</strong> A) 10 a.m. B) 4 p.m. and 5 p.m. C) 5 p.m. D) 10 a.m. and 11 a.m. <div style=padding-top: 35px>

At what time was the temperature 73∘73 ^ { \circ } ?

A) 10 a.m.
B) 4 p.m. and 5 p.m.
C) 5 p.m.
D) 10 a.m. and 11 a.m.
Question
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercepts:  3,1,5 ; y -intercept:  - 3  B)  x -intercept:  - 3 ; y -intercepts:  3,1,5  C) x-intercepts:  - 3,1 , - 5 ; -intercept:  - 3  D)  x -intercept:  - 3 ; y -intercepts:  - 3,1 , - 5  <div style=padding-top: 35px>

A) xx -intercepts: 3,1,5;y3,1,5 ; y -intercept: −3- 3
B) xx -intercept: −3;y- 3 ; y -intercepts: 3,1,53,1,5
C) x-intercepts: −3,1,−5;- 3,1 , - 5 ; -intercept: −3- 3
D) xx -intercept: −3;y- 3 ; y -intercepts: −3,1,−5- 3,1 , - 5
Question
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A) x-intercept:  - 1 ; y-intercept: 1 B) x-intercept:  - 1 ; y-intercept:  - 1  C)  x -intercept: 1 ;  y -intercept: 1 D)  x -intercept:  1 ; y -intercept:  - 1  <div style=padding-top: 35px>

A) x-intercept: −1- 1 ; y-intercept: 1
B) x-intercept: −1- 1 ; y-intercept: −1- 1
C) xx -intercept: 1 ; yy -intercept: 1
D) xx -intercept: 1;y1 ; y -intercept: −1- 1
Question
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
Which equation corresponds to Y2\mathrm { Y } _ { 2 } in the table?

A) y2=2x+3y _ { 2 } = 2 x + 3
B) y2=2−3x\mathrm { y } _ { 2 } = 2 - 3 \mathrm { x }
C) y2=x+2y _ { 2 } = x + 2
D) y2=2x−3\mathrm { y } _ { 2 } = 2 \mathrm { x } - 3
Question
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport. <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    At what time was the temperature its lowest?</strong> A) 9 a.m. B) 6 p.m. C) 4 p.m. D) 1 p.m. <div style=padding-top: 35px>

At what time was the temperature its lowest?

A) 9 a.m.
B) 6 p.m.
C) 4 p.m.
D) 1 p.m.
Question
Solve the equation.
60−x8=x760 - \frac { x } { 8 } = \frac { x } { 7 }

A) {224}\{ 224 \}
B) {450}\{ 450 \}
C) {22514}\left\{ \frac { 225 } { 14 } \right\}
D) {4}\{ 4 \}
Question
Match the story with the correct figure.
The height of an animal as a function of time.

A)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the equation.
x6=x9+5\frac { x } { 6 } = \frac { x } { 9 } + 5

A) {90}\{ 90 \}
B) {45}\{ 45 \}
C) {30}\{ 30 \}
D) {54}\{ 54 \}
Question
Solve and check the linear equation.
0.40x−0.20(80+x)=−0.10(80)0.40 x - 0.20 ( 80 + x ) = - 0.10 ( 80 )

A) {40}\{ 40 \}
B) {30}\{ 30 \}
C) {50}\{ 50 \}
D) {20}\{ 20 \} Find all values of x satisfying the given conditions.
Question
Match the story with the correct figure.
The amount of rainfall as a function of time, if the rain fell more and more softly.

A)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve and check the linear equation.
y=2[5x−(6x−4)]−8(x−4)y = 2 [ 5 x - ( 6 x - 4 ) ] - 8 ( x - 4 )

A) {4}\{ 4 \}
B) {−4}\{ - 4 \}
C) {125}\left\{ \frac { 12 } { 5 } \right\}
D) {−125}\left\{ - \frac { 12 } { 5 } \right\}
Question
Solve and check the linear equation.
0.24(70)+0.40x=0.30(70+x)0.24 ( 70 ) + 0.40 x = 0.30 ( 70 + x )

A) {40}\{ 40 \}
B) {30}\{ 30 \}
C) {50}\{ 50 \}
D) {20}\{ 20 \}
Question
Solve and check the linear equation.
y1=8x+4(1+x),y2=3(x−6)+10xy _ { 1 } = 8 x + 4 ( 1 + x ) , y _ { 2 } = 3 ( x - 6 ) + 10 x , and y1=y2y _ { 1 } = y _ { 2 }

A) {22}\{ 22 \}
B) {7}\{ 7 \}
C) {−22}\{ - 22 \}
D) {−7}\{ - 7 \} Find all values of x such that y = 0.
Question
Solve the equation.
x+54=32−x−12\frac { x + 5 } { 4 } = \frac { 3 } { 2 } - \frac { x - 1 } { 2 }

A) {1}\{ 1 \}
B) {4}\{ 4 \}
C) {0}\{ 0 \}
D) {12}\{ 12 \}
Question
Solve and check the linear equation.
4x−4=124 x - 4 = 12

A) {4}\{ 4 \}
B) {12}\{ 12 \}
C) {16}\{ 16 \}
D) {7}\{ 7 \}
Question
Solve and check the linear equation.
32−2(11−8)2=63x3 ^ { 2 } - 2 ( 11 - 8 ) ^ { 2 } = 63 x

A) {−17}\left\{ - \frac { 1 } { 7 } \right\}
B) {7}\{ 7 \}
C) {0}\{ 0 \}
D) {1}\{ 1 \}
Question
Solve and check the linear equation.
−6[4x−3+3(x+1)]=−5x−7- 6 [ 4 x - 3 + 3 ( x + 1 ) ] = - 5 x - 7

A) {737}\left\{ \frac { 7 } { 37 } \right\}
B) {−74}\left\{ - \frac { 7 } { 4 } \right\}
C) {−2937}\left\{ - \frac { 29 } { 37 } \right\}
D) {294}\left\{ \frac { 29 } { 4 } \right\}
Question
Solve and check the linear equation.
−2x−5+7(x+1)=6x+6- 2 x - 5 + 7 ( x + 1 ) = 6 x + 6

A) {−4}\{ - 4 \}
B) {−2}\{ - 2 \}
C) {6}\{ 6 \}
D) {3}\{ 3 \}
Question
Solve the equation.
x2=x7+92\frac { x } { 2 } = \frac { x } { 7 } + \frac { 9 } { 2 }

A) {635}\left\{ \frac { 63 } { 5 } \right\}
B) {−92}\left\{ - \frac { 9 } { 2 } \right\}
C) 0
D) {563}\left\{ \frac { 5 } { 63 } \right\}
Question
Solve the equation.
2x5=x3+4\frac { 2 x } { 5 } = \frac { x } { 3 } + 4

A) {60}\{ 60 \}
B) {−60}\{ - 60 \}
C) {120}\{ 120 \}
D) {−120}\{ - 120 \}
Question
Solve and check the linear equation.
9x−(8x−1)=29 x - ( 8 x - 1 ) = 2

A) {1}\{ 1 \}
B) {117}\left\{ \frac { 1 } { 17 } \right\}
C) {−1}\{ - 1 \}
D) {−117}\left\{ - \frac { 1 } { 17 } \right\}
Question
Solve and check the linear equation.
(8x+6)−1=9(x−6)( 8 x + 6 ) - 1 = 9 ( x - 6 )

A) {59}\{ 59 \}
B) {−59}\{ - 59 \}
C) {−61}\{ - 61 \}
D) {−11}\{ - 11 \}
Question
Solve and check the linear equation.
2x+4=−3−6x2 x + 4 = - 3 - 6 x

A) {−78}\left\{ - \frac { 7 } { 8 } \right\}
B) {−87}\left\{ - \frac { 8 } { 7 } \right\}
C) {87}\left\{ \frac { 8 } { 7 } \right\}
D) {−4}\{ - 4 \}
Question
Match the story with the correct figure.
Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.

A)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)   <div style=padding-top: 35px>
B)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)   <div style=padding-top: 35px>
C)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)   <div style=padding-top: 35px>

D)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)   <div style=padding-top: 35px>
Question
Solve the equation.
3x2−x=x14−67\frac { 3 x } { 2 } - x = \frac { x } { 14 } - \frac { 6 } { 7 }

A) {−2}\{ - 2 \}
B) {32}\left\{ \frac { 3 } { 2 } \right\}
C) {−32}\left\{ - \frac { 3 } { 2 } \right\}
D) {2}\{ 2 \}
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
8x=12x+60\frac { 8 } { x } = \frac { 1 } { 2 x } + 60

A) x≠0;{18}x \neq 0 ; \left\{ \frac { 1 } { 8 } \right\}
B) x≠0;{8}x \neq 0 ; \{ 8 \}
C) x≠0,2;{1730}x \neq 0,2 ; \left\{ \frac { 17 } { 30 } \right\}
D) No restrictions; {4}\{ 4 \}
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
y1=9x+2,y2=7x−2,y3=10x2−4y _ { 1 } = \frac { 9 } { x + 2 } , y _ { 2 } = \frac { 7 } { x - 2 } , y _ { 3 } = \frac { 10 } { x ^ { 2 } - 4 } , and y1−y2=y3y _ { 1 } - y _ { 2 } = y _ { 3 }

A) {21}\{ 21 \}
B) {−21}\{ - 21 \}
C) {57}\{ \sqrt { 57 } \}
D) {42}\{ 42 \}
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
x2x+2=−2x4x+4+2x−3x+1\frac { x } { 2 x + 2 } = \frac { - 2 x } { 4 x + 4 } + \frac { 2 x - 3 } { x + 1 }

A) {3}\{ 3 \}
B) {32}\left\{ \frac { 3 } { 2 } \right\}
C) {−3}\{ - 3 \}
D) {−125}\left\{ - \frac { 12 } { 5 } \right\}
Question
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
2x+5x=6x2 \mathrm { x } + 5 \mathrm { x } = 6 \mathrm { x }

A) Identity
B) Conditional equation
C) Inconsistent equation
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
1x+7+4x+5=−2x2+12x+35\frac { 1 } { x + 7 } + \frac { 4 } { x + 5 } = \frac { - 2 } { x ^ { 2 } + 12 x + 35 }

A) ∅\varnothing
B) {−7}\{ - 7 \}
C) {5}\{ 5 \}
D) {0}\{ 0 \}
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
62x−2+12=3x−1\frac { 6 } { 2 x - 2 } + \frac { 1 } { 2 } = \frac { 3 } { x - 1 }

A) x≠1;∅x \neq 1 ; \varnothing
B) x≠2;{1}x \neq 2 ; \{ 1 \}
C) x≠1;{1}\mathrm { x } \neq 1 ; \{ 1 \}
D) x≠−1,2;{1,2}x \neq - 1,2 ; \{ 1,2 \}
Question
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
18x+8(x+1)=26(x+1)−1818 x + 8 ( x + 1 ) = 26 ( x + 1 ) - 18

A) Identity
B) Conditional equation
C) Inconsistent equation
Question
Solve the equation.
x−105+x+44=x+5\frac { x - 10 } { 5 } + \frac { x + 4 } { 4 } = x + 5

A) {−12011}\left\{ - \frac { 120 } { 11 } \right\}
B) {−4011}\left\{ - \frac { 40 } { 11 } \right\}
C) {−16011}\left\{ - \frac { 160 } { 11 } \right\}
D) {−8011}\left\{ - \frac { 80 } { 11 } \right\} Find all values of x satisfying the given conditions.
Question
Solve the equation.
y=x+42+x−36−136y = \frac { x + 4 } { 2 } + \frac { x - 3 } { 6 } - \frac { 13 } { 6 }

A) {1}\{ 1 \}
B) {252}\left\{ \frac { 25 } { 2 } \right\}
C) {0}\{ 0 \}
D) {26}\{ 26 \}
Question
Solve the equation.
y1=x+65,y2=x+87y _ { 1 } = \frac { x + 6 } { 5 } , y _ { 2 } = \frac { x + 8 } { 7 } , and y1=y2y _ { 1 } = y _ { 2 }

A) {−1}\{ - 1 \}
B) {1}\{ 1 \}
C) {−2}\{ - 2 \}
D) {2}\{ 2 \} Find all values of x such that y = 0.
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
y1=1x+7,y2=4x+5,y3=−2x2+12x+35y _ { 1 } = \frac { 1 } { x + 7 } , y _ { 2 } = \frac { 4 } { x + 5 } , y _ { 3 } = \frac { - 2 } { x ^ { 2 } + 12 x + 35 } , and y1+y2=y3y _ { 1 } + y _ { 2 } = y _ { 3 }

A) {0}\{ 0 \}
B) {−7}\{ - 7 \}
C) {5}\{ 5 \}
D) ∅\varnothing
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
x−14x+8=x+6x\frac { x - 1 } { 4 x } + 8 = \frac { x + 6 } { x }

A) x≠0;{2529}x \neq 0 ; \left\{ \frac { 25 } { 29 } \right\}
B) x≠0;{−173}x \neq 0 ; \left\{ - \frac { 17 } { 3 } \right\}
C) x≠0,4;{2529}x \neq 0,4 ; \left\{ \frac { 25 } { 29 } \right\}
D) No restrictions; {732}\left\{ \frac { 7 } { 32 } \right\}
Question
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
5x+5(2x−7)=−17−3x5 x + 5 ( 2 x - 7 ) = - 17 - 3 x

A) Identity
B) Conditional equation
C) Inconsistent equation
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
3x+2+1x−2=4(x+2)(x−2)\frac { 3 } { x + 2 } + \frac { 1 } { x - 2 } = \frac { 4 } { ( x + 2 ) ( x - 2 ) }

A) x≠−2,2;∅x \neq - 2,2 ; \varnothing
B) x≠−2,2;{3}x \neq - 2,2 ; \{ 3 \}
C) x≠−2;{2}x \neq - 2 ; \{ 2 \}
D) No restrictions; {2}\{ 2 \} Solve the equation.
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
m+3m2−2m−8−3m2+4m+4=m−3m2−2m−8\frac { m + 3 } { m ^ { 2 } - 2 m - 8 } - \frac { 3 } { m ^ { 2 } + 4 m + 4 } = \frac { m - 3 } { m ^ { 2 } - 2 m - 8 }

A) {−8}\{ - 8 \}
B) {−24}\{ - 24 \}
C) {8}\{ 8 \}
D) {−30}\{ - 30 \} Find all values of x satisfying the given conditions.
Question
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
4(5x+30)=20x+1204 ( 5 x + 30 ) = 20 x + 120

A) Identity
B) Conditional equation
C) Inconsistent equation
Question
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
4(x−3)−8=8x−4(x−7)4 ( x - 3 ) - 8 = 8 x - 4 ( x - 7 )

A) Identity
B) Conditional equation
C) Inconsistent equation
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
36x−7+4=4x−7\frac { 36 } { x - 7 } + 4 = \frac { 4 } { x - 7 }

A) x≠7;{−1}x \neq 7 ; \{ - 1 \}
B) x≠−7;{−1}x \neq - 7 ; \{ - 1 \}
C) x≠−7;{17}x \neq - 7 ; \{ 17 \}
D) x≠7;∅x \neq 7 ; \varnothing
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
2y+5−6y−5=4y2−25\frac { 2 } { y + 5 } - \frac { 6 } { y - 5 } = \frac { 4 } { y ^ { 2 } - 25 }

A) {−11}\{ - 11 \}
B) {11}\{ 11 \}
C) {33}\{ \sqrt { 33 } \}
D) {44}\{ 44 \}
Question
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
2x+6=52x+163\frac { 2 } { x } + 6 = \frac { 5 } { 2 x } + \frac { 16 } { 3 }

A) x≠0;{34}x \neq 0 ; \left\{ \frac { 3 } { 4 } \right\}
B) x≠0;{43}x \neq 0 ; \left\{ \frac { 4 } { 3 } \right\}
C) x≠0,2,3;{34}x \neq 0,2,3 ; \left\{ \frac { 3 } { 4 } \right\}
D) No restrictions; {43}\left\{ \frac { 4 } { 3 } \right\}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/425
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Equations and Inequalities
1
Graph the equation.
y=x3+4y=x^{3}+4
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y=x^{3}+4   </strong> A)   B)   C)   D)
A
2
Plot the given point in a rectangular coordinate system
(−6,0)(-6,0)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  (-6,0)   </strong> A)   B)   C)   D)
A
3
Plot the given point in a rectangular coordinate system
(2,1)(2,1)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  (2,1)   </strong> A)   B)   C)   D)
A
4
Graph the equation.
y=1xy=\frac{1}{x}
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation.

A)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation.
B)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation.
C)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation.
D)
 <strong>Graph the equation.  y=\frac{1}{x}    </strong> A)   B)   C)   D)   Write the English sentence as an equation in two variables. Then graph the equation.
Write the English sentence as an equation in two variables. Then graph the equation.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
5
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 10,10,2 ]  by  [ - 10,10,2 ]  B)  [ - 2,2,2 ]  by  [ - 2,2,2 ]  C)  [ - 20,10,2 ]  by  [ - 20,10,2 ]  D)  [ - 10,10,4 ]  by  [ - 10,10,4 ]

A) [−10,10,2][ - 10,10,2 ] by [−10,10,2][ - 10,10,2 ]
B) [−2,2,2][ - 2,2,2 ] by [−2,2,2][ - 2,2,2 ]
C) [−20,10,2][ - 20,10,2 ] by [−20,10,2][ - 20,10,2 ]
D) [−10,10,4][ - 10,10,4 ] by [−10,10,4][ - 10,10,4 ]
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
6
Graph the equation.
y=−1y=-1
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y=-1   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
7
Graph the equation.
y=−15x−5y = - \frac { 1 } { 5 } x - 5
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y = - \frac { 1 } { 5 } x - 5   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
8
Graph the equation.
y=x+5y=x+5
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y=x+5    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
9
Graph the equation.
y=x2+2y=x^{2}+2
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y=x^{2}+2   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
10
Plot the given point in a rectangular coordinate system
(0,−3)(0,-3)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  (0,-3)   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
11
Plot the given point in a rectangular coordinate system
(−52,0)\left( - \frac { 5 } { 2 } , 0 \right)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  \left( - \frac { 5 } { 2 } , 0 \right)   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
12
Plot the given point in a rectangular coordinate system
(−1,−4)(-1,-4)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  (-1,-4)   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
13
Graph the equation.
y=3x+6y=3 x+6
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y=3 x+6   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
14
Graph the equation.
y=−5∣x∣y=-5|x|
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y=-5|x|   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
15
Graph the equation.
The yy -value is two decreased by the square of the xx -value.
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2

A) y=2−x2y = 2 - x ^ { 2 }
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2
B) y=2−xy = 2 - x
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2
C) y=x2−2y = x ^ { 2 } - 2
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2
D) y=x−2y = x - 2
 <strong>Graph the equation. The  y -value is two decreased by the square of the  x -value.  </strong> A)  y = 2 - x ^ { 2 }    B)  y = 2 - x    C)  y = x ^ { 2 } - 2    D)  y = x - 2
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
16
Plot the given point in a rectangular coordinate system
(−6,4)(-6,4)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  (-6,4)   </strong> A)   B)   C)   D)

Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
17
Graph the equation.
y=−∣x∣+6y=-|x|+6
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y=-|x|+6   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
18
Plot the given point in a rectangular coordinate system
(−4,−72)\left( - 4 , - \frac { 7 } { 2 } \right)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  \left( - 4 , - \frac { 7 } { 2 } \right)   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
19
Graph the equation.
The yy -value is three more than five times the xx -value.
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3

A) y=5x+3y = 5 x + 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3
B) y=−5x+3y = - 5 x + 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3
C) y=−5x−3y = - 5 x - 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3
D) y=5x−3y = 5 x - 3
 <strong>Graph the equation. The  y -value is three more than five times the  x -value.   </strong> A)  y = 5 x + 3    B)  y = - 5 x + 3    C)  y = - 5 x - 3    D)  y = 5 x - 3
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
20
Plot the given point in a rectangular coordinate system
(2,−6)(2,-6)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)

A)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)
B)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)
C)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)
D)
 <strong>Plot the given point in a rectangular coordinate system  (2,-6)   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
21
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A) x-intercepts:  - 5,5 ; y-intercept:  - 5  B)  x -intercepts:  - 5,5  C)  \mathrm { y } -intercept:  - 5  D) x-intercepts:  - 5,5 ; y-intercept: 0

A) x-intercepts: −5,5- 5,5 ; y-intercept: −5- 5
B) xx -intercepts: −5,5- 5,5
C) y\mathrm { y } -intercept: −5- 5
D) x-intercepts: −5,5- 5,5 ; y-intercept: 0
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
22
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 4,4,2 ]  by  [ - 80,80,8 ]  B)  [ - 16,16,4 ]  by  [ - 4,4,2 ]  C)  [ - 4,4,2 ]  by  [ - 4,4,2 ]  D)  [ - 20,20,2 ]  by  [ - 20,20,2 ]

A) [−4,4,2][ - 4,4,2 ] by [−80,80,8][ - 80,80,8 ]
B) [−16,16,4][ - 16,16,4 ] by [−4,4,2][ - 4,4,2 ]
C) [−4,4,2][ - 4,4,2 ] by [−4,4,2][ - 4,4,2 ]
D) [−20,20,2][ - 20,20,2 ] by [−20,20,2][ - 20,20,2 ]
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
23
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 10,30,10 ]  by  [ - 400,500,100 ]  B)  [ - 1,8,1 ]  by  [ - 1,8,1 ]  C)  [ - 1,5,1 ]  by  [ - 4,8,1 ]  D)  [ - 10,5,1 ]  by  [ - 10,5,1 ]

A) [−10,30,10][ - 10,30,10 ] by [−400,500,100][ - 400,500,100 ]
B) [−1,8,1][ - 1,8,1 ] by [−1,8,1][ - 1,8,1 ]
C) [−1,5,1][ - 1,5,1 ] by [−4,8,1][ - 4,8,1 ]
D) [−10,5,1][ - 10,5,1 ] by [−10,5,1][ - 10,5,1 ]
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
24
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
At which points do the graph of Y1Y _ { 1 } and Y2Y _ { 2 } intersect?

A) (−1,1)( - 1,1 ) and (3,9)( 3,9 )
B) (2,7)( 2,7 ) and (2,4)( 2,4 )
C) (−1,1)( - 1,1 ) and (2,7)( 2,7 )
D) (2,4)( 2,4 ) and (3,9)( 3,9 )
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
25
Interpret Information About a Graphing Utility's Viewing Rectangle or Table
Match the correct viewing rectangle dimensions with the figure.
 <strong>Interpret Information About a Graphing Utility's Viewing Rectangle or Table Match the correct viewing rectangle dimensions with the figure.  </strong> A)  [ - 1,8,1 ]  by  [ - 4,5,1 ]  B)  [ - 1,8,1 ]  by  [ - 1,8,1 ]  C)  [ - 4,5,1 ]  by  [ - 1,8,1 ]  D)  [ - 10,5,1 ]  by  [ - 10,5,1 ]

A) [−1,8,1][ - 1,8,1 ] by [−4,5,1][ - 4,5,1 ]
B) [−1,8,1][ - 1,8,1 ] by [−1,8,1][ - 1,8,1 ]
C) [−4,5,1][ - 4,5,1 ] by [−1,8,1][ - 1,8,1 ]
D) [−10,5,1][ - 10,5,1 ] by [−10,5,1][ - 10,5,1 ]
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
26
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercepts:  - 3,3 ; y -intercepts:  - 2,2  B)  x -intercepts:  - 3,3  C)  \mathrm { y } -intercepts:  - 2,2  D)  x -intercepts:  - 2,2 ; y -intercepts:  - 3,3

A) xx -intercepts: −3,3;y- 3,3 ; y -intercepts: −2,2- 2,2
B) xx -intercepts: −3,3- 3,3
C) y\mathrm { y } -intercepts: −2,2- 2,2
D) xx -intercepts: −2,2;y- 2,2 ; y -intercepts: −3,3- 3,3
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
27
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport. <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    During which hour did the temperature increase the most?</strong> A) 10 a.m. to 11 a.m. B) 1 p.m. to 2 p.m. C) 12 p.m. to 1 p.m. D) 9 a.m. to 10 a.m.

During which hour did the temperature increase the most?

A) 10 a.m. to 11 a.m.
B) 1 p.m. to 2 p.m.
C) 12 p.m. to 1 p.m.
D) 9 a.m. to 10 a.m.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
28
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
Does the graph of Y2Y _ { 2 } pass through the origin?

A) No\mathrm { No }
B) Yes
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
29
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercept:  - 1 ; -intercept: 8 B)  x -intercept: 1 ;  y -intercept: 8 C) x-intercept:  - 1 ; y -intercept:  - 8  D)  x -intercept:  - 8 ; y -intercept: 8

A) xx -intercept: −1- 1 ; -intercept: 8
B) xx -intercept: 1 ; yy -intercept: 8
C) x-intercept: −1;y- 1 ; y -intercept: −8- 8
D) xx -intercept: −8;y- 8 ; y -intercept: 8
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
30
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.  <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    At what time was the temperature the highest?</strong> A) 1 p.m. B) 5 p.m. C)  11 \mathrm { a } . \mathrm { m } . D) 2 p.m.

At what time was the temperature the highest?

A) 1 p.m.
B) 5 p.m.
C) 11a.m11 \mathrm { a } . \mathrm { m } .
D) 2 p.m.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
31
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.  <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    What temperature was recorded at 3 p.m.?</strong> A)  77 ^ { \circ } \mathrm { F }  B)  79 ^ { \circ } \mathrm { F }  C)  75 ^ { \circ } \mathrm { F }  D)  78 ^ { \circ } \mathrm { F }

What temperature was recorded at 3 p.m.?

A) 77∘F77 ^ { \circ } \mathrm { F }
B) 79∘F79 ^ { \circ } \mathrm { F }
C) 75∘F75 ^ { \circ } \mathrm { F }
D) 78∘F78 ^ { \circ } \mathrm { F }
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
32
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
For which values of xx is Y1=Y2Y _ { 1 } = Y _ { 2 } ?

A) −1- 1 and 3
B) −2- 2 and 3
C) −1- 1 and −2- 2
D) −2- 2 and 0
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
33
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercepts:  - 2,4 ; y -intercept: 8 B)  x -intercept:  - 2 ; y -intercepts: 4,8 C)  x -intercept:  8 ; y -intercepts:  - 2,4  D)  x -intercept:  4 ; y -intercept: 8

A) xx -intercepts: −2,4;y- 2,4 ; y -intercept: 8
B) xx -intercept: −2;y- 2 ; y -intercepts: 4,8
C) xx -intercept: 8;y8 ; y -intercepts: −2,4- 2,4
D) xx -intercept: 4;y4 ; y -intercept: 8
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
34
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport. <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    During which two hour period did the temperature increase the most?</strong> A) 9 a.m. to 11 a.m. B) 10 a.m. to 11 a.m. C) 12 p.m. to 2 p.m. D) 10 a.m. to 12 p.m.

During which two hour period did the temperature increase the most?

A) 9 a.m. to 11 a.m.
B) 10 a.m. to 11 a.m.
C) 12 p.m. to 2 p.m.
D) 10 a.m. to 12 p.m.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
35
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercept:  - 1  B)  y -intercept:  - 1  C) x-intercept: 1 D)  \mathrm { y } -intercept: 1

A) xx -intercept: −1- 1
B) yy -intercept: −1- 1
C) x-intercept: 1
D) y\mathrm { y } -intercept: 1
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
36
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.  <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    At what time was the temperature  73 ^ { \circ }  ?</strong> A) 10 a.m. B) 4 p.m. and 5 p.m. C) 5 p.m. D) 10 a.m. and 11 a.m.

At what time was the temperature 73∘73 ^ { \circ } ?

A) 10 a.m.
B) 4 p.m. and 5 p.m.
C) 5 p.m.
D) 10 a.m. and 11 a.m.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
37
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A)  x -intercepts:  3,1,5 ; y -intercept:  - 3  B)  x -intercept:  - 3 ; y -intercepts:  3,1,5  C) x-intercepts:  - 3,1 , - 5 ; -intercept:  - 3  D)  x -intercept:  - 3 ; y -intercepts:  - 3,1 , - 5

A) xx -intercepts: 3,1,5;y3,1,5 ; y -intercept: −3- 3
B) xx -intercept: −3;y- 3 ; y -intercepts: 3,1,53,1,5
C) x-intercepts: −3,1,−5;- 3,1 , - 5 ; -intercept: −3- 3
D) xx -intercept: −3;y- 3 ; y -intercepts: −3,1,−5- 3,1 , - 5
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
38
Use a Graph to Determine Intercepts
Use the graph to determine the x- and y-intercepts.
 <strong>Use a Graph to Determine Intercepts Use the graph to determine the x- and y-intercepts.  </strong> A) x-intercept:  - 1 ; y-intercept: 1 B) x-intercept:  - 1 ; y-intercept:  - 1  C)  x -intercept: 1 ;  y -intercept: 1 D)  x -intercept:  1 ; y -intercept:  - 1

A) x-intercept: −1- 1 ; y-intercept: 1
B) x-intercept: −1- 1 ; y-intercept: −1- 1
C) xx -intercept: 1 ; yy -intercept: 1
D) xx -intercept: 1;y1 ; y -intercept: −1- 1
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
39
The table of values was generated by a graphing utility with a TABLE feature. Use the following table to solve. XY1Y2−39−3−24−1−111003115247399\begin{array} { | c | c | c | } \hline X & Y _ { 1 } & Y _ { 2 } \\\hline - 3 & 9 & - 3 \\- 2 & 4 & - 1 \\- 1 & 1 & 1 \\0 & 0 & 3 \\1 & 1 & 5 \\2 & 4 & 7 \\3 & 9 & 9 \\\hline\end{array}
Which equation corresponds to Y2\mathrm { Y } _ { 2 } in the table?

A) y2=2x+3y _ { 2 } = 2 x + 3
B) y2=2−3x\mathrm { y } _ { 2 } = 2 - 3 \mathrm { x }
C) y2=x+2y _ { 2 } = x + 2
D) y2=2x−3\mathrm { y } _ { 2 } = 2 \mathrm { x } - 3
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
40
Choose the one alternative that best completes the statement or answers the question.
The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport. <strong>Choose the one alternative that best completes the statement or answers the question. The line graph shows the recorded hourly temperatures in degrees Fahrenheit at an airport.    At what time was the temperature its lowest?</strong> A) 9 a.m. B) 6 p.m. C) 4 p.m. D) 1 p.m.

At what time was the temperature its lowest?

A) 9 a.m.
B) 6 p.m.
C) 4 p.m.
D) 1 p.m.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the equation.
60−x8=x760 - \frac { x } { 8 } = \frac { x } { 7 }

A) {224}\{ 224 \}
B) {450}\{ 450 \}
C) {22514}\left\{ \frac { 225 } { 14 } \right\}
D) {4}\{ 4 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
42
Match the story with the correct figure.
The height of an animal as a function of time.

A)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)
B)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)
C)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)
D)
<strong>Match the story with the correct figure. The height of an animal as a function of time.</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
43
Solve the equation.
x6=x9+5\frac { x } { 6 } = \frac { x } { 9 } + 5

A) {90}\{ 90 \}
B) {45}\{ 45 \}
C) {30}\{ 30 \}
D) {54}\{ 54 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
44
Solve and check the linear equation.
0.40x−0.20(80+x)=−0.10(80)0.40 x - 0.20 ( 80 + x ) = - 0.10 ( 80 )

A) {40}\{ 40 \}
B) {30}\{ 30 \}
C) {50}\{ 50 \}
D) {20}\{ 20 \} Find all values of x satisfying the given conditions.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
45
Match the story with the correct figure.
The amount of rainfall as a function of time, if the rain fell more and more softly.

A)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)
B)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)
C)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)
D)
<strong>Match the story with the correct figure. The amount of rainfall as a function of time, if the rain fell more and more softly.</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
46
Solve and check the linear equation.
y=2[5x−(6x−4)]−8(x−4)y = 2 [ 5 x - ( 6 x - 4 ) ] - 8 ( x - 4 )

A) {4}\{ 4 \}
B) {−4}\{ - 4 \}
C) {125}\left\{ \frac { 12 } { 5 } \right\}
D) {−125}\left\{ - \frac { 12 } { 5 } \right\}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
47
Solve and check the linear equation.
0.24(70)+0.40x=0.30(70+x)0.24 ( 70 ) + 0.40 x = 0.30 ( 70 + x )

A) {40}\{ 40 \}
B) {30}\{ 30 \}
C) {50}\{ 50 \}
D) {20}\{ 20 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
48
Solve and check the linear equation.
y1=8x+4(1+x),y2=3(x−6)+10xy _ { 1 } = 8 x + 4 ( 1 + x ) , y _ { 2 } = 3 ( x - 6 ) + 10 x , and y1=y2y _ { 1 } = y _ { 2 }

A) {22}\{ 22 \}
B) {7}\{ 7 \}
C) {−22}\{ - 22 \}
D) {−7}\{ - 7 \} Find all values of x such that y = 0.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
49
Solve the equation.
x+54=32−x−12\frac { x + 5 } { 4 } = \frac { 3 } { 2 } - \frac { x - 1 } { 2 }

A) {1}\{ 1 \}
B) {4}\{ 4 \}
C) {0}\{ 0 \}
D) {12}\{ 12 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
50
Solve and check the linear equation.
4x−4=124 x - 4 = 12

A) {4}\{ 4 \}
B) {12}\{ 12 \}
C) {16}\{ 16 \}
D) {7}\{ 7 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
51
Solve and check the linear equation.
32−2(11−8)2=63x3 ^ { 2 } - 2 ( 11 - 8 ) ^ { 2 } = 63 x

A) {−17}\left\{ - \frac { 1 } { 7 } \right\}
B) {7}\{ 7 \}
C) {0}\{ 0 \}
D) {1}\{ 1 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
52
Solve and check the linear equation.
−6[4x−3+3(x+1)]=−5x−7- 6 [ 4 x - 3 + 3 ( x + 1 ) ] = - 5 x - 7

A) {737}\left\{ \frac { 7 } { 37 } \right\}
B) {−74}\left\{ - \frac { 7 } { 4 } \right\}
C) {−2937}\left\{ - \frac { 29 } { 37 } \right\}
D) {294}\left\{ \frac { 29 } { 4 } \right\}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
53
Solve and check the linear equation.
−2x−5+7(x+1)=6x+6- 2 x - 5 + 7 ( x + 1 ) = 6 x + 6

A) {−4}\{ - 4 \}
B) {−2}\{ - 2 \}
C) {6}\{ 6 \}
D) {3}\{ 3 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
54
Solve the equation.
x2=x7+92\frac { x } { 2 } = \frac { x } { 7 } + \frac { 9 } { 2 }

A) {635}\left\{ \frac { 63 } { 5 } \right\}
B) {−92}\left\{ - \frac { 9 } { 2 } \right\}
C) 0
D) {563}\left\{ \frac { 5 } { 63 } \right\}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
55
Solve the equation.
2x5=x3+4\frac { 2 x } { 5 } = \frac { x } { 3 } + 4

A) {60}\{ 60 \}
B) {−60}\{ - 60 \}
C) {120}\{ 120 \}
D) {−120}\{ - 120 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
56
Solve and check the linear equation.
9x−(8x−1)=29 x - ( 8 x - 1 ) = 2

A) {1}\{ 1 \}
B) {117}\left\{ \frac { 1 } { 17 } \right\}
C) {−1}\{ - 1 \}
D) {−117}\left\{ - \frac { 1 } { 17 } \right\}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
57
Solve and check the linear equation.
(8x+6)−1=9(x−6)( 8 x + 6 ) - 1 = 9 ( x - 6 )

A) {59}\{ 59 \}
B) {−59}\{ - 59 \}
C) {−61}\{ - 61 \}
D) {−11}\{ - 11 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
58
Solve and check the linear equation.
2x+4=−3−6x2 x + 4 = - 3 - 6 x

A) {−78}\left\{ - \frac { 7 } { 8 } \right\}
B) {−87}\left\{ - \frac { 8 } { 7 } \right\}
C) {87}\left\{ \frac { 8 } { 7 } \right\}
D) {−4}\{ - 4 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
59
Match the story with the correct figure.
Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.

A)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)
B)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)
C)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)

D)
<strong>Match the story with the correct figure. Mark started out by walking up a hill for 5 minutes. For the next 5 minutes he walked down a steep hill to an elevation lower than his starting point. For the next 10 minutes he walked on level ground. For the next 10 minutes he walked uphill. Determine which graph of elevation above sea level versus time illustrates the story.</strong> A)   B)   C)    D)
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
60
Solve the equation.
3x2−x=x14−67\frac { 3 x } { 2 } - x = \frac { x } { 14 } - \frac { 6 } { 7 }

A) {−2}\{ - 2 \}
B) {32}\left\{ \frac { 3 } { 2 } \right\}
C) {−32}\left\{ - \frac { 3 } { 2 } \right\}
D) {2}\{ 2 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
61
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
8x=12x+60\frac { 8 } { x } = \frac { 1 } { 2 x } + 60

A) x≠0;{18}x \neq 0 ; \left\{ \frac { 1 } { 8 } \right\}
B) x≠0;{8}x \neq 0 ; \{ 8 \}
C) x≠0,2;{1730}x \neq 0,2 ; \left\{ \frac { 17 } { 30 } \right\}
D) No restrictions; {4}\{ 4 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
62
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
y1=9x+2,y2=7x−2,y3=10x2−4y _ { 1 } = \frac { 9 } { x + 2 } , y _ { 2 } = \frac { 7 } { x - 2 } , y _ { 3 } = \frac { 10 } { x ^ { 2 } - 4 } , and y1−y2=y3y _ { 1 } - y _ { 2 } = y _ { 3 }

A) {21}\{ 21 \}
B) {−21}\{ - 21 \}
C) {57}\{ \sqrt { 57 } \}
D) {42}\{ 42 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
63
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
x2x+2=−2x4x+4+2x−3x+1\frac { x } { 2 x + 2 } = \frac { - 2 x } { 4 x + 4 } + \frac { 2 x - 3 } { x + 1 }

A) {3}\{ 3 \}
B) {32}\left\{ \frac { 3 } { 2 } \right\}
C) {−3}\{ - 3 \}
D) {−125}\left\{ - \frac { 12 } { 5 } \right\}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
64
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
2x+5x=6x2 \mathrm { x } + 5 \mathrm { x } = 6 \mathrm { x }

A) Identity
B) Conditional equation
C) Inconsistent equation
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
65
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
1x+7+4x+5=−2x2+12x+35\frac { 1 } { x + 7 } + \frac { 4 } { x + 5 } = \frac { - 2 } { x ^ { 2 } + 12 x + 35 }

A) ∅\varnothing
B) {−7}\{ - 7 \}
C) {5}\{ 5 \}
D) {0}\{ 0 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
66
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
62x−2+12=3x−1\frac { 6 } { 2 x - 2 } + \frac { 1 } { 2 } = \frac { 3 } { x - 1 }

A) x≠1;∅x \neq 1 ; \varnothing
B) x≠2;{1}x \neq 2 ; \{ 1 \}
C) x≠1;{1}\mathrm { x } \neq 1 ; \{ 1 \}
D) x≠−1,2;{1,2}x \neq - 1,2 ; \{ 1,2 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
67
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
18x+8(x+1)=26(x+1)−1818 x + 8 ( x + 1 ) = 26 ( x + 1 ) - 18

A) Identity
B) Conditional equation
C) Inconsistent equation
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
68
Solve the equation.
x−105+x+44=x+5\frac { x - 10 } { 5 } + \frac { x + 4 } { 4 } = x + 5

A) {−12011}\left\{ - \frac { 120 } { 11 } \right\}
B) {−4011}\left\{ - \frac { 40 } { 11 } \right\}
C) {−16011}\left\{ - \frac { 160 } { 11 } \right\}
D) {−8011}\left\{ - \frac { 80 } { 11 } \right\} Find all values of x satisfying the given conditions.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the equation.
y=x+42+x−36−136y = \frac { x + 4 } { 2 } + \frac { x - 3 } { 6 } - \frac { 13 } { 6 }

A) {1}\{ 1 \}
B) {252}\left\{ \frac { 25 } { 2 } \right\}
C) {0}\{ 0 \}
D) {26}\{ 26 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
70
Solve the equation.
y1=x+65,y2=x+87y _ { 1 } = \frac { x + 6 } { 5 } , y _ { 2 } = \frac { x + 8 } { 7 } , and y1=y2y _ { 1 } = y _ { 2 }

A) {−1}\{ - 1 \}
B) {1}\{ 1 \}
C) {−2}\{ - 2 \}
D) {2}\{ 2 \} Find all values of x such that y = 0.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
71
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
y1=1x+7,y2=4x+5,y3=−2x2+12x+35y _ { 1 } = \frac { 1 } { x + 7 } , y _ { 2 } = \frac { 4 } { x + 5 } , y _ { 3 } = \frac { - 2 } { x ^ { 2 } + 12 x + 35 } , and y1+y2=y3y _ { 1 } + y _ { 2 } = y _ { 3 }

A) {0}\{ 0 \}
B) {−7}\{ - 7 \}
C) {5}\{ 5 \}
D) ∅\varnothing
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
72
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
x−14x+8=x+6x\frac { x - 1 } { 4 x } + 8 = \frac { x + 6 } { x }

A) x≠0;{2529}x \neq 0 ; \left\{ \frac { 25 } { 29 } \right\}
B) x≠0;{−173}x \neq 0 ; \left\{ - \frac { 17 } { 3 } \right\}
C) x≠0,4;{2529}x \neq 0,4 ; \left\{ \frac { 25 } { 29 } \right\}
D) No restrictions; {732}\left\{ \frac { 7 } { 32 } \right\}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
73
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
5x+5(2x−7)=−17−3x5 x + 5 ( 2 x - 7 ) = - 17 - 3 x

A) Identity
B) Conditional equation
C) Inconsistent equation
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
74
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
3x+2+1x−2=4(x+2)(x−2)\frac { 3 } { x + 2 } + \frac { 1 } { x - 2 } = \frac { 4 } { ( x + 2 ) ( x - 2 ) }

A) x≠−2,2;∅x \neq - 2,2 ; \varnothing
B) x≠−2,2;{3}x \neq - 2,2 ; \{ 3 \}
C) x≠−2;{2}x \neq - 2 ; \{ 2 \}
D) No restrictions; {2}\{ 2 \} Solve the equation.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
75
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
m+3m2−2m−8−3m2+4m+4=m−3m2−2m−8\frac { m + 3 } { m ^ { 2 } - 2 m - 8 } - \frac { 3 } { m ^ { 2 } + 4 m + 4 } = \frac { m - 3 } { m ^ { 2 } - 2 m - 8 }

A) {−8}\{ - 8 \}
B) {−24}\{ - 24 \}
C) {8}\{ 8 \}
D) {−30}\{ - 30 \} Find all values of x satisfying the given conditions.
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
76
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
4(5x+30)=20x+1204 ( 5 x + 30 ) = 20 x + 120

A) Identity
B) Conditional equation
C) Inconsistent equation
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
77
Determine whether the equation is an identity, a conditional equation, or an inconsistent equation.
4(x−3)−8=8x−4(x−7)4 ( x - 3 ) - 8 = 8 x - 4 ( x - 7 )

A) Identity
B) Conditional equation
C) Inconsistent equation
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
78
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
36x−7+4=4x−7\frac { 36 } { x - 7 } + 4 = \frac { 4 } { x - 7 }

A) x≠7;{−1}x \neq 7 ; \{ - 1 \}
B) x≠−7;{−1}x \neq - 7 ; \{ - 1 \}
C) x≠−7;{17}x \neq - 7 ; \{ 17 \}
D) x≠7;∅x \neq 7 ; \varnothing
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
79
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
2y+5−6y−5=4y2−25\frac { 2 } { y + 5 } - \frac { 6 } { y - 5 } = \frac { 4 } { y ^ { 2 } - 25 }

A) {−11}\{ - 11 \}
B) {11}\{ 11 \}
C) {33}\{ \sqrt { 33 } \}
D) {44}\{ 44 \}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
80
First, write the value(s) that make the denominator(s) zero. Then solve the equation.
2x+6=52x+163\frac { 2 } { x } + 6 = \frac { 5 } { 2 x } + \frac { 16 } { 3 }

A) x≠0;{34}x \neq 0 ; \left\{ \frac { 3 } { 4 } \right\}
B) x≠0;{43}x \neq 0 ; \left\{ \frac { 4 } { 3 } \right\}
C) x≠0,2,3;{34}x \neq 0,2,3 ; \left\{ \frac { 3 } { 4 } \right\}
D) No restrictions; {43}\left\{ \frac { 4 } { 3 } \right\}
Unlock Deck
Unlock for access to all 425 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 425 flashcards in this deck.