Deck 10: Conic Sections and Analytic Geometry

Full screen (f)
exit full mode
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,−3),(0,3)( 0 , - 3 ) , ( 0,3 ) ; vertices: (0,−5),(0,5)( 0 , - 5 ) , ( 0,5 )

A) x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
D) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
Use Space or
up arrow
down arrow
to flip the card.
Question
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  B)  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  C)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 8 )  and  ( 0,8 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0,8 )  and  ( 6,0 )  <div style=padding-top: 35px>

A) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,−27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
B) x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (0,−27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
C) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,−8)( 0 , - 8 ) and (0,8)( 0,8 )
D) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,8)( 0,8 ) and (6,0)( 6,0 )
Question
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form   Center at  ( - 1,2 ) </strong> A)  \frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , 2 )  and  ( - 1 - 3 \sqrt { 3 } , 2 )  B)  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1  foci at  ( 2 + 3 \sqrt { 3 } , - 1 )  and  ( 2 - 3 \sqrt { 3 } , - 1 )  C)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1  foci at  ( - 3 \sqrt { 3 } , 2 )  and  ( 3 \sqrt { 3 } , 2 )  D)  \frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , - 1 )  and  ( - 1 - 3 \sqrt { 3 } , - 1 )  <div style=padding-top: 35px>
Center at (−1,2)( - 1,2 )

A) (x+1)236+(y−2)29=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
foci at (−1+33,2)( - 1 + 3 \sqrt { 3 } , 2 ) and (−1−33,2)( - 1 - 3 \sqrt { 3 } , 2 )
B) (x+1)29+(y−2)236=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
foci at (2+33,−1)( 2 + 3 \sqrt { 3 } , - 1 ) and (2−33,−1)( 2 - 3 \sqrt { 3 } , - 1 )
C) (x−2)29+(y+1)236=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1
foci at (−33,2)( - 3 \sqrt { 3 } , 2 ) and (33,2)( 3 \sqrt { 3 } , 2 )
D) (x−2)236+(y+1)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1
foci at (−1+33,−1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (−1−33,−1)( - 1 - 3 \sqrt { 3 } , - 1 )
Question
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  B)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  C)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 6,0 )  and  ( 6,0 )  <div style=padding-top: 35px>

A) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (−42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
B) x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (−42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
C) x236−y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1
foci at (−42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
D) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (−6,0)( - 6,0 ) and (6,0)( 6,0 )
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (1,−3)( 1 , - 3 ) and (1,7)( 1,7 ) ; endpoints of minor axis: (−3,2)( - 3,2 ) and (5,2)( 5,2 ) ;

A) (x−1)216+(y−2)225=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 25 } = 1
B) (x−4)216+(y−5)225=1\frac { ( x - 4 ) ^ { 2 } } { 16 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
C) (x+1)216+(y+2)225=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
D) (x−2)216+(y−1)225=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (−7,0),(7,0)( - 7,0 ) , ( 7,0 ) ; vertices: (−8,0),(8,0)( - 8,0 ) , ( 8,0 )

A) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = 1
B) x215+y264=1\frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
C) x249+y215=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 15 } = 1
D) x249+y264=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 64 } = 1
Question
Graph the ellipse and locate the foci.
9x2=144−16y29 x^{2}=144-16 y^{2}
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>

A) foci at (7,0)( \sqrt { 7 } , 0 ) and (−7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
B) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,−7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
C) foci at (5,0)( 5,0 ) and (−5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
D) foci at (4,0)( 4,0 ) and (−4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
Question
Graph the ellipse and locate the foci.
x274+y294=1\frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1
Round to the nearest tenth if necessary.
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>

A) foci (0,0.7)( 0,0.7 ) and (0,−0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
B) foci (0.7,0)( 0.7,0 ) and (0,−0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
C) foci (0,0.7)( 0,0.7 ) and (0,−0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
D) foci (0.8,0)( 0.8,0 ) and (0,−0.8)( 0 , - 0.8 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis vertical with length 12;12 ; length of minor axis =6;= 6 ; center (0,0)( 0,0 )

A) x29+y236=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y29=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1
C) x26+y236=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 36 } = 1
D) x236+y2144=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 144 } = 1
Question
Graph the ellipse and locate the foci.
x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>

A) foci at (2,0)( 2,0 ) and (−2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
B) foci at (0,3)( 0,3 ) and (0,−3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
C) foci at (5,0)( \sqrt { 5 } , 0 ) and (−5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
D) foci at (0,2)( 0,2 ) and (0,−2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )    <div style=padding-top: 35px>
Question
Graph the ellipse and locate the foci.
x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>

A) foci at (0,2)( 0,2 ) and (0,−2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
B) foci at (2,0)( 2,0 ) and (−2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
C) foci at (0,21)( 0 , \sqrt { 21 } ) and (0,−21)( 0 , - \sqrt { 21 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
D) foci at (0,5)( 0,5 ) and (0,−5)( 0 , - 5 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (−3,0),(3,0);x( - 3,0 ) , ( 3,0 ) ; x -intercepts: −4- 4 and 4

A) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1
B) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y27=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 7 } = 1
D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
Question
Graph the ellipse and locate the foci.
x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>

A) foci at (27,0)( 2 \sqrt { 7 } , 0 ) and (−27,0)( - 2 \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
B) foci at (0,27)( 0,2 \sqrt { 7 } ) and (0,−27)( 0 , - 2 \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
C) foci at (35,0)( 3 \sqrt { 5 } , 0 ) and (−35,0)( - 3 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
D) foci at (0,35)( 0,3 \sqrt { 5 } ) and (0,−35)( 0 , - 3 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis horizontal with length 20 ; length of minor axis =12;= 12 ; center (0,0)( 0,0 )

A) x2100+y236=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y2100=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 100 } = 1
C) x220+y236=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 36 } = 1
D) x2400+y2144=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 144 } = 1
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (−7,4)( - 7,4 ) and (9,4)( 9,4 ) ; endpoints of minor axis: (1,−1)( 1 , - 1 ) and (1,9)( 1,9 )

A) (x−1)264+(y−4)225=1\frac { ( x - 1 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 25 } = 1
B) (x−4)225+(y−1)264=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( y - 1 ) ^ { 2 } } { 64 } = 1
C) (x+1)264+(y−5)225=0\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 0
D) (x+1)264+(y−5)225=1\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
Question
Graph Ellipses Not Centered at the Origin
(x+2)29+(y−2)216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the ellipse and locate the foci.
x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>

A) foci at (0,3)( 0,3 ) and (0,−3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
B) foci at (3,0)( 3,0 ) and (−3,0)( - 3,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
C) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (−25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
D) foci at (0,25)( 0,2 \sqrt { 5 } ) and (0,−25)( 0 , - 2 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )    <div style=padding-top: 35px>
Question
Graph the ellipse and locate the foci.
16x2+9y2=14416 x^{2}+9 y^{2}=144
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>

A) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,−7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
B) foci at (7,0)( \sqrt { 7 } , 0 ) and (−7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
C) foci at (5,0)( 5,0 ) and (−5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
D) foci at (4,0)( 4,0 ) and (−4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,−4),(0,4);y( 0 , - 4 ) , ( 0,4 ) ; y -intercepts: −8- 8 and 8

A) x248+y264=1\frac { x ^ { 2 } } { 48 } + \frac { y ^ { 2 } } { 64 } = 1
B) x264+y248=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 48 } = 1
C) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1
D) x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1
Question
Graph Ellipses Not Centered at the Origin
(x−2)216+(y−1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Convert the equation to the standard form for an ellipse by completing the square on x and y.
36x2+16y2+216x−64y−188=036 x ^ { 2 } + 16 y ^ { 2 } + 216 x - 64 y - 188 = 0

A) (x+3)216+(y−2)236=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
B) (x−2)216+(y+3)236=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1
C) (x+3)236+(y−2)216=1\frac { ( x + 3 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
D) (x−3)216+(y+2)236=1\frac { ( x - 3 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
Question
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y=±x2−10y = \pm \sqrt { x ^ { 2 } - 10 }

A) vertices: (−10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
foci: (−25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
B) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
C) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )

D) vertices: (0,−10),(0,10)( 0 , - \sqrt { 10 } ) , ( 0 , \sqrt { 10 } )

foci: (0,−25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
Question
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
81x2−100y2=810081 x ^ { 2 } - 100 y ^ { 2 } = 8100

A) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
B) vertices: (0,−10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,−181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
C) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−19,0),(19,0)( - \sqrt { 19 } , 0 ) , ( \sqrt { 19 } , 0 )

D) vertices: (−9,0),(9,0)( - 9,0 ) , ( 9,0 )

foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
Question
Convert the equation to the standard form for an ellipse by completing the square on x and y.
4x2+16y2+8x+96y+84=04 x ^ { 2 } + 16 y ^ { 2 } + 8 x + 96 y + 84 = 0

A) (x+1)216+(y+3)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
B) (x+3)216+(y+1)24=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
C) (x+1)24+(y+3)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
D) (x−1)216+(y−3)24=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 4 } = 1
Question
Graph Ellipses Not Centered at the Origin
(x+1)236+(y+3)29=1\frac { ( \mathrm { x } + 1 ) ^ { 2 } } { 36 } + \frac { ( \mathrm { y } + 3 ) ^ { 2 } } { 9 } = 1

A) foci at (−1+33,−3)( - 1 + 3 \sqrt { 3 } , - 3 ) and (−1−33,−3)( - 1 - 3 \sqrt { 3 } , - 3 )
B) foci at (−3+33,−1)( - 3 + 3 \sqrt { 3 } , - 1 ) and (−3−33,−1)( - 3 - 3 \sqrt { 3 } , - 1 )
C) foci at (−33,−3)( - 3 \sqrt { 3 } , - 3 ) and (33,−3)( 3 \sqrt { 3 } , - 3 )
D) foci at (−1+33,−1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (−1−33,−1)( - 1 - 3 \sqrt { 3 } , - 1 )
Question
Additional Concepts
{x2+y2=145x+y=17\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\x + y = 17\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\ x + y = 17 \end{array} \right.    </strong> A)  \{ ( 9,8 ) , ( 8,9 ) \}  B)  \{ ( - 9,8 ) , ( - 8,9 ) \}  C)  \{ ( 9 , - 8 ) , ( 8 , - 9 ) \}  D)  \{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}  <div style=padding-top: 35px>

A) {(9,8),(8,9)}\{ ( 9,8 ) , ( 8,9 ) \}
B) {(−9,8),(−8,9)}\{ ( - 9,8 ) , ( - 8,9 ) \}
C) {(9,−8),(8,−9)}\{ ( 9 , - 8 ) , ( 8 , - 9 ) \}
D) {(−9,−8),(−8,−9)}\{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}
Question
Graph Ellipses Not Centered at the Origin
36(x+3)2+16(y−2)2=57636 ( x + 3 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 576

A) foci at (−3,2−25)( - 3,2 - 2 \sqrt { 5 } ) and (−3,2+25)( - 3,2 + 2 \sqrt { 5 } )
B) foci at (2,−3−25)( 2 , - 3 - 2 \sqrt { 5 } ) and (2,−3+25)( 2 , - 3 + 2 \sqrt { 5 } )
C) foci at (3,2−25)( 3,2 - 2 \sqrt { 5 } ) and (3,2+25)( 3,2 + 2 \sqrt { 5 } )
D) foci at (−2,2−25)( - 2,2 - 2 \sqrt { 5 } ) and (−2,2+25)( - 2,2 + 2 \sqrt { 5 } )
Question
Additional Concepts
{x225+y29=1y=3\left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\y = 3\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\ y = 3 \end{array} \right.    </strong> A)  \{ ( 0,3 ) \}  B)  \{ ( 3,3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  <div style=padding-top: 35px>

A) {(0,3)}\{ ( 0,3 ) \}
B) {(3,3)}\{ ( 3,3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3),(0,−3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
Question
Graph Ellipses Not Centered at the Origin
25(x+2)2+36(y−3)2=90025 ( x + 2 ) ^ { 2 } + 36 ( y - 3 ) ^ { 2 } = 900

A) foci at (−2+11,3)( - 2 + \sqrt { 11 } , 3 ) and (−2−11,3)( - 2 - \sqrt { 11 } , 3 )
B) foci at (3+11,−2)( 3 + \sqrt { 11 } , - 2 ) and (3−11,−2)( 3 - \sqrt { 11 } , - 2 )
C) foci at (−11,3)( - \sqrt { 11 } , 3 ) and (11,3)( \sqrt { 11 } , 3 )
D) foci at (−2+11,−2)( - 2 + \sqrt { 11 } , - 2 ) and (−2−11,−2)( - 2 - \sqrt { 11 } , - 2 )
Question
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y2100−x281=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 81 } = 1

A) vertices: (0,−10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,−181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
B) vertices: (−9,0),(9,0)( - 9,0 ) , ( 9,0 )
foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
C) vertices: (0,−10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )

D) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−9,0),(9,0)( - 9,0 ) , ( 9,0 )
Question
Graph Ellipses Not Centered at the Origin
9(x−1)2+16(y+2)2=1449(x-1)^{2}+16(y+2)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the semi-ellipse.
y=−25−16x2y=-\sqrt{25-16 x^{2}}
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>  C)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 2 can pass under the bridge, but Truck 1 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 1 can pass under the bridge, but Truck 2 cannot.
Question
Graph Ellipses Not Centered at the Origin
(x−1)29+(y−3)236=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 3 ) ^ { 2 } } { 36 } = 1

A) foci at (1,3−33)( 1,3 - 3 \sqrt { 3 } ) and (1,3+33)( 1,3 + 3 \sqrt { 3 } )
B) foci at (3,1−33)( 3,1 - 3 \sqrt { 3 } ) and (3,1+33)( 3,1 + 3 \sqrt { 3 } )
C) foci at (−1,3−33)( - 1,3 - 3 \sqrt { 3 } ) and (−1,3+33)( - 1,3 + 3 \sqrt { 3 } )
D) foci at (2,3−33)( 2,3 - 3 \sqrt { 3 } ) and (2,3+33)( 2,3 + 3 \sqrt { 3 } )
Question
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
x264−y216=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 16 } = 1

A) vertices: (−8,0),(8,0)( - 8,0 ) , ( 8,0 )
B) vertices: (−4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (−45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (−45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
C) vertices: (0,−8),(0,8)( 0 , - 8 ) , ( 0,8 )
D) vertices: (−8,0),(8,0)( - 8,0 ) , ( 8,0 )
foci: (−45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (−4,0),(4,0)( - 4,0 ) , ( 4,0 )
Question
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
4y2−16x2=644 y ^ { 2 } - 16 x ^ { 2 } = 64

A) vertices: (0,−4),(0,4)( 0 , - 4 ) , ( 0,4 )
foci: (0,−25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
B) vertices: (−4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (−25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
C) vertices: (−2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (−23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )


D) vertices: (0,−2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (0,−25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
Question
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 1 can pass under the bridge, but Truck 2 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
Question
Additional Concepts
{x2+y2=2525x2+9y2=225\left\{\begin{array}{l}x^{2}+y^{2}=25 \\25 x^{2}+9 y^{2}=225\end{array}\right.
 <strong>Additional Concepts  \left\{\begin{array}{l} x^{2}+y^{2}=25 \\ 25 x^{2}+9 y^{2}=225 \end{array}\right.    </strong> A)  \{ ( 0,5 ) , ( 0 , - 5 ) \}  B)  \{ ( 5,0 ) , ( - 5,0 ) \}  C)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  D)  \{ ( 3,0 ) , ( - 3,0 ) \}  <div style=padding-top: 35px>

A) {(0,5),(0,−5)}\{ ( 0,5 ) , ( 0 , - 5 ) \}
B) {(5,0),(−5,0)}\{ ( 5,0 ) , ( - 5,0 ) \}
C) {(0,3),(0,−3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
D) {(3,0),(−3,0)}\{ ( 3,0 ) , ( - 3,0 ) \}
Question
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Both Truck 1 and Truck 2 can pass under the bridge.
B) Neither Truck 1 nor Truck 2 can pass under the bridge.
C) Truck 1 can pass under the bridge, but Truck 2 cannot.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
Question
Graph Ellipses Not Centered at the Origin
16(x+2)2+9(y−1)2=14416(x+2)^{2}+9(y-1)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given. <div style=padding-top: 35px>  Find the foci of the ellipse whose equation is given.
Question
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1  B)  \frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1  D)  \frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1  <div style=padding-top: 35px>

A) (y−1)29−(x−1)216=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1
B) (y−1)216−(x−1)29=1\frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1
C) (x−1)216−(y−1)29=1\frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
D) (x−1)29−(y−1)216=1\frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
Question
Graph Hyperbolas Not Centered at the Origin
(x−3)24−(y−1)29=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1

A) Center: (3,1)( 3,1 ) ; Vertices: (1,1)( 1,1 ) and (5,1)( 5,1 ) ; Foci: (3−13,1)( 3 - \sqrt { 13 } , 1 ) and (3+13,1)( 3 + \sqrt { 13 } , 1 )
B) Center: (−3,−1)( - 3 , - 1 ) ; Vertices: (−5,−1)( - 5 , - 1 ) and (−1,−1)( - 1 , - 1 ) ; Foci: (−3−13,−1)( - 3 - \sqrt { 13 } , - 1 ) and (−3+13,−1)( - 3 + \sqrt { 13 } , - 1 )
C) Center: (3,1)( 3,1 ) ; Vertices: (1,−1)( 1 , - 1 ) and (5,−1)( 5 , - 1 ) ; Foci: (3−13,−1)( 3 - \sqrt { 13 } , - 1 ) and (3+13,−1)( 3 + \sqrt { 13 } , - 1 )
D) Center: (3,1)( 3,1 ) ; Vertices: (2,1)( 2,1 ) and (6,1)( 6,1 ) ; Foci: (4+13,2)( 4 + \sqrt { 13 } , 2 ) and (2+13,2)( 2 + \sqrt { 13 } , 2 )
Question
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (−5,0),(5,0)( - 5,0 ) , ( 5,0 ) ; foci: (−11,0),(−11,0)( - 11,0 ) , ( - 11,0 )

A) x225−y296=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 96 } = 1
B) x296−y225=1\frac { x ^ { 2 } } { 96 } - \frac { y ^ { 2 } } { 25 } = 1
C) x225−y2121=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 121 } = 1
D) x2121−y225=1\frac { x ^ { 2 } } { 121 } - \frac { y ^ { 2 } } { 25 } = 1
Question
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1  B)  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1  <div style=padding-top: 35px>

A) y225−x216=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1
B) x225−y216=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1
C) x216−y225=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1
D) y216−x225=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9y2−4x2+18y+16x−43=09 y ^ { 2 } - 4 x ^ { 2 } + 18 y + 16 x - 43 = 0

A) (y+1)24−(x−2)29=1\frac { ( y + 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1
B) (y−1)24−(x+2)29=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1
C) (y+1)29−(x−2)24=1\frac { ( y + 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
D) (x+2)29−(y−1)24=1\frac { ( x + 2 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
Question
Write Equations of Hyperbolas in Standard Form
Center: (6,1)( 6,1 ) ; Focus: (−1,1)( - 1,1 ) ; Vertex: (5,1)( 5,1 )

A) (x−6)2−(y−1)248=1( x - 6 ) ^ { 2 } - \frac { ( y - 1 ) ^ { 2 } } { 48 } = 1
B) (x−6)248−(y−1)2=1\frac { ( x - 6 ) ^ { 2 } } { 48 } - ( y - 1 ) ^ { 2 } = 1
C) (x−1)2−(y−6)248=1( x - 1 ) ^ { 2 } - \frac { ( y - 6 ) ^ { 2 } } { 48 } = 1
D) (x−1)248−(y−6)2=1\frac { ( x - 1 ) ^ { 2 } } { 48 } - ( y - 6 ) ^ { 2 } = 1
Question
Match the equation to the graph.
x29−y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph Hyperbolas Centered at the Origin
y24−x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>

A) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
D) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x    <div style=padding-top: 35px>
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
y2−4x2−4y−16x−16=0y ^ { 2 } - 4 x ^ { 2 } - 4 y - 16 x - 16 = 0

A) (y−2)24−(x+2)2=1\frac { ( y - 2 ) ^ { 2 } } { 4 } - ( x + 2 ) ^ { 2 } = 1
B) (x−2)24−(y+2)2=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - ( y + 2 ) ^ { 2 } = 1
C) (y−4)24−(x+4)2=1\frac { ( y - 4 ) ^ { 2 } } { 4 } - ( x + 4 ) ^ { 2 } = 1
D) (x+2)2−(y−2)24=1( x + 2 ) ^ { 2 } - \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1
Question
Write Equations of Hyperbolas in Standard Form
Foci: (−9,0),(9,0)( - 9,0 ) , ( 9,0 ) ; vertices: (−5,0),(5,0)( - 5,0 ) , ( 5,0 )

A) x225−y256=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 56 } = 1
B) y225−x256=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 56 } = 1
C) x225−y281=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 81 } = 1
D) y225−x281=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 81 } = 1
Question
Graph Hyperbolas Centered at the Origin
y=±x2−3y=\pm \sqrt{x^{2}-3}
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>

A) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
D) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
Question
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (0,−6),(0,6)( 0 , - 6 ) , ( 0,6 ) ; asymptote: y=310xy = \frac { 3 } { 10 } x

A) y236−x2400=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 400 } = 1
B) y2400−x236=1\frac { y ^ { 2 } } { 400 } - \frac { x ^ { 2 } } { 36 } = 1
C) y236−x2100=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 100 } = 1
D) y2100−x29=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 9 } = 1
Question
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1  B)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1  <div style=padding-top: 35px>

A) x29−y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
B) y29−x216=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1
C) x216−y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
D) y216−x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
Question
Match the equation to the graph.
y24−x216=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
x2−y2+6x−2y+7=0x ^ { 2 } - y ^ { 2 } + 6 x - 2 y + 7 = 0

A) (x+3)2−(y+1)2=1( x + 3 ) ^ { 2 } - ( y + 1 ) ^ { 2 } = 1
B) (y+3)2−(x+1)2=1( y + 3 ) ^ { 2 } - ( x + 1 ) ^ { 2 } = 1
C) (x+3)2+(y+1)2=1( x + 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 1
D) (y+3)24−(x+1)236=1\frac { ( y + 3 ) ^ { 2 } } { 4 } - \frac { ( x + 1 ) ^ { 2 } } { 36 } = 1
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9x2−4y2+18x−16y−43=09 x ^ { 2 } - 4 y ^ { 2 } + 18 x - 16 y - 43 = 0

A) (x+1)24−(y+2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
B) (x−1)24−(y+2)29=1\frac { ( x - 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
C) (x+1)24−(y−2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
D) (x+1)29−(y+2)24=1\frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1
Question
Graph Hyperbolas Centered at the Origin
16x2−9y2=14416 x^{2}-9 y^{2}=144
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>

A) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
B) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
D) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    <div style=padding-top: 35px>
Question
Graph Hyperbolas Centered at the Origin
x29−y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>

A) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>
B) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>
C) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
11ecb96a_d1c1_703f_9fac_351916337d59_TB7044_00
D) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    <div style=padding-top: 35px>
Question
Write Equations of Hyperbolas in Standard Form
Foci: (0,−9),(0,9)( 0 , - 9 ) , ( 0,9 ) ; vertices: (0,−4),(0,4)( 0 , - 4 ) , ( 0,4 )

A) y216−x265=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 65 } = 1
B) x216−y265=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 65 } = 1
C) x216−y281=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 81 } = 1
D) y216−x281=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 81 } = 1
Question
Graph Hyperbolas Centered at the Origin
16y2−9x2=14416 y ^ { 2 } - 9 x ^ { 2 } = 144
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>

A) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
B) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
D) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x    <div style=padding-top: 35px>
Question
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=8yx ^ { 2 } = 8 y

A) focus: (0,2)( 0,2 )
directrix: y=−2y = - 2
B) focus: (2,0)( 2,0 )
directrix: y=2y = 2
C) focus: (2,0)( 2,0 )
directrix: x=2x = 2
D) focus: (0,−2)( 0 , - 2 )
directrix: x=−2x = - 2
Question
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=−24xy ^ { 2 } = - 24 x

A) focus: (−6,0)( - 6,0 )
directrix: x=6x = 6
B) focus: (0,−6)( 0 , - 6 )
directrix: y=6y = 6
C) focus: (6,0)( 6,0 )
directrix: x=−6x = - 6
D) focus: (−6,0)( - 6,0 )
directrix: y=6\mathrm { y } = 6
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(y−2)2−(x+1)2=5(y-2)^{2}-(x+1)^{2}=5
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(y−2)29−(x−1)225=1\frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Additional Concepts
y29−x236=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1
 <strong>Additional Concepts  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1   </strong> A) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  or  [ 3 , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  and  [ 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,−3]( - \infty , - 3 ] or [3,∞)[ 3 , \infty )
B) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,−3]( - \infty , - 3 ] and [3,∞)[ 3 , \infty )
C) Domain: (−∞,−3]( - \infty , - 3 ] or [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
D) Domain: (−∞,−3]( - \infty , - 3 ] and [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
Question
Solve Applied Problems Involving Hyperbolas
Two recording devices are set 3200 feet apart, with the device at point A to the west of the device at point B. At a point on a line between the devices, 400 feet from point B, a small amount of explosive is detonated. The recording devices record the time the sound reaches each one. How far directly north of site B should a second explosion be done so that the measured time difference recorded by the devices is the same as that for the first detonation?

A) 933.33933.33 feet
B) 4098.784098.78 feet
C) 1549.191549.19 feet
D) 1763.831763.83 feet
Question
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=−28yx ^ { 2 } = - 28 y

A) focus: (0,−7)( 0 , - 7 )
directrix: y=7y = 7
B) focus: (−14,0)( - 14,0 )
directrix: x=7x = 7
C) focus: (0,−7)( 0 , - 7 )
directrix: y=−7y = -7
D) focus: (0,7)( 0,7 )
directrix: y=−7y = -7

Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(y−1)2−4(x+4)2=4(y-1)^{2}-4(x+4)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph Hyperbolas Not Centered at the Origin
(y+2)2−4(x+1)2=4( \mathrm { y } + 2 ) ^ { 2 } - 4 ( \mathrm { x } + 1 ) ^ { 2 } = 4

A) Center: (−1,−2)( - 1 , - 2 ) ; Vertices: (−1,−4)( - 1 , - 4 ) and (−1,0)( - 1,0 ) ; Foci: (−1,−2−5)( - 1 , - 2 - \sqrt { 5 } ) and (−1,−2+5)( - 1 , - 2 + \sqrt { 5 } )
B) Center: (1,2)( 1,2 ) ; Vertices: (1,0)( 1,0 ) and (1,4)( 1,4 ) ; Foci: (1,2−5)( 1,2 - \sqrt { 5 } ) and (1,2+5)( 1,2 + \sqrt { 5 } )
C) Center: (−1,−2)( - 1 , - 2 ) ; Vertices: (1,−2)( 1 , - 2 ) and (−1,2)( - 1,2 ) ; Foci: (−1,−5)( - 1 , - \sqrt { 5 } ) and (−1,5)( - 1 , \sqrt { 5 } )
D) Center: (−1,−2)( - 1 , - 2 ) ; Vertices: (0,−3)( 0 , - 3 ) and (0,1)( 0,1 ) ; Foci: (0,−1−5)( 0 , - 1 - \sqrt { 5 } ) and (0,−1+5)( 0 , - 1 + \sqrt { 5 } )
Question
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
4x2+y2=4y2−4x2=4\begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\y ^ { 2 } - 4 x ^ { 2 } = 4\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\ y ^ { 2 } - 4 x ^ { 2 } = 4 \end{array}    </strong> A)  \{ ( 0 , - 2 ) , ( 0,2 ) \}  B)  \{ ( 0 , - 2 ) \}  C)  \{ ( 0,4 ) \}  D)  \{ ( 2,0 ) , ( 2,0 ) \}  <div style=padding-top: 35px>

A) {(0,−2),(0,2)}\{ ( 0 , - 2 ) , ( 0,2 ) \}
B) {(0,−2)}\{ ( 0 , - 2 ) \}
C) {(0,4)}\{ ( 0,4 ) \}
D) {(2,0),(2,0)}\{ ( 2,0 ) , ( 2,0 ) \}
Question
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=12xy ^ { 2 } = 12 x

A) focus: (3,0)( 3,0 )
directrix: x=−3x = - 3
B) focus: (0,3)( 0,3 )
directrix: y=−3y = - 3
C) focus: (3,0)( 3,0 )
directrix: x=3x = 3
D) focus: (0,−3)( 0 , - 3 )
directrix: y=−3y = - 3
Question
Solve Applied Problems Involving Hyperbolas
Two LORAN stations are positioned 208 miles apart along a straight shore. A ship records a time difference of 0.000970.00097 seconds between the LORAN signals. (The radio signals travel at 186,000 miles per second.) Where will the ship reach shore if it were to follow the hyperbola corresponding to this time difference? If the ship is 150 miles offshore, what is the position of the ship?

A) 14 miles from the master station, (274.2,150)( 274.2,150 )
B) 90 miles from the master station, (150,274.2)( 150,274.2 )
C) 14 miles from the master station, (150,274.2)( 150,274.2 )
D) 90 miles from the master station, (274.2,150)( 274.2,150 )
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(x−2)24−(y+2)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
A)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
x2−y2=196x2+y2=196\begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\x ^ { 2 } + y ^ { 2 } = 196\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\ x ^ { 2 } + y ^ { 2 } = 196 \end{array}    </strong> A)  \{ ( 14,0 ) , ( - 14,0 ) \}  B)  \{ ( 0,14 ) , ( 0 , - 14 ) \}  C)  \{ ( 14,0 ) \}  D)  \{ ( 0,14 ) \}  <div style=padding-top: 35px>

A) {(14,0),(−14,0)}\{ ( 14,0 ) , ( - 14,0 ) \}
B) {(0,14),(0,−14)}\{ ( 0,14 ) , ( 0 , - 14 ) \}
C) {(14,0)}\{ ( 14,0 ) \}
D) {(0,14)}\{ ( 0,14 ) \}
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+2)2−4(y−1)2=4(x+2)^{2}-4(y-1)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
D)

 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
Question
Graph Hyperbolas Not Centered at the Origin
(y−4)249−(x−4)29=1\frac { ( y - 4 ) ^ { 2 } } { 49 } - \frac { ( x - 4 ) ^ { 2 } } { 9 } = 1

A) Center: (4,4)( 4,4 ) ; Vertices: (4,−3)( 4 , - 3 ) and (4,11)( 4,11 ) ; Foci: (4,4−58)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } )
B) Center: (−4,−4)( - 4 , - 4 ) ; Vertices: (−4,−11)( - 4 , - 11 ) and (−4,3)( - 4,3 ) ; Foci: (−4,−4−58)( - 4 , - 4 - \sqrt { 58 } ) and (−4,−4+58)( - 4 , - 4 + \sqrt { 58 } )
C) Center: (4,4)( 4,4 ) ; Vertices: (4,4−58)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } ) ; Foci: (4,−3)( 4 , - 3 ) and (4,11)( 4,11 )
D) Center: (4,4)( 4,4 ) ; Vertices: (3,−2)( 3 , - 2 ) and (5,12)( 5,12 ) ; Foci: (3,5−58)( 3,5 - \sqrt { 58 } ) and (5,5+58)( 5,5 + \sqrt { 58 } )
Question
Additional Concepts
x29−y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1    </strong> A) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 )  or  ( 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , \infty )  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: (−∞,−3]( - \infty , - 3 ] or [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
B) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,−3)( - \infty , - 3 ) or (3,∞)( 3 , \infty )
C) Domain: (−∞,−3]( - \infty , - 3 ] and [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
D) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,∞)( - \infty , \infty )
Question
Graph Hyperbolas Not Centered at the Origin
(x+2)2−64(y−3)2=64( x + 2 ) ^ { 2 } - 64 ( y - 3 ) ^ { 2 } = 64

A) Center: (−2,3)( - 2,3 ) ; Vertices: (−10,3)( - 10,3 ) and (6,3)( 6,3 ) ; Foci: (−2−65,3)( - 2 - \sqrt { 65 } , 3 ) and (−2+65,3)( - 2 + \sqrt { 65 } , 3 )
B) Center: (2,−3)( 2 , - 3 ) ; Vertices: (−6,−3)( - 6 , - 3 ) and (10,−3)( 10 , - 3 ) ; Foci: (2−65,3)( 2 - \sqrt { 65 } , 3 ) and (2+65,3)( 2 + \sqrt { 65 } , 3 )
C) Center: (−2,3)( - 2,3 ) ; Vertices: (−9,4)( - 9,4 ) and (7,4)( 7,4 ) ; Foci: (−1−65,4)( - 1 - \sqrt { 65 } , 4 ) and (−1+65,4)( - 1 + \sqrt { 65 } , 4 )
D) Center: (−2,3)( - 2,3 ) ; Vertices: (8,3)( 8,3 ) and (−8,3)( - 8,3 ) ; Foci: (−65,3)( - \sqrt { 65 } , 3 ) and (65,3)( \sqrt { 65 } , 3 )
Question
Additional Concepts
x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A) Domain:  [ - 4,4 ] ^ { \downarrow }  Range:  [ - 3,3 ]  B) Domain:  [ - 3,3 ]  Range:  [ - 4,4 ]  C) Domain:  ( - 4,4 )  Range:  ( - 3,3 )  D) Domain:  [ - 4,4 ]  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: [−4,4]↓[ - 4,4 ] ^ { \downarrow }
Range: [−3,3][ - 3,3 ]
B) Domain: [−3,3][ - 3,3 ]
Range: [−4,4][ - 4,4 ]
C) Domain: (−4,4)( - 4,4 )
Range: (−3,3)( - 3,3 )
D) Domain: [−4,4][ - 4,4 ]
Range: (−∞,∞)( - \infty , \infty )
Question
Solve Applied Problems Involving Hyperbolas
A satellite following the hyperbolic path shown in the picture turns rapidly at (0,6)( 0,6 ) and then moves closer and closer to the line y=92xy = \frac { 9 } { 2 } x as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at (0,0)( 0,0 ) .
 <strong>Solve Applied Problems Involving Hyperbolas A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,6 )  and then moves closer and closer to the line  y = \frac { 9 } { 2 } x  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at  ( 0,0 ) .  </strong> A)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1  B)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1  C)  \frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1  D)  \frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1  <div style=padding-top: 35px>

A) y236−x2169=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1
B) x236−y2(544)2=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1
C) y2169−x236=1\frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1
D) x2(544)2−y236=1\frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/228
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Conic Sections and Analytic Geometry
1
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,−3),(0,3)( 0 , - 3 ) , ( 0,3 ) ; vertices: (0,−5),(0,5)( 0 , - 5 ) , ( 0,5 )

A) x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
D) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
A
2
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  B)  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( 0 , - 2 \sqrt { 7 } )  and  ( 0,2 \sqrt { 7 } )  C)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0 , - 8 )  and  ( 0,8 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1  foci at  ( 0,8 )  and  ( 6,0 )

A) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,−27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
B) x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (0,−27)( 0 , - 2 \sqrt { 7 } ) and (0,27)( 0,2 \sqrt { 7 } )
C) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,−8)( 0 , - 8 ) and (0,8)( 0,8 )
D) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1
foci at (0,8)( 0,8 ) and (6,0)( 6,0 )
A
3
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form   Center at  ( - 1,2 ) </strong> A)  \frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , 2 )  and  ( - 1 - 3 \sqrt { 3 } , 2 )  B)  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1  foci at  ( 2 + 3 \sqrt { 3 } , - 1 )  and  ( 2 - 3 \sqrt { 3 } , - 1 )  C)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1  foci at  ( - 3 \sqrt { 3 } , 2 )  and  ( 3 \sqrt { 3 } , 2 )  D)  \frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , - 1 )  and  ( - 1 - 3 \sqrt { 3 } , - 1 )
Center at (−1,2)( - 1,2 )

A) (x+1)236+(y−2)29=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
foci at (−1+33,2)( - 1 + 3 \sqrt { 3 } , 2 ) and (−1−33,2)( - 1 - 3 \sqrt { 3 } , 2 )
B) (x+1)29+(y−2)236=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
foci at (2+33,−1)( 2 + 3 \sqrt { 3 } , - 1 ) and (2−33,−1)( 2 - 3 \sqrt { 3 } , - 1 )
C) (x−2)29+(y+1)236=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1
foci at (−33,2)( - 3 \sqrt { 3 } , 2 ) and (33,2)( 3 \sqrt { 3 } , 2 )
D) (x−2)236+(y+1)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1
foci at (−1+33,−1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (−1−33,−1)( - 1 - 3 \sqrt { 3 } , - 1 )
A
4
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  B)  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  C)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 4 \sqrt { 2 } , 0 )  and  ( 4 \sqrt { 2 } , 0 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1  foci at  ( - 6,0 )  and  ( 6,0 )

A) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (−42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
B) x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1
foci at (−42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
C) x236−y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1
foci at (−42,0)( - 4 \sqrt { 2 } , 0 ) and (42,0)( 4 \sqrt { 2 } , 0 )
D) x236+y24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 4 } = 1
foci at (−6,0)( - 6,0 ) and (6,0)( 6,0 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
5
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (1,−3)( 1 , - 3 ) and (1,7)( 1,7 ) ; endpoints of minor axis: (−3,2)( - 3,2 ) and (5,2)( 5,2 ) ;

A) (x−1)216+(y−2)225=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 25 } = 1
B) (x−4)216+(y−5)225=1\frac { ( x - 4 ) ^ { 2 } } { 16 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
C) (x+1)216+(y+2)225=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
D) (x−2)216+(y−1)225=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
6
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (−7,0),(7,0)( - 7,0 ) , ( 7,0 ) ; vertices: (−8,0),(8,0)( - 8,0 ) , ( 8,0 )

A) x264+y215=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 15 } = 1
B) x215+y264=1\frac { x ^ { 2 } } { 15 } + \frac { y ^ { 2 } } { 64 } = 1
C) x249+y215=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 15 } = 1
D) x249+y264=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 64 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
7
Graph the ellipse and locate the foci.
9x2=144−16y29 x^{2}=144-16 y^{2}
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )

A) foci at (7,0)( \sqrt { 7 } , 0 ) and (−7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
B) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,−7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
C) foci at (5,0)( 5,0 ) and (−5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
D) foci at (4,0)( 4,0 ) and (−4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  9 x^{2}=144-16 y^{2}   </strong> A) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    B) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
8
Graph the ellipse and locate the foci.
x274+y294=1\frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1
Round to the nearest tenth if necessary.
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )

A) foci (0,0.7)( 0,0.7 ) and (0,−0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
B) foci (0.7,0)( 0.7,0 ) and (0,−0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
C) foci (0,0.7)( 0,0.7 ) and (0,−0.7)( 0 , - 0.7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
D) foci (0.8,0)( 0.8,0 ) and (0,−0.8)( 0 , - 0.8 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.  </strong> A) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    B) foci  ( 0.7,0 )  and  ( 0 , - 0.7 )    C) foci  ( 0,0.7 )  and  ( 0 , - 0.7 )    D) foci  ( 0.8,0 )  and  ( 0 , - 0.8 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
9
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis vertical with length 12;12 ; length of minor axis =6;= 6 ; center (0,0)( 0,0 )

A) x29+y236=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y29=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 9 } = 1
C) x26+y236=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 36 } = 1
D) x236+y2144=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 144 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
10
Graph the ellipse and locate the foci.
x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )

A) foci at (2,0)( 2,0 ) and (−2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
B) foci at (0,3)( 0,3 ) and (0,−3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
C) foci at (5,0)( \sqrt { 5 } , 0 ) and (−5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
D) foci at (0,2)( 0,2 ) and (0,−2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1   </strong> A) foci at  ( 2,0 )  and  ( - 2,0 )    B) foci at  ( 0,3 )  and  ( 0 , - 3 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( 0,2 )  and  ( 0 , - 2 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
11
Graph the ellipse and locate the foci.
x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )

A) foci at (0,2)( 0,2 ) and (0,−2)( 0 , - 2 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
B) foci at (2,0)( 2,0 ) and (−2,0)( - 2,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
C) foci at (0,21)( 0 , \sqrt { 21 } ) and (0,−21)( 0 , - \sqrt { 21 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
D) foci at (0,5)( 0,5 ) and (0,−5)( 0 , - 5 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,2 )  and  ( 0 , - 2 )    B) foci at  ( 2,0 )  and  ( - 2,0 )    C) foci at  ( 0 , \sqrt { 21 } )  and  ( 0 , - \sqrt { 21 } )    D) foci at  ( 0,5 )  and  ( 0 , - 5 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
12
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (−3,0),(3,0);x( - 3,0 ) , ( 3,0 ) ; x -intercepts: −4- 4 and 4

A) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1
B) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y27=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 7 } = 1
D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
13
Graph the ellipse and locate the foci.
x264+y236=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )

A) foci at (27,0)( 2 \sqrt { 7 } , 0 ) and (−27,0)( - 2 \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
B) foci at (0,27)( 0,2 \sqrt { 7 } ) and (0,−27)( 0 , - 2 \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
C) foci at (35,0)( 3 \sqrt { 5 } , 0 ) and (−35,0)( - 3 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
D) foci at (0,35)( 0,3 \sqrt { 5 } ) and (0,−35)( 0 , - 3 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1   </strong> A) foci at  ( 2 \sqrt { 7 } , 0 )  and  ( - 2 \sqrt { 7 } , 0 )    B) foci at  ( 0,2 \sqrt { 7 } )  and  ( 0 , - 2 \sqrt { 7 } )    C) foci at  ( 3 \sqrt { 5 } , 0 )  and  ( - 3 \sqrt { 5 } , 0 )    D) foci at  ( 0,3 \sqrt { 5 } )  and  ( 0 , - 3 \sqrt { 5 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
14
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis horizontal with length 20 ; length of minor axis =12;= 12 ; center (0,0)( 0,0 )

A) x2100+y236=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 36 } = 1
B) x236+y2100=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 100 } = 1
C) x220+y236=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 36 } = 1
D) x2400+y2144=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 144 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
15
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (−7,4)( - 7,4 ) and (9,4)( 9,4 ) ; endpoints of minor axis: (1,−1)( 1 , - 1 ) and (1,9)( 1,9 )

A) (x−1)264+(y−4)225=1\frac { ( x - 1 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 25 } = 1
B) (x−4)225+(y−1)264=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( y - 1 ) ^ { 2 } } { 64 } = 1
C) (x+1)264+(y−5)225=0\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 0
D) (x+1)264+(y−5)225=1\frac { ( x + 1 ) ^ { 2 } } { 64 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
16
Graph Ellipses Not Centered at the Origin
(x+2)29+(y−2)216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
17
Graph the ellipse and locate the foci.
x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )

A) foci at (0,3)( 0,3 ) and (0,−3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
B) foci at (3,0)( 3,0 ) and (−3,0)( - 3,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
C) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (−25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
D) foci at (0,25)( 0,2 \sqrt { 5 } ) and (0,−25)( 0 , - 2 \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 0,3 )  and  ( 0 , - 3 )    B) foci at  ( 3,0 )  and  ( - 3,0 )    C) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    D) foci at  ( 0,2 \sqrt { 5 } )  and  ( 0 , - 2 \sqrt { 5 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
18
Graph the ellipse and locate the foci.
16x2+9y2=14416 x^{2}+9 y^{2}=144
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )

A) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,−7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
B) foci at (7,0)( \sqrt { 7 } , 0 ) and (−7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
C) foci at (5,0)( 5,0 ) and (−5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
D) foci at (4,0)( 4,0 ) and (−4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  16 x^{2}+9 y^{2}=144   </strong> A) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )    C) foci at  ( 5,0 )  and  ( - 5,0 )    D) foci at  ( 4,0 )  and  ( - 4,0 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
19
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,−4),(0,4);y( 0 , - 4 ) , ( 0,4 ) ; y -intercepts: −8- 8 and 8

A) x248+y264=1\frac { x ^ { 2 } } { 48 } + \frac { y ^ { 2 } } { 64 } = 1
B) x264+y248=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 48 } = 1
C) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1
D) x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
20
Graph Ellipses Not Centered at the Origin
(x−2)216+(y−1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
21
Convert the equation to the standard form for an ellipse by completing the square on x and y.
36x2+16y2+216x−64y−188=036 x ^ { 2 } + 16 y ^ { 2 } + 216 x - 64 y - 188 = 0

A) (x+3)216+(y−2)236=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
B) (x−2)216+(y+3)236=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1
C) (x+3)236+(y−2)216=1\frac { ( x + 3 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
D) (x−3)216+(y+2)236=1\frac { ( x - 3 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
22
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y=±x2−10y = \pm \sqrt { x ^ { 2 } - 10 }

A) vertices: (−10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
foci: (−25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
B) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−10,0),(10,0)( - \sqrt { 10 } , 0 ) , ( \sqrt { 10 } , 0 )
C) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )

D) vertices: (0,−10),(0,10)( 0 , - \sqrt { 10 } ) , ( 0 , \sqrt { 10 } )

foci: (0,−25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
23
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
81x2−100y2=810081 x ^ { 2 } - 100 y ^ { 2 } = 8100

A) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
B) vertices: (0,−10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,−181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
C) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−19,0),(19,0)( - \sqrt { 19 } , 0 ) , ( \sqrt { 19 } , 0 )

D) vertices: (−9,0),(9,0)( - 9,0 ) , ( 9,0 )

foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
24
Convert the equation to the standard form for an ellipse by completing the square on x and y.
4x2+16y2+8x+96y+84=04 x ^ { 2 } + 16 y ^ { 2 } + 8 x + 96 y + 84 = 0

A) (x+1)216+(y+3)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
B) (x+3)216+(y+1)24=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
C) (x+1)24+(y+3)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
D) (x−1)216+(y−3)24=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
25
Graph Ellipses Not Centered at the Origin
(x+1)236+(y+3)29=1\frac { ( \mathrm { x } + 1 ) ^ { 2 } } { 36 } + \frac { ( \mathrm { y } + 3 ) ^ { 2 } } { 9 } = 1

A) foci at (−1+33,−3)( - 1 + 3 \sqrt { 3 } , - 3 ) and (−1−33,−3)( - 1 - 3 \sqrt { 3 } , - 3 )
B) foci at (−3+33,−1)( - 3 + 3 \sqrt { 3 } , - 1 ) and (−3−33,−1)( - 3 - 3 \sqrt { 3 } , - 1 )
C) foci at (−33,−3)( - 3 \sqrt { 3 } , - 3 ) and (33,−3)( 3 \sqrt { 3 } , - 3 )
D) foci at (−1+33,−1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (−1−33,−1)( - 1 - 3 \sqrt { 3 } , - 1 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
26
Additional Concepts
{x2+y2=145x+y=17\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\x + y = 17\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 145 \\ x + y = 17 \end{array} \right.    </strong> A)  \{ ( 9,8 ) , ( 8,9 ) \}  B)  \{ ( - 9,8 ) , ( - 8,9 ) \}  C)  \{ ( 9 , - 8 ) , ( 8 , - 9 ) \}  D)  \{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}

A) {(9,8),(8,9)}\{ ( 9,8 ) , ( 8,9 ) \}
B) {(−9,8),(−8,9)}\{ ( - 9,8 ) , ( - 8,9 ) \}
C) {(9,−8),(8,−9)}\{ ( 9 , - 8 ) , ( 8 , - 9 ) \}
D) {(−9,−8),(−8,−9)}\{ ( - 9 , - 8 ) , ( - 8 , - 9 ) \}
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
27
Graph Ellipses Not Centered at the Origin
36(x+3)2+16(y−2)2=57636 ( x + 3 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 576

A) foci at (−3,2−25)( - 3,2 - 2 \sqrt { 5 } ) and (−3,2+25)( - 3,2 + 2 \sqrt { 5 } )
B) foci at (2,−3−25)( 2 , - 3 - 2 \sqrt { 5 } ) and (2,−3+25)( 2 , - 3 + 2 \sqrt { 5 } )
C) foci at (3,2−25)( 3,2 - 2 \sqrt { 5 } ) and (3,2+25)( 3,2 + 2 \sqrt { 5 } )
D) foci at (−2,2−25)( - 2,2 - 2 \sqrt { 5 } ) and (−2,2+25)( - 2,2 + 2 \sqrt { 5 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
28
Additional Concepts
{x225+y29=1y=3\left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\y = 3\end{array} \right.
 <strong>Additional Concepts  \left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\ y = 3 \end{array} \right.    </strong> A)  \{ ( 0,3 ) \}  B)  \{ ( 3,3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) , ( 0 , - 3 ) \}

A) {(0,3)}\{ ( 0,3 ) \}
B) {(3,3)}\{ ( 3,3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3),(0,−3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
29
Graph Ellipses Not Centered at the Origin
25(x+2)2+36(y−3)2=90025 ( x + 2 ) ^ { 2 } + 36 ( y - 3 ) ^ { 2 } = 900

A) foci at (−2+11,3)( - 2 + \sqrt { 11 } , 3 ) and (−2−11,3)( - 2 - \sqrt { 11 } , 3 )
B) foci at (3+11,−2)( 3 + \sqrt { 11 } , - 2 ) and (3−11,−2)( 3 - \sqrt { 11 } , - 2 )
C) foci at (−11,3)( - \sqrt { 11 } , 3 ) and (11,3)( \sqrt { 11 } , 3 )
D) foci at (−2+11,−2)( - 2 + \sqrt { 11 } , - 2 ) and (−2−11,−2)( - 2 - \sqrt { 11 } , - 2 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
30
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
y2100−x281=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 81 } = 1

A) vertices: (0,−10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,−181),(0,181)( 0 , - \sqrt { 181 } ) , ( 0 , \sqrt { 181 } )
B) vertices: (−9,0),(9,0)( - 9,0 ) , ( 9,0 )
foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )
C) vertices: (0,−10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (−181,0),(181,0)( - \sqrt { 181 } , 0 ) , ( \sqrt { 181 } , 0 )

D) vertices: (−10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (−9,0),(9,0)( - 9,0 ) , ( 9,0 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
31
Graph Ellipses Not Centered at the Origin
9(x−1)2+16(y+2)2=1449(x-1)^{2}+16(y+2)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  9(x-1)^{2}+16(y+2)^{2}=144    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
32
Graph the semi-ellipse.
y=−25−16x2y=-\sqrt{25-16 x^{2}}
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)

A)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)
B)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)    C)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)
D)
 <strong>Graph the semi-ellipse.  y=-\sqrt{25-16 x^{2}}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
33
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 2 can pass under the bridge, but Truck 1 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 1 can pass under the bridge, but Truck 2 cannot.
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
34
Graph Ellipses Not Centered at the Origin
(x−1)29+(y−3)236=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 3 ) ^ { 2 } } { 36 } = 1

A) foci at (1,3−33)( 1,3 - 3 \sqrt { 3 } ) and (1,3+33)( 1,3 + 3 \sqrt { 3 } )
B) foci at (3,1−33)( 3,1 - 3 \sqrt { 3 } ) and (3,1+33)( 3,1 + 3 \sqrt { 3 } )
C) foci at (−1,3−33)( - 1,3 - 3 \sqrt { 3 } ) and (−1,3+33)( - 1,3 + 3 \sqrt { 3 } )
D) foci at (2,3−33)( 2,3 - 3 \sqrt { 3 } ) and (2,3+33)( 2,3 + 3 \sqrt { 3 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
35
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
x264−y216=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 16 } = 1

A) vertices: (−8,0),(8,0)( - 8,0 ) , ( 8,0 )
B) vertices: (−4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (−45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (−45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
C) vertices: (0,−8),(0,8)( 0 , - 8 ) , ( 0,8 )
D) vertices: (−8,0),(8,0)( - 8,0 ) , ( 8,0 )
foci: (−45,0),(45,0)( - 4 \sqrt { 5 } , 0 ) , ( 4 \sqrt { 5 } , 0 )
foci: (−4,0),(4,0)( - 4,0 ) , ( 4,0 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
36
The Hyperbola
1 Locate a Hyperbola's Vertices and Foci
4y2−16x2=644 y ^ { 2 } - 16 x ^ { 2 } = 64

A) vertices: (0,−4),(0,4)( 0 , - 4 ) , ( 0,4 )
foci: (0,−25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
B) vertices: (−4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (−25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
C) vertices: (−2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (−23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )


D) vertices: (0,−2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (0,−25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
37
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Truck 1 can pass under the bridge, but Truck 2 cannot.
B) Both Truck 1 and Truck 2 can pass under the bridge.
C) Neither Truck 1 nor Truck 2 can pass under the bridge.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
38
Additional Concepts
{x2+y2=2525x2+9y2=225\left\{\begin{array}{l}x^{2}+y^{2}=25 \\25 x^{2}+9 y^{2}=225\end{array}\right.
 <strong>Additional Concepts  \left\{\begin{array}{l} x^{2}+y^{2}=25 \\ 25 x^{2}+9 y^{2}=225 \end{array}\right.    </strong> A)  \{ ( 0,5 ) , ( 0 , - 5 ) \}  B)  \{ ( 5,0 ) , ( - 5,0 ) \}  C)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  D)  \{ ( 3,0 ) , ( - 3,0 ) \}

A) {(0,5),(0,−5)}\{ ( 0,5 ) , ( 0 , - 5 ) \}
B) {(5,0),(−5,0)}\{ ( 5,0 ) , ( - 5,0 ) \}
C) {(0,3),(0,−3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
D) {(3,0),(−3,0)}\{ ( 3,0 ) , ( - 3,0 ) \}
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
39
Solve Applied Problems Involving Ellipses
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the ar

A) Both Truck 1 and Truck 2 can pass under the bridge.
B) Neither Truck 1 nor Truck 2 can pass under the bridge.
C) Truck 1 can pass under the bridge, but Truck 2 cannot.
D) Truck 2 can pass under the bridge, but Truck 1 cannot.
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
40
Graph Ellipses Not Centered at the Origin
16(x+2)2+9(y−1)2=14416(x+2)^{2}+9(y-1)^{2}=144
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.

A)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.
B)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.
C)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.
D)
 <strong>Graph Ellipses Not Centered at the Origin  16(x+2)^{2}+9(y-1)^{2}=144    </strong> A)   B)   C)   D)   Find the foci of the ellipse whose equation is given.  Find the foci of the ellipse whose equation is given.
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
41
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1  B)  \frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1  C)  \frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1  D)  \frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1

A) (y−1)29−(x−1)216=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 16 } = 1
B) (y−1)216−(x−1)29=1\frac { ( y - 1 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 9 } = 1
C) (x−1)216−(y−1)29=1\frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
D) (x−1)29−(y−1)216=1\frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
42
Graph Hyperbolas Not Centered at the Origin
(x−3)24−(y−1)29=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1

A) Center: (3,1)( 3,1 ) ; Vertices: (1,1)( 1,1 ) and (5,1)( 5,1 ) ; Foci: (3−13,1)( 3 - \sqrt { 13 } , 1 ) and (3+13,1)( 3 + \sqrt { 13 } , 1 )
B) Center: (−3,−1)( - 3 , - 1 ) ; Vertices: (−5,−1)( - 5 , - 1 ) and (−1,−1)( - 1 , - 1 ) ; Foci: (−3−13,−1)( - 3 - \sqrt { 13 } , - 1 ) and (−3+13,−1)( - 3 + \sqrt { 13 } , - 1 )
C) Center: (3,1)( 3,1 ) ; Vertices: (1,−1)( 1 , - 1 ) and (5,−1)( 5 , - 1 ) ; Foci: (3−13,−1)( 3 - \sqrt { 13 } , - 1 ) and (3+13,−1)( 3 + \sqrt { 13 } , - 1 )
D) Center: (3,1)( 3,1 ) ; Vertices: (2,1)( 2,1 ) and (6,1)( 6,1 ) ; Foci: (4+13,2)( 4 + \sqrt { 13 } , 2 ) and (2+13,2)( 2 + \sqrt { 13 } , 2 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
43
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (−5,0),(5,0)( - 5,0 ) , ( 5,0 ) ; foci: (−11,0),(−11,0)( - 11,0 ) , ( - 11,0 )

A) x225−y296=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 96 } = 1
B) x296−y225=1\frac { x ^ { 2 } } { 96 } - \frac { y ^ { 2 } } { 25 } = 1
C) x225−y2121=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 121 } = 1
D) x2121−y225=1\frac { x ^ { 2 } } { 121 } - \frac { y ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
44
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1  B)  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1

A) y225−x216=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 16 } = 1
B) x225−y216=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1
C) x216−y225=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 25 } = 1
D) y216−x225=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
45
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9y2−4x2+18y+16x−43=09 y ^ { 2 } - 4 x ^ { 2 } + 18 y + 16 x - 43 = 0

A) (y+1)24−(x−2)29=1\frac { ( y + 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 9 } = 1
B) (y−1)24−(x+2)29=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x + 2 ) ^ { 2 } } { 9 } = 1
C) (y+1)29−(x−2)24=1\frac { ( y + 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
D) (x+2)29−(y−1)24=1\frac { ( x + 2 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
46
Write Equations of Hyperbolas in Standard Form
Center: (6,1)( 6,1 ) ; Focus: (−1,1)( - 1,1 ) ; Vertex: (5,1)( 5,1 )

A) (x−6)2−(y−1)248=1( x - 6 ) ^ { 2 } - \frac { ( y - 1 ) ^ { 2 } } { 48 } = 1
B) (x−6)248−(y−1)2=1\frac { ( x - 6 ) ^ { 2 } } { 48 } - ( y - 1 ) ^ { 2 } = 1
C) (x−1)2−(y−6)248=1( x - 1 ) ^ { 2 } - \frac { ( y - 6 ) ^ { 2 } } { 48 } = 1
D) (x−1)248−(y−6)2=1\frac { ( x - 1 ) ^ { 2 } } { 48 } - ( y - 6 ) ^ { 2 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
47
Match the equation to the graph.
x29−y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
B)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
C)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
D)
 <strong>Match the equation to the graph.  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
48
Graph Hyperbolas Centered at the Origin
y24−x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x

A) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
D) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm \frac { 3 } { 2 } x
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
49
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
y2−4x2−4y−16x−16=0y ^ { 2 } - 4 x ^ { 2 } - 4 y - 16 x - 16 = 0

A) (y−2)24−(x+2)2=1\frac { ( y - 2 ) ^ { 2 } } { 4 } - ( x + 2 ) ^ { 2 } = 1
B) (x−2)24−(y+2)2=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - ( y + 2 ) ^ { 2 } = 1
C) (y−4)24−(x+4)2=1\frac { ( y - 4 ) ^ { 2 } } { 4 } - ( x + 4 ) ^ { 2 } = 1
D) (x+2)2−(y−2)24=1( x + 2 ) ^ { 2 } - \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
50
Write Equations of Hyperbolas in Standard Form
Foci: (−9,0),(9,0)( - 9,0 ) , ( 9,0 ) ; vertices: (−5,0),(5,0)( - 5,0 ) , ( 5,0 )

A) x225−y256=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 56 } = 1
B) y225−x256=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 56 } = 1
C) x225−y281=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 81 } = 1
D) y225−x281=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 81 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
51
Graph Hyperbolas Centered at the Origin
y=±x2−3y=\pm \sqrt{x^{2}-3}
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x

A) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
C) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x
D) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin  y=\pm \sqrt{x^{2}-3}    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x  C) Asymptotes:  y = \pm \frac { 2 } { 3 } x    D) Asymptotes:  y = \pm x
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
52
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (0,−6),(0,6)( 0 , - 6 ) , ( 0,6 ) ; asymptote: y=310xy = \frac { 3 } { 10 } x

A) y236−x2400=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 400 } = 1
B) y2400−x236=1\frac { y ^ { 2 } } { 400 } - \frac { x ^ { 2 } } { 36 } = 1
C) y236−x2100=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 100 } = 1
D) y2100−x29=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
53
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1  B)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1  C)  \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1  D)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1

A) x29−y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
B) y29−x216=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1
C) x216−y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
D) y216−x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
54
Match the equation to the graph.
y24−x216=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1

A)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
B)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
C)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
D)
 <strong>Match the equation to the graph.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 16 } = 1 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
55
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
x2−y2+6x−2y+7=0x ^ { 2 } - y ^ { 2 } + 6 x - 2 y + 7 = 0

A) (x+3)2−(y+1)2=1( x + 3 ) ^ { 2 } - ( y + 1 ) ^ { 2 } = 1
B) (y+3)2−(x+1)2=1( y + 3 ) ^ { 2 } - ( x + 1 ) ^ { 2 } = 1
C) (x+3)2+(y+1)2=1( x + 3 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 1
D) (y+3)24−(x+1)236=1\frac { ( y + 3 ) ^ { 2 } } { 4 } - \frac { ( x + 1 ) ^ { 2 } } { 36 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
56
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
9x2−4y2+18x−16y−43=09 x ^ { 2 } - 4 y ^ { 2 } + 18 x - 16 y - 43 = 0

A) (x+1)24−(y+2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
B) (x−1)24−(y+2)29=1\frac { ( x - 1 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
C) (x+1)24−(y−2)29=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
D) (x+1)29−(y+2)24=1\frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
57
Graph Hyperbolas Centered at the Origin
16x2−9y2=14416 x^{2}-9 y^{2}=144
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }

A) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
B) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
D) Asymptotes: y=±43x\mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  16 x^{2}-9 y^{2}=144   </strong> A) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }    B) Asymptotes:  y = \pm \frac { 3 } { 4 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 4 } { 3 } \mathrm { x }
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
58
Graph Hyperbolas Centered at the Origin
x29−y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }

A) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
B) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
C) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
11ecb96a_d1c1_703f_9fac_351916337d59_TB7044_00
D) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1   </strong> A) Asymptotes:  y = \pm \frac { 5 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    C) Asymptotes:  y = \pm \frac { 5 } { 3 } x    D) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
59
Write Equations of Hyperbolas in Standard Form
Foci: (0,−9),(0,9)( 0 , - 9 ) , ( 0,9 ) ; vertices: (0,−4),(0,4)( 0 , - 4 ) , ( 0,4 )

A) y216−x265=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 65 } = 1
B) x216−y265=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 65 } = 1
C) x216−y281=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 81 } = 1
D) y216−x281=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 81 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
60
Graph Hyperbolas Centered at the Origin
16y2−9x2=14416 y ^ { 2 } - 9 x ^ { 2 } = 144
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x

A) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
B) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
C) Asymptotes: y=±34xy = \pm \frac { 3 } { 4 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
D) Asymptotes: y=±43xy = \pm \frac { 4 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin  16 y ^ { 2 } - 9 x ^ { 2 } = 144   </strong> A) Asymptotes:  y = \pm \frac { 3 } { 4 } x    B) Asymptotes:  y = \pm \frac { 4 } { 3 } x    C) Asymptotes:  y = \pm \frac { 3 } { 4 } x    D) Asymptotes:  y = \pm \frac { 4 } { 3 } x
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
61
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=8yx ^ { 2 } = 8 y

A) focus: (0,2)( 0,2 )
directrix: y=−2y = - 2
B) focus: (2,0)( 2,0 )
directrix: y=2y = 2
C) focus: (2,0)( 2,0 )
directrix: x=2x = 2
D) focus: (0,−2)( 0 , - 2 )
directrix: x=−2x = - 2
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
62
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=−24xy ^ { 2 } = - 24 x

A) focus: (−6,0)( - 6,0 )
directrix: x=6x = 6
B) focus: (0,−6)( 0 , - 6 )
directrix: y=6y = 6
C) focus: (6,0)( 6,0 )
directrix: x=−6x = - 6
D) focus: (−6,0)( - 6,0 )
directrix: y=6\mathrm { y } = 6
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
63
Use the center, vertices, and asymptotes to graph the hyperbola.
(y−2)2−(x+1)2=5(y-2)^{2}-(x+1)^{2}=5
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-2)^{2}-(x+1)^{2}=5   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
64
Use the center, vertices, and asymptotes to graph the hyperbola.
(y−2)29−(x−1)225=1\frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y - 2 ) ^ { 2 } } { 9 } - \frac { ( x - 1 ) ^ { 2 } } { 25 } = 1   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
65
Additional Concepts
y29−x236=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1
 <strong>Additional Concepts  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1   </strong> A) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  or  [ 3 , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 ]  and  [ 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )

A) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,−3]( - \infty , - 3 ] or [3,∞)[ 3 , \infty )
B) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,−3]( - \infty , - 3 ] and [3,∞)[ 3 , \infty )
C) Domain: (−∞,−3]( - \infty , - 3 ] or [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
D) Domain: (−∞,−3]( - \infty , - 3 ] and [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
66
Solve Applied Problems Involving Hyperbolas
Two recording devices are set 3200 feet apart, with the device at point A to the west of the device at point B. At a point on a line between the devices, 400 feet from point B, a small amount of explosive is detonated. The recording devices record the time the sound reaches each one. How far directly north of site B should a second explosion be done so that the measured time difference recorded by the devices is the same as that for the first detonation?

A) 933.33933.33 feet
B) 4098.784098.78 feet
C) 1549.191549.19 feet
D) 1763.831763.83 feet
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
67
The Parabola
1 Graph Parabolas with Vertices at the Origin
x2=−28yx ^ { 2 } = - 28 y

A) focus: (0,−7)( 0 , - 7 )
directrix: y=7y = 7
B) focus: (−14,0)( - 14,0 )
directrix: x=7x = 7
C) focus: (0,−7)( 0 , - 7 )
directrix: y=−7y = -7
D) focus: (0,7)( 0,7 )
directrix: y=−7y = -7

Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
68
Use the center, vertices, and asymptotes to graph the hyperbola.
(y−1)2−4(x+4)2=4(y-1)^{2}-4(x+4)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y-1)^{2}-4(x+4)^{2}=4    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
69
Graph Hyperbolas Not Centered at the Origin
(y+2)2−4(x+1)2=4( \mathrm { y } + 2 ) ^ { 2 } - 4 ( \mathrm { x } + 1 ) ^ { 2 } = 4

A) Center: (−1,−2)( - 1 , - 2 ) ; Vertices: (−1,−4)( - 1 , - 4 ) and (−1,0)( - 1,0 ) ; Foci: (−1,−2−5)( - 1 , - 2 - \sqrt { 5 } ) and (−1,−2+5)( - 1 , - 2 + \sqrt { 5 } )
B) Center: (1,2)( 1,2 ) ; Vertices: (1,0)( 1,0 ) and (1,4)( 1,4 ) ; Foci: (1,2−5)( 1,2 - \sqrt { 5 } ) and (1,2+5)( 1,2 + \sqrt { 5 } )
C) Center: (−1,−2)( - 1 , - 2 ) ; Vertices: (1,−2)( 1 , - 2 ) and (−1,2)( - 1,2 ) ; Foci: (−1,−5)( - 1 , - \sqrt { 5 } ) and (−1,5)( - 1 , \sqrt { 5 } )
D) Center: (−1,−2)( - 1 , - 2 ) ; Vertices: (0,−3)( 0 , - 3 ) and (0,1)( 0,1 ) ; Foci: (0,−1−5)( 0 , - 1 - \sqrt { 5 } ) and (0,−1+5)( 0 , - 1 + \sqrt { 5 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
70
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
4x2+y2=4y2−4x2=4\begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\y ^ { 2 } - 4 x ^ { 2 } = 4\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { r } 4 x ^ { 2 } + y ^ { 2 } = 4 \\ y ^ { 2 } - 4 x ^ { 2 } = 4 \end{array}    </strong> A)  \{ ( 0 , - 2 ) , ( 0,2 ) \}  B)  \{ ( 0 , - 2 ) \}  C)  \{ ( 0,4 ) \}  D)  \{ ( 2,0 ) , ( 2,0 ) \}

A) {(0,−2),(0,2)}\{ ( 0 , - 2 ) , ( 0,2 ) \}
B) {(0,−2)}\{ ( 0 , - 2 ) \}
C) {(0,4)}\{ ( 0,4 ) \}
D) {(2,0),(2,0)}\{ ( 2,0 ) , ( 2,0 ) \}
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
71
The Parabola
1 Graph Parabolas with Vertices at the Origin
y2=12xy ^ { 2 } = 12 x

A) focus: (3,0)( 3,0 )
directrix: x=−3x = - 3
B) focus: (0,3)( 0,3 )
directrix: y=−3y = - 3
C) focus: (3,0)( 3,0 )
directrix: x=3x = 3
D) focus: (0,−3)( 0 , - 3 )
directrix: y=−3y = - 3
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
72
Solve Applied Problems Involving Hyperbolas
Two LORAN stations are positioned 208 miles apart along a straight shore. A ship records a time difference of 0.000970.00097 seconds between the LORAN signals. (The radio signals travel at 186,000 miles per second.) Where will the ship reach shore if it were to follow the hyperbola corresponding to this time difference? If the ship is 150 miles offshore, what is the position of the ship?

A) 14 miles from the master station, (274.2,150)( 274.2,150 )
B) 90 miles from the master station, (150,274.2)( 150,274.2 )
C) 14 miles from the master station, (150,274.2)( 150,274.2 )
D) 90 miles from the master station, (274.2,150)( 274.2,150 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
73
Use the center, vertices, and asymptotes to graph the hyperbola.
(x−2)24−(y+2)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
A)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
B)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
C)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
D)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
74
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.
x2−y2=196x2+y2=196\begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\x ^ { 2 } + y ^ { 2 } = 196\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { l } x ^ { 2 } - y ^ { 2 } = 196 \\ x ^ { 2 } + y ^ { 2 } = 196 \end{array}    </strong> A)  \{ ( 14,0 ) , ( - 14,0 ) \}  B)  \{ ( 0,14 ) , ( 0 , - 14 ) \}  C)  \{ ( 14,0 ) \}  D)  \{ ( 0,14 ) \}

A) {(14,0),(−14,0)}\{ ( 14,0 ) , ( - 14,0 ) \}
B) {(0,14),(0,−14)}\{ ( 0,14 ) , ( 0 , - 14 ) \}
C) {(14,0)}\{ ( 14,0 ) \}
D) {(0,14)}\{ ( 0,14 ) \}
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
75
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+2)2−4(y−1)2=4(x+2)^{2}-4(y-1)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
D)

 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (x+2)^{2}-4(y-1)^{2}=4    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
76
Graph Hyperbolas Not Centered at the Origin
(y−4)249−(x−4)29=1\frac { ( y - 4 ) ^ { 2 } } { 49 } - \frac { ( x - 4 ) ^ { 2 } } { 9 } = 1

A) Center: (4,4)( 4,4 ) ; Vertices: (4,−3)( 4 , - 3 ) and (4,11)( 4,11 ) ; Foci: (4,4−58)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } )
B) Center: (−4,−4)( - 4 , - 4 ) ; Vertices: (−4,−11)( - 4 , - 11 ) and (−4,3)( - 4,3 ) ; Foci: (−4,−4−58)( - 4 , - 4 - \sqrt { 58 } ) and (−4,−4+58)( - 4 , - 4 + \sqrt { 58 } )
C) Center: (4,4)( 4,4 ) ; Vertices: (4,4−58)( 4,4 - \sqrt { 58 } ) and (4,4+58)( 4,4 + \sqrt { 58 } ) ; Foci: (4,−3)( 4 , - 3 ) and (4,11)( 4,11 )
D) Center: (4,4)( 4,4 ) ; Vertices: (3,−2)( 3 , - 2 ) and (5,12)( 5,12 ) ; Foci: (3,5−58)( 3,5 - \sqrt { 58 } ) and (5,5+58)( 5,5 + \sqrt { 58 } )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
77
Additional Concepts
x29−y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1    </strong> A) Domain:  ( - \infty , - 3 ]  or  [ 3 , \infty )  Range:  ( - \infty , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 3 )  or  ( 3 , \infty )  C) Domain:  ( - \infty , - 3 ]  and  [ 3 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , \infty )  Range:  ( - \infty , \infty )

A) Domain: (−∞,−3]( - \infty , - 3 ] or [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
B) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,−3)( - \infty , - 3 ) or (3,∞)( 3 , \infty )
C) Domain: (−∞,−3]( - \infty , - 3 ] and [3,∞)[ 3 , \infty )
Range: (−∞,∞)( - \infty , \infty )
D) Domain: (−∞,∞)( - \infty , \infty )
Range: (−∞,∞)( - \infty , \infty )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
78
Graph Hyperbolas Not Centered at the Origin
(x+2)2−64(y−3)2=64( x + 2 ) ^ { 2 } - 64 ( y - 3 ) ^ { 2 } = 64

A) Center: (−2,3)( - 2,3 ) ; Vertices: (−10,3)( - 10,3 ) and (6,3)( 6,3 ) ; Foci: (−2−65,3)( - 2 - \sqrt { 65 } , 3 ) and (−2+65,3)( - 2 + \sqrt { 65 } , 3 )
B) Center: (2,−3)( 2 , - 3 ) ; Vertices: (−6,−3)( - 6 , - 3 ) and (10,−3)( 10 , - 3 ) ; Foci: (2−65,3)( 2 - \sqrt { 65 } , 3 ) and (2+65,3)( 2 + \sqrt { 65 } , 3 )
C) Center: (−2,3)( - 2,3 ) ; Vertices: (−9,4)( - 9,4 ) and (7,4)( 7,4 ) ; Foci: (−1−65,4)( - 1 - \sqrt { 65 } , 4 ) and (−1+65,4)( - 1 + \sqrt { 65 } , 4 )
D) Center: (−2,3)( - 2,3 ) ; Vertices: (8,3)( 8,3 ) and (−8,3)( - 8,3 ) ; Foci: (−65,3)( - \sqrt { 65 } , 3 ) and (65,3)( \sqrt { 65 } , 3 )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
79
Additional Concepts
x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Additional Concepts  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1   </strong> A) Domain:  [ - 4,4 ] ^ { \downarrow }  Range:  [ - 3,3 ]  B) Domain:  [ - 3,3 ]  Range:  [ - 4,4 ]  C) Domain:  ( - 4,4 )  Range:  ( - 3,3 )  D) Domain:  [ - 4,4 ]  Range:  ( - \infty , \infty )

A) Domain: [−4,4]↓[ - 4,4 ] ^ { \downarrow }
Range: [−3,3][ - 3,3 ]
B) Domain: [−3,3][ - 3,3 ]
Range: [−4,4][ - 4,4 ]
C) Domain: (−4,4)( - 4,4 )
Range: (−3,3)( - 3,3 )
D) Domain: [−4,4][ - 4,4 ]
Range: (−∞,∞)( - \infty , \infty )
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
80
Solve Applied Problems Involving Hyperbolas
A satellite following the hyperbolic path shown in the picture turns rapidly at (0,6)( 0,6 ) and then moves closer and closer to the line y=92xy = \frac { 9 } { 2 } x as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at (0,0)( 0,0 ) .
 <strong>Solve Applied Problems Involving Hyperbolas A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,6 )  and then moves closer and closer to the line  y = \frac { 9 } { 2 } x  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at  ( 0,0 ) .  </strong> A)  \frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1  B)  \frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1  C)  \frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1  D)  \frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1

A) y236−x2169=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { \frac { 16 } { 9 } } = 1
B) x236−y2(544)2=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } = 1
C) y2169−x236=1\frac { y ^ { 2 } } { \frac { 16 } { 9 } } - \frac { x ^ { 2 } } { 36 } = 1
D) x2(544)2−y236=1\frac { x ^ { 2 } } { \left( \frac { 54 } { 4 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 36 } = 1
Unlock Deck
Unlock for access to all 228 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 228 flashcards in this deck.