Deck 21: Electromagnetic Induction and Faradays Law

Full screen (f)
exit full mode
Question
Choose the one alternative that best completes the statement or answers the question.
Which one of the following types of electromagnetic wave travels through space the fastest?

A) infrared
B) radio waves
C) ultraviolet
D) microwaves
E) They all travel through space at the same speed.
Use Space or
up arrow
down arrow
to flip the card.
Question
Choose the one alternative that best completes the statement or answers the question.
The energy density of an electromagnetic wave in free space is

A) 1/4 in the electric field and 3/4 in the magnetic field.
B) equally divided between the magnetic and the electric fields.
C) entirely in the magnetic field.
D) entirely in the electric field.
E) 1/4 in the magnetic field and 3/4 in the electric field.
Question
Choose the one alternative that best completes the statement or answers the question.
Which one of the following lists gives the correct order of the electromagnetic waves from longer wavelength to shorter wavelength?

A) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
B) radio waves, ultraviolet, x-rays, microwaves, infrared, visible, gamma rays
C) radio waves, microwaves, visible, x-rays, infrared, ultraviolet, gamma rays
D) radio waves, infrared, microwaves, ultraviolet, visible, x-rays, gamma rays
E) radio waves, infrared, x-rays, microwaves, ultraviolet, visible, gamma rays
Question
Choose the one alternative that best completes the statement or answers the question.
Which one of the following is not an electromagnetic wave?

A) infrared
B) radio waves
C) sound waves
D) gamma rays
E) ultraviolet
Question
Choose the one alternative that best completes the statement or answers the question.
A certain part of the electromagnetic spectrum ranges from 200 nm200 \mathrm {~nm} to 400 nm400 \mathrm {~nm} . What is the lowest frequency associated with this portion of the spectrum? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 7.50×1013 Hz7.50 \times 10^{13} \mathrm {~Hz}
B) 7.50×1015 Hz7.50 \times 10^{15} \mathrm {~Hz}
C) 1.50×1015 Hz1.50 \times 10^{15} \mathrm {~Hz}
D) 1.50×1014 Hz1.50 \times 10 ^ { 14 } \mathrm {~Hz}
E) 7.50×1014 Hz7.50 \times 10 ^ { 14 } \mathrm {~Hz}
Question
Choose the one alternative that best completes the statement or answers the question.
The wavelength of an electromagnetic wave is 600 nm600 \mathrm {~nm} . What is its frequency? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 300×1012 Hz300 \times 10 ^ { 12 } \mathrm {~Hz}
B) 600×1012 Hz600 \times 10 ^ { 12 } \mathrm {~Hz}
C) 500×1012 Hz500 \times 10 ^ { 12 } \mathrm {~Hz}
D) 200×1012 Hz200 \times 10^{12} \mathrm {~Hz}
E) 400×1012 Hz400 \times 10 ^ { 12 } \mathrm {~Hz}
Question
Choose the one alternative that best completes the statement or answers the question.
Which of the following statements about electromagnetic waves in free space are true? (There could be more than one correct choice.)

A) The frequency of the electric field is higher than the frequency of the magnetic field.
B) The electric field carries more energy than the magnetic field.
C) The electric field carries the same mount of energy as the magnetic field.
D) The frequency of the magnetic field is the same as the frequency of the electric field.
E) The electric and magnetic fields have equal amplitudes.
Question
Choose the one alternative that best completes the statement or answers the question.
Except for their color, a perfectly black (absorbing) object is identical to a perfectly white (reflecting) object. If identical light falls on both of these objects, what is true about the momentum
They will receive from this light?

A) The white object will receive twice as much as the black object.
B) The black object will receive four times as much as the white object.
C) They will both receive the same amount.
D) The black object will receive twice as much as the white object.
E) The white object will receive four times as much as the black object.
Question
Choose the one alternative that best completes the statement or answers the question.
What is the wavelength used by a radio station that broadcasts at a frequency of 920kH920 \mathrm { kH } ? (c=3.00( c = 3.00 ×108 m/s\times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } )

A) 175 m175 \mathrm {~m}
B) 22.6 m22.6 \mathrm {~m}
C) 226 m226 \mathrm {~m}
D) 326 m326 \mathrm {~m}
E) 276 m276 \mathrm {~m}
Question
Choose the one alternative that best completes the statement or answers the question.
In an electromagnetic wave in free space, the electric and magnetic fields are

A) perpendicular to one another and parallel to the direction of wave propagation.
B) perpendicular to one another and perpendicular to the direction of wave propagation.
C) parallel to one another and perpendicular to the direction of wave propagation.
D) parallel to one another and parallel to the direction of wave propagation.
Question
Write the word or phrase that best completes each statement or answers the question.
An FM radio station broadcasts at 96.7MHz96.7 \mathrm { MHz } . What is the wavelength of the radio wave used for this broadcast? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Question
Choose the one alternative that best completes the statement or answers the question.
For an electromagnetic wave in free space having an electric field of amplitude EE and a magnetic field of amplitude BB , the ratio of B/EB / E is equal to

A) 1/c1 / c
B) cc
C) 1/c21 / c ^ { 2 }
D) c2c ^ { 2 }
E) c\sqrt { c }
Question
Choose the one alternative that best completes the statement or answers the question.
The frequency of a microwave signal is 9.76GHz9.76 \mathrm { GHz } . What is its wavelength? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 5.07 cm5.07 \mathrm {~cm}
B) 3.07 cm3.07 \mathrm {~cm}
C) 4.07 cm4.07 \mathrm {~cm}
D) 2.07 cm2.07 \mathrm {~cm}
E) 1.07 cm1.07 \mathrm {~cm}
Question
Choose the one alternative that best completes the statement or answers the question.
What is the frequency of 20−mm20 - \mathrm { mm } microwaves? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 15GHz15 \mathrm { GHz }
B) 100MHz100 \mathrm { MHz }
C) 400MHz400 \mathrm { MHz }
D) 73GHz73 \mathrm { GHz }
Question
Choose the one alternative that best completes the statement or answers the question.
A certain part of the electromagnetic spectrum ranges from 200 nm200 \mathrm {~nm} to 400 nm400 \mathrm {~nm} . What is the highest frequency associated with this portion of the spectrum? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 1.50×1015 Hz1.50 \times 10 ^ { 15 } \mathrm {~Hz}
B) 7.50×1013 Hz7.50 \times 10^{13} \mathrm {~Hz}
C) 1.50×1014 Hz1.50 \times 10 ^ { 14 } \mathrm {~Hz}
D) 7.50×1014 Hz7.50 \times 10 ^ { 14 } \mathrm {~Hz}
E) 7.50×1015 Hz7.50 \times 10^{15} \mathrm {~Hz}
Question
Write the word or phrase that best completes each statement or answers the question.
A cordless phone operates at 900MHz900 \mathrm { MHz } . What is the wavelength of the electromagnetic wave used by this phone? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Question
Choose the one alternative that best completes the statement or answers the question.
Which one of the following expressions is the correct representation for the speed of light in vacuum?

A) 1/ε0μ01 / \sqrt { \varepsilon _ { 0 } \mu _ { 0 } }
B) 1/ε0μ01 / \varepsilon _ { 0 } \mu _ { 0 }
C) ε0μ0\sqrt { \varepsilon _ { 0 } \mu _ { 0 } }
D) ε0/μ0\sqrt { \varepsilon _ { 0 } / \mu _ { 0 } }
E) μ0/ε0\sqrt { \mu _ { 0 } / \varepsilon _ { 0 } }
Question
Choose the one alternative that best completes the statement or answers the question.
Two light beams of different frequency but the same intensity fall on a black (totally absorbing) surface, striking perpendicular to the surface. Which of the following statements are true? (There
Could be more than one correct choice.)

A) Painting the surface white would not affect the pressure on it due to these beams.
B) The high-frequency beam exerts more pressure on the surface.
C) Both beams exert the same pressure on the surface.
D) The light beams exert no pressure on the surface because light is just energy.
E) If the surface were painted white (totally reflecting), the pressure on it would be less than when it was black.
Question
Choose the one alternative that best completes the statement or answers the question.
Which of the following statements about electromagnetic waves in free space are true? (There could be more than one correct choice.)

A) The higher-frequency travel faster than the lower-frequency waves.
B) The higher-frequency waves have shorter wavelengths than the lower-frequency waves.
C) The wavelengths of the visible waves are some of the shortest electromagnetic waves.
D) The electric field vector is always at right angles to the magnetic field vector.
E) The wavelengths of the visible waves are some of the longest electromagnetic waves.
Question
Choose the one alternative that best completes the statement or answers the question.
Which one of the following lists gives the correct order of the electromagnetic spectrum from low to high frequencies?

A) radio waves, infrared, microwaves, ultraviolet, visible, x-rays, gamma rays
B) radio waves, microwaves, visible, x-rays, infrared, ultraviolet, gamma rays
C) radio waves, infrared, x-rays, microwaves, ultraviolet, visible, gamma rays
D) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
E) radio waves, ultraviolet, x-rays, microwaves, infrared, visible, gamma rays
Question
Choose the one alternative that best completes the statement or answers the question.
A 4.4×1014 Hz4.4 \times 10^{14} \mathrm {~Hz} laser emits a 2.1μ2.1 \mu s pulse that is 5.0 mm5.0 \mathrm {~mm} in diameter. The energy density in the beam is 0.24 J/m30.24 \mathrm {~J} / \mathrm { m } ^ { 3 } . How many wavelengths are there in the length of the beam? (c=3.0×108 m/s\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right. , μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2\mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 2.8×1092.8 \times 10 ^ { 9 }
B) 9.2×1099.2 \times 10 ^ { 9 }
C) 2.8×1082.8 \times 10 ^ { 8 }
D) 9.2×1089.2 \times 10 ^ { 8 }
E) 2.8×10102.8 \times 10 ^ { 10 }
Question
Choose the one alternative that best completes the statement or answers the question.
How long does it take light to travel 1.0 m1.0 \mathrm {~m} ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 3.3 ns3.3 \mathrm {~ns}
B) 3.3 s3.3 \mathrm {~s}
C) 3.3 ms3.3 \mathrm {~ms}
D) 3.3μs3.3 \mu \mathrm { s }
Question
Choose the one alternative that best completes the statement or answers the question.
If the magnetic field in a traveling electromagnetic wave has a maximum value of 16.5nT16.5 \mathrm { nT } , what is the maximum value of the electric field associated with this wave? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 55.0×10−16 V/m55.0 \times 10 ^ { - 16 } \mathrm {~V} / \mathrm { m }
B) 4.95 V/m4.95 \mathrm {~V} / \mathrm { m }
C) 55.0×10−15 V/m55.0 \times 10 ^ { - 15 } \mathrm {~V} / \mathrm { m }
D) 5.5×10−17 V/m5.5 \times 10 ^ { - 17 } \mathrm {~V} / \mathrm { m }
E) 0.495 V/m0.495 \mathrm {~V} / \mathrm { m }
Question
Choose the one alternative that best completes the statement or answers the question.
At a particular point and instant, the magnetic field component of an electromagnetic wave is 15.015.0 μT\mu \mathrm { T } . What is the magnetic energy density of this wave at that point and instant? (c=3.00×108 m/s\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right. , μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2\mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 2.26×10−4 J/m32.26 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
B) 4.47×10−4 J/m34.47 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
C) 1.79×10−4 J/m31.79 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
D) 8.95×10−5 J/m38.95 \times 10 ^ { - 5 } \mathrm {~J} / \mathrm { m } ^ { 3 }
E) 9.72×10−5 J/m39.72 \times 10 ^ { - 5 } \mathrm {~J} / \mathrm { m } ^ { 3 }
Question
Choose the one alternative that best completes the statement or answers the question.
A radio station broadcasts at a frequency of 80MHz80 \mathrm { MHz } . How far from the transmitter will this signal travel in 67 ms67 \mathrm {~ms} ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 80 km80 \mathrm {~km}
B) 20×106 m20 \times 10 ^ { 6 } \mathrm {~m}
C) 40 km40 \mathrm {~km}
D) 60×106 m60 \times 10 ^ { 6 } \mathrm {~m}
E) 67 m67 \mathrm {~m}
Question
Choose the one alternative that best completes the statement or answers the question.
The amplitude of the electric field for a certain type of electromagnetic wave is 570 N/C570 \mathrm {~N} / \mathrm { C } . What is the amplitude of the magnetic field for that wave? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 2.91μT2.91 \mu \mathrm { T }
B) 2.41μT2.41 \mu T
C) 1.41μT1.41 \mu \mathrm { T }
D) 1.10μT1.10 \mu \mathrm { T }
E) 1.90μT1.90 \mu T
Question
Choose the one alternative that best completes the statement or answers the question.
A radar receiver indicates that a pulse return as an echo in 20μs20 \mu \mathrm { s } after it was sent. How far away is the reflecting object? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 6.0 km6.0 \mathrm {~km}
B) 9.0 km9.0 \mathrm {~km}
C) 3.0 km3.0 \mathrm {~km}
D) 1.5 km1.5 \mathrm {~km}
Question
Choose the one alternative that best completes the statement or answers the question.
The maximum magnetic energy density of a sinusoidal electromagnetic wave is 8.95×10−5 J/m38.95 \times 10 ^ { - 5 } \mathrm {~J} / \mathrm { m } ^ { 3 } . What is the amplitude of the magnetic field component of this wave? (c=3.00×108 m/s,μ0=4π×\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times \right. 10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m210 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 12.0μT12.0 \mu \mathrm { T }
B) 13.0μT13.0 \mu \mathrm { T }
C) 14.0μT14.0 \mu \mathrm { T }
D) 16.0μT16.0 \mu \mathrm { T }
E) 15.0μT15.0 \mu \mathrm { T }
Question
Choose the one alternative that best completes the statement or answers the question.
A sinusoidal electromagnetic wave has a peak electric field of 8.00kV/m8.00 \mathrm { kV } / \mathrm { m } . What is the intensity of the wave? (c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 170 kW/m2170 \mathrm {~kW} / \mathrm { m } ^ { 2 }
B) 11 kW/m211 \mathrm {~kW} / \mathrm { m } ^ { 2 }
C) 85 kW/m285 \mathrm {~kW} / \mathrm { m } ^ { 2 }
D) 21 kW/m221 \mathrm {~kW} / \mathrm { m } ^ { 2 }
Question
Choose the one alternative that best completes the statement or answers the question.
How far does a beam of light travel through space in one 365 -day year? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 80×1012 m80 \times 10 ^ { 12 } \mathrm {~m}
B) 20×1015 m20 \times 1015 \mathrm {~m}
C) 95×1014 m95 \times 10 ^ { 14 } \mathrm {~m}
D) 30×108 m30 \times 10 ^ { 8 } \mathrm {~m}
E) 36×1016 m36 \times 10 ^ { 16 } \mathrm {~m}
Question
Choose the one alternative that best completes the statement or answers the question.
A radio station broadcasts at 80MHz80 \mathrm { MHz } . How long does it take for this radio signal to travel a distance of 2.0×107 m2.0 \times 10 ^ { 7 } \mathrm {~m} through space? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 25 ms25 \mathrm {~ms}
B) 20 ms20 \mathrm {~ms}
C) 15 ms15 \mathrm {~ms}
D) 6.7×10−2 s6.7 \times 10 ^ { - 2 } \mathrm {~s}
E) 0.15×10−2 s0.15 \times 10 ^ { - 2 } \mathrm {~s}
Question
Choose the one alternative that best completes the statement or answers the question.
The distance between two asteroids is 1600 km1600 \mathrm {~km} . How much time does it take for a light signal to go from one asteroid to the other? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 5.3 ms5.3 \mathrm {~ms}
B) 19 ms19 \mathrm {~ms}
C) 4.5 ms4.5 \mathrm {~ms}
D) 19μs19 \mu \mathrm { s }
E) 13 ms13 \mathrm {~ms}
Question
Choose the one alternative that best completes the statement or answers the question.
How far does a beam of light travel in 2.0 ms2.0 \mathrm {~ms} ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.66×105 m0.66 \times 10 ^ { 5 } \mathrm {~m}
B) 6.0×105 m6.0 \times 10 ^ { 5 } \mathrm {~m}
C) 60 m60 \mathrm {~m}
D) 90 m90 \mathrm {~m}
E) 70 m70 \mathrm {~m}
Question
Choose the one alternative that best completes the statement or answers the question.
The maximum value of the electric field in an electromagnetic wave is 2.0 V/m2.0 \mathrm {~V} / \mathrm { m } . What is the maximum value of the magnetic field in that wave? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 6.7 T6.7 \mathrm {~T}
B) 6.7μT6.7 \mu T
C) 6.7nT6.7 \mathrm { nT }
D) 6.7pT6.7 \mathrm { pT }
E) 6.7mT6.7 \mathrm { mT }
Question
Choose the one alternative that best completes the statement or answers the question.
A 2.4×1014 Hz2.4 \times 10 ^ { 14 } \mathrm {~Hz} laser emits a 3.5−μ3.5 - \mu s pulse that is 5.0 mm5.0 \mathrm {~mm} in diameter. The average energy density in the beam is 0.65 J/m30.65 \mathrm {~J} / \mathrm { m } ^ { 3 } . What average power is emitted by this laser? (c=3.0×108 m/s,μ0=4π×\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times \right. 10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m210 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 15 kW15 \mathrm {~kW}
B) 7.7 kW7.7 \mathrm {~kW}
C) 3.8 kW3.8 \mathrm {~kW}
D) 12 kW12 \mathrm {~kW}
E) 19 kW19 \mathrm {~kW}
Question
Choose the one alternative that best completes the statement or answers the question.
A laser beam takes 24 ms to travel from a rocket to the reflective surface of a planet and back to the rocket. How far is the rocket from this planet's surface? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 1200 km1200 \mathrm {~km}
B) 3600 km3600 \mathrm {~km}
C) 4800 km4800 \mathrm {~km}
D) 1800 km1800 \mathrm {~km}
E) 2400 km2400 \mathrm {~km}
Question
Choose the one alternative that best completes the statement or answers the question.
How far does light travel in 1.0μs1.0 \mu \mathrm { s } ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.30 km0.30 \mathrm {~km}
B) 3.0×1014 m3.0 \times 10 ^ { 14 } \mathrm {~m}
C) 3.0 m3.0 \mathrm {~m}
D) 30 cm30 \mathrm {~cm}
Question
Choose the one alternative that best completes the statement or answers the question.
A certain electromagnetic field traveling in vacuum has a maximum electric field of 1200 V/m1200 \mathrm {~V} / \mathrm { m } . What is the maximum magnetic field of this wave? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 9.6×10−6 T9.6 \times 10 ^ { - 6 } \mathrm {~T}
B) 8.7×10−6 T8.7 \times 10 ^ { - 6 } \mathrm {~T}
C) 2.2×10−5 T2.2 \times 10 ^ { - 5 } \mathrm {~T}
D) 3.4×10−4 T3.4 \times 10 ^ { - 4 } \mathrm {~T}
E) 4.0×10−6 T4.0 \times 10 ^ { - 6 } \mathrm {~T}
Question
Choose the one alternative that best completes the statement or answers the question.
About 1350 W/m21350 \mathrm {~W} / \mathrm { m } ^ { 2 } of electromagnetic energy reaches the upper atmosphere of the earth from the sun, which is 1.5×1011 m1.5 \times 10 ^ { 11 } \mathrm {~m} away. Use this information to estimate the average power output of the sun.

A) 1×1026 W1 \times 10 ^ { 26 } \mathrm {~W}
B) 3×1026 W3 \times 10 ^ { 26 } \mathrm {~W}
C) 2×1026 W2 \times 10 ^ { 26 } \mathrm {~W}
D) 4×1026 W4 \times 10 ^ { 26 } \mathrm {~W}
Question
Choose the one alternative that best completes the statement or answers the question.
A 7.55×1014 Hz7.55 \times 10 ^ { 14 } \mathrm {~Hz} electromagnetic wave travels in carbon tetrachloride with a speed of 2.05×1082.05 \times 10 ^ { 8 } m/s\mathrm { m } / \mathrm { s } . What is the wavelength of the wave in this material?

A) 397 nm397 \mathrm {~nm}
B) 272 nm272 \mathrm {~nm}
C) 301 nm301 \mathrm {~nm}
D) 338 nm338 \mathrm {~nm}
E) 361 nm361 \mathrm {~nm}
Question
Choose the one alternative that best completes the statement or answers the question.
An 8.0-mW laser beam emits a cylindrical beam of single-wavelength sinusoidal light 0.90 mm0.90 \mathrm {~mm} in diameter. What is the rms value of the electric field in this laser beam? (ε0=8.85×10−12C2/N\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \right. . m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 1100 N/C1100 \mathrm {~N} / \mathrm { C }
B) 2000 N/C2000 \mathrm {~N} / \mathrm { C }
C) 2200 N/C2200 \mathrm {~N} / \mathrm { C }
D) 1000 N/C1000 \mathrm {~N} / \mathrm { C }
E) 4100 N/C4100 \mathrm {~N} / \mathrm { C }
Question
Choose the one alternative that best completes the statement or answers the question.
A light source radiates 60.0 W60.0 \mathrm {~W} of single-wavelength sinusoidal light uniformly in all directions. What is the average intensity of the light from this bulb at a distance of 0.400 m0.400 \mathrm {~m} from the bulb?

A) 11.9 W/m211.9 \mathrm {~W} / \mathrm { m } ^ { 2 }
B) 29.8 W/m229.8 \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 27.4 W/m227.4 \mathrm {~W} / \mathrm { m } ^ { 2 }
D) 14.9 W/m214.9 \mathrm {~W} / \mathrm { m } ^ { 2 }
E) 37.2 W/m237.2 \mathrm {~W} / \mathrm { m } ^ { 2 }
Question
Choose the one alternative that best completes the statement or answers the question.
Radiation of a single frequency reaches the upper atmosphere of the earth with an intensity of 1350 W/m21350 \mathrm {~W} / \mathrm { m } ^ { 2 } . What is the maximum value of the electric field associated with this radiation? (c=( c = 3.00×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m23.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 1400 V/m1400 \mathrm {~V} / \mathrm { m }
B) 675.0 V/m675.0 \mathrm {~V} / \mathrm { m }
C) 1350 V/m1350 \mathrm {~V} / \mathrm { m }
D) 1604 V/m1604 \mathrm {~V} / \mathrm { m }
E) 1010 V/m1010 \mathrm {~V} / \mathrm { m }
Question
Choose the one alternative that best completes the statement or answers the question.
A radiometer has two square vanes (1.0 cm( 1.0 \mathrm {~cm} by 1.0 cm)1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is 6.0 cm6.0 \mathrm {~cm} from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of 300 W/m2300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the vanes. What is the radiation pressure on the blackened vane? (c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)
 <strong>Choose the one alternative that best completes the statement or answers the question. A radiometer has two square vanes  ( 1.0 \mathrm {~cm}  by  1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is  6.0 \mathrm {~cm}  from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of  300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the vanes. What is the radiation pressure on the blackened vane?  \left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)    </strong> A)  1.0 \times 10 ^ { - 10 } \mathrm {~Pa}  B)  1.0 \times 10 ^ { - 7 } \mathrm {~Pa}  C)  1.0 \times 10 ^ { - 8 } \mathrm {~Pa}  D)  1.0 \times 10 ^ { - 6 } \mathrm {~Pa}  E)  1.0 \times 10 ^ { - 9 } \mathrm {~Pa}  <div style=padding-top: 35px>

A) 1.0×10−10 Pa1.0 \times 10 ^ { - 10 } \mathrm {~Pa}
B) 1.0×10−7 Pa1.0 \times 10 ^ { - 7 } \mathrm {~Pa}
C) 1.0×10−8 Pa1.0 \times 10 ^ { - 8 } \mathrm {~Pa}
D) 1.0×10−6 Pa1.0 \times 10 ^ { - 6 } \mathrm {~Pa}
E) 1.0×10−9 Pa1.0 \times 10 ^ { - 9 } \mathrm {~Pa}
Question
Choose the one alternative that best completes the statement or answers the question.
A radiometer has two square vanes (1.0 cm( 1.0 \mathrm {~cm} by 1.0 cm)1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is 6.0 cm6.0 \mathrm {~cm} from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of 300 W/m2300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the front of both vanes. What is the net torque on the vane assembly, about the vertical axis? (c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times \right. 10−12C2/Nâ‹…m210 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )
 <strong>Choose the one alternative that best completes the statement or answers the question. A radiometer has two square vanes  ( 1.0 \mathrm {~cm}  by  1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is  6.0 \mathrm {~cm}  from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of  300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the front of both vanes. What is the net torque on the vane assembly, about the vertical axis?  \left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times \right.   10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 }  )   </strong> A)  0.0 \mathrm {~N} \cdot \mathrm { m }  B)  1.2 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }  C)  1.8 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }  D)  2.4 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }  E)  6.0 \times 10 ^ { - 12 } \mathrm {~N} \cdot \mathrm { m }  <div style=padding-top: 35px>

A) 0.0 Nâ‹…m0.0 \mathrm {~N} \cdot \mathrm { m }
B) 1.2×10−11 Nâ‹…m1.2 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }
C) 1.8×10−11 Nâ‹…m1.8 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }
D) 2.4×10−11 Nâ‹…m2.4 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }
E) 6.0×10−12 Nâ‹…m6.0 \times 10 ^ { - 12 } \mathrm {~N} \cdot \mathrm { m }
Question
Choose the one alternative that best completes the statement or answers the question.
An 800−kHz800 - \mathrm { kHz } sinusoidal radio signal is detected at a point 6.6 km6.6 \mathrm {~km} from the transmitter tower. The electric field amplitude of the signal at that point is 0.780 V/m0.780 \mathrm {~V} / \mathrm { m } . Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. What is the amplitude of the magnetic field of the signal at that point? (ε0=8.85×10−12\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \right. C2/Nâ‹…m2,c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A\mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } )

A) 2.6nT2.6 \mathrm { nT }
B) 3.1nT3.1 \mathrm { nT }
C) 3.6nT3.6 \mathrm { nT }
D) 1.6nT1.6 \mathrm { nT }
E) 2.1nT2.1 \mathrm { nT }
Question
Choose the one alternative that best completes the statement or answers the question.
Light with an average intensity of 683 W/m2683 \mathrm {~W} / \mathrm { m } ^ { 2 } falls on a black surface and is completely absorbed. What is the radiation pressure that the light exerts on this surface if it strikes perpendicular to the surface? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 205,000 N/m2205,000 \mathrm {~N} / \mathrm { m } ^ { 2 }
B) 4550nN/m24550 \mathrm { nN } / \mathrm { m } ^ { 2 }
C) 1140nN/m21140 \mathrm { nN } / \mathrm { m } ^ { 2 }
D) 2280nN/m22280 \mathrm { nN } / \mathrm { m } ^ { 2 }
Question
Choose the one alternative that best completes the statement or answers the question.
If the average intensity of the sunlight in Miami, Florida, is 1060 W/m21060 \mathrm {~W} / \mathrm { m } ^ { 2 } , what is the average magnitude of the force this light exerts on a 16−m216 - m ^ { 2 } surface of black asphalt that totally absorbs the light? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.204×10−5 N0.204 \times 10 ^ { - 5 } \mathrm {~N}
B) 1.63×10−5 N/m21.63 \times 10 ^ { - 5 } \mathrm {~N} / \mathrm { m } ^ { 2 }
C) 5.65×10−5 N5.65 \times 10 ^ { - 5 } \mathrm {~N}
D) 7.83×10−5 N7.83 \times 10 ^ { - 5 } \mathrm {~N}
E) 2.61×10−5 N2.61 \times 10 ^ { - 5 } \mathrm {~N}
Question
Choose the one alternative that best completes the statement or answers the question.
How much energy is transported across a 1.00−cm21.00 - \mathrm { cm } ^ { 2 } area per hour by a sinusoidal electromagnetic wave whose electric field has a maximum strength of 30.4 V/m30.4 \mathrm {~V} / \mathrm { m } ? (ε0=8.85×10−12C2/Nâ‹…m2,μ0=\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } 2 / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = \right. 4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.44 J0.44 \mathrm {~J}
B) 0.44μJ0.44 \mu \mathrm { J }
C) 0.44 mJ0.44 \mathrm {~mJ}
D) 0.44 nJ0.44 \mathrm {~nJ}
Question
Write the word or phrase that best completes each statement or answers the question.
The total electromagnetic power emitted by the sun is 3.8×1026 W3.8 \times 10 ^ { 26 } \mathrm {~W} . What is the radiation pressure it exerts on the perfectly absorbing surface of a satellite near the orbit of Mercury, which is 5.8×1010 m5.8 \times 10 ^ { 10 } \mathrm {~m} from the sun? The radiation strikes the surface of the satellite perpendicular to the surface. (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Question
Choose the one alternative that best completes the statement or answers the question.
What is the maximum value of the magnetic field at a distance of 2.5 m2.5 \mathrm {~m} from a light bulb that radiates 100 W100 \mathrm {~W} of single-frequency sinusoidal electromagnetic waves uniformly in all directions? ( ε0=8.85×10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.80μT0.80 \mu \mathrm { T }
B) 0.40μT0.40 \mu \mathrm { T }
C) 0.10μT0.10 \mu \mathrm { T }
D) 0.50μT0.50 \mu \mathrm { T }
E) 0.60μT0.60 \mu \mathrm { T }
Question
Choose the one alternative that best completes the statement or answers the question.
A light source radiates 60.0 W60.0 \mathrm {~W} of single-wavelength sinusoidal light uniformly in all directions. What is the amplitude of the electric field of this light at a distance of 0.400 m0.400 \mathrm {~m} from the bulb? (ε0=\left( \varepsilon _ { 0 } = \right. 8.85×10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.00×108 m/s)\left. 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 52.9 N/C52.9 \mathrm {~N} / \mathrm { C }
B) 212 N/C212 \mathrm {~N} / \mathrm { C }
C) 162 N/C162 \mathrm {~N} / \mathrm { C }
D) 150 N/C150 \mathrm {~N} / \mathrm { C }
E) 82.1 N/C82.1 \mathrm {~N} / \mathrm { C }
Question
Choose the one alternative that best completes the statement or answers the question.
If the average intensity of the sunlight in Miami, Florida, is 1040 W/m21040 \mathrm {~W} / \mathrm { m } ^ { 2 } , what is the average value of the radiation pressure due to this sunlight on a black totally absorbing asphalt surface in Miami?
(c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 7.83×10−6 N7.83 \times 10 ^ { - 6 } \mathrm {~N}
B) 9.78×10−6 N/m29.78 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
C) 1.63×10−6 N/m21.63 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
D) 3.47×10−6 N/m23.47 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
E) 2.28×10−6 N/m22.28 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
Question
Write the word or phrase that best completes each statement or answers the question.
The intensity of solar radiation near the earth is 1.4 kW/m21.4 \mathrm {~kW} / \mathrm { m } ^ { 2 } . What magnitude force does this radiation exert when it strikes at right angles to a 5.0−m25.0 - \mathrm { m } ^ { 2 } perfectly reflecting solar panel of an artificial satellite orbiting the earth? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Question
Choose the one alternative that best completes the statement or answers the question.
An 8.00-mW laser beam emits a cylindrical beam of single-wavelength sinusoidal light 0.600 mm0.600 \mathrm {~mm} in diameter. What is the maximum value of the magnetic field in the laser beam? (ε0=8.85×\left( \varepsilon _ { 0 } = 8.85 \times \right. 10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 20.5μT20.5 \mu \mathrm { T }
B) 17.2μT17.2 \mu \mathrm { T }
C) 15.4μT15.4 \mu \mathrm { T }
D) 12.4μT12.4 \mu \mathrm { T }
E) 9.24μT9.24 \mu T
Question
Choose the one alternative that best completes the statement or answers the question.
A radio transmitter is operating at an average power of 4.00 kW4.00 \mathrm {~kW} and is radiating uniformly in all directions. What is the average intensity of the signal 8.00 km8.00 \mathrm {~km} from the transmitter?

A) 2.49μW/m22.49 \mu \mathrm { W } / \mathrm { m } ^ { 2 }
B) 0.00497 W/m20.00497 \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 0.00249 W/m20.00249 \mathrm {~W} / \mathrm { m } ^ { 2 }
D) 4.97μW/m24.97 \mu \mathrm { W } / \mathrm { m } ^ { 2 }
Question
Choose the one alternative that best completes the statement or answers the question.
The rate of energy flow per unit area of a sinusoidal electromagnetic wave has an average value of 0.601 W/m20.601 \mathrm {~W} / \mathrm { m } ^ { 2 } . What is the maximum value of the magnetic field in the wave? (c=3.00×108 m/s,μ0\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } \right. =4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2= 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 7.09×10−8 T7.09 \times 10 ^ { - 8 } \mathrm {~T}
B) 9.81×10−8 T9.81 \times 10 ^ { - 8 } \mathrm {~T}
C) 5.02×10−8 T5.02 \times 10 ^ { - 8 } \mathrm {~T}
D) 3.55×10−8 T3.55 \times 10 ^ { - 8 } \mathrm {~T}
E) 1.42×10−7 T1.42 \times 10 ^ { - 7 } \mathrm {~T}
Question
Choose the one alternative that best completes the statement or answers the question.
An 800-kHz sinusoidal radio signal is detected at a point 2.1 km2.1 \mathrm {~km} distant from a transmitter tower. The electric field amplitude of the signal at that point is 0.80 V/m0.80 \mathrm {~V} / \mathrm { m } . Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. What is the intensity of the radio signal at that point? (ε0=8.85×10−12C2/Nâ‹…m2,μ0=\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = \right. 4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 6.0×10−4 W/m26.0 \times 10 ^ { - 4 } \mathrm {~W} / \mathrm { m } ^ { 2 }
B) 4.2×10−4 W/m24.2 \times 10 ^ { - 4 } \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 1.7×10−3 W/m21.7 \times 10 ^ { - 3 } \mathrm {~W} / \mathrm { m } ^ { 2 }
D) 1.2×10−3 W/m21.2 \times 10 ^ { - 3 } \mathrm {~W} / \mathrm { m } ^ { 2 }
E) 8.5×10−4 W/m28.5 \times 10 ^ { - 4 } \mathrm {~W} / \mathrm { m } ^ { 2 }
Question
Choose the one alternative that best completes the statement or answers the question.
The rate of energy flow per unit area of an electromagnetic wave has an average value of 0.6950.695 W/m2\mathrm { W } / \mathrm { m } ^ { 2 } . The wave is incident at right angles upon a rectangular area measuring 1.5 m1.5 \mathrm {~m} by 2.0 m2.0 \mathrm {~m} .
How much total energy falls upon this rectangle each minute? (ε0=8.85×10−12C2/Nâ‹…m2,μ0=4\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } 2 / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \right. π×10−7 Tâ‹…m/A,c=3.0×108 m/s\pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } )

A) 250 J250 \mathrm {~J}
B) 160 J160 \mathrm {~J}
C) 130 J130 \mathrm {~J}
D) 220 J220 \mathrm {~J}
E) 190 J190 \mathrm {~J}
Question
Choose the one alternative that best completes the statement or answers the question.
A light source radiates 60.0 W60.0 \mathrm {~W} of single-wavelength sinusoidal light uniformly in all directions. What is the amplitude of the magnetic field of this light at a distance of 0.700 m0.700 \mathrm {~m} from the bulb? (ε0\left( \varepsilon _ { 0 } \right. =8.85×10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 2.86×10−7 T2.86 \times 10 ^ { - 7 } \mathrm {~T}
B) 1.76×10−7 T1.76 \times 10 ^ { - 7 } \mathrm {~T}
C) 2.02×10−7 T2.02 \times 10 ^ { - 7 } \mathrm {~T}
D) 2.22×10−7 T2.22 \times 10 ^ { - 7 } \mathrm {~T}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/60
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 21: Electromagnetic Induction and Faradays Law
1
Choose the one alternative that best completes the statement or answers the question.
Which one of the following types of electromagnetic wave travels through space the fastest?

A) infrared
B) radio waves
C) ultraviolet
D) microwaves
E) They all travel through space at the same speed.
E
2
Choose the one alternative that best completes the statement or answers the question.
The energy density of an electromagnetic wave in free space is

A) 1/4 in the electric field and 3/4 in the magnetic field.
B) equally divided between the magnetic and the electric fields.
C) entirely in the magnetic field.
D) entirely in the electric field.
E) 1/4 in the magnetic field and 3/4 in the electric field.
B
3
Choose the one alternative that best completes the statement or answers the question.
Which one of the following lists gives the correct order of the electromagnetic waves from longer wavelength to shorter wavelength?

A) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
B) radio waves, ultraviolet, x-rays, microwaves, infrared, visible, gamma rays
C) radio waves, microwaves, visible, x-rays, infrared, ultraviolet, gamma rays
D) radio waves, infrared, microwaves, ultraviolet, visible, x-rays, gamma rays
E) radio waves, infrared, x-rays, microwaves, ultraviolet, visible, gamma rays
A
4
Choose the one alternative that best completes the statement or answers the question.
Which one of the following is not an electromagnetic wave?

A) infrared
B) radio waves
C) sound waves
D) gamma rays
E) ultraviolet
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
5
Choose the one alternative that best completes the statement or answers the question.
A certain part of the electromagnetic spectrum ranges from 200 nm200 \mathrm {~nm} to 400 nm400 \mathrm {~nm} . What is the lowest frequency associated with this portion of the spectrum? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 7.50×1013 Hz7.50 \times 10^{13} \mathrm {~Hz}
B) 7.50×1015 Hz7.50 \times 10^{15} \mathrm {~Hz}
C) 1.50×1015 Hz1.50 \times 10^{15} \mathrm {~Hz}
D) 1.50×1014 Hz1.50 \times 10 ^ { 14 } \mathrm {~Hz}
E) 7.50×1014 Hz7.50 \times 10 ^ { 14 } \mathrm {~Hz}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
6
Choose the one alternative that best completes the statement or answers the question.
The wavelength of an electromagnetic wave is 600 nm600 \mathrm {~nm} . What is its frequency? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 300×1012 Hz300 \times 10 ^ { 12 } \mathrm {~Hz}
B) 600×1012 Hz600 \times 10 ^ { 12 } \mathrm {~Hz}
C) 500×1012 Hz500 \times 10 ^ { 12 } \mathrm {~Hz}
D) 200×1012 Hz200 \times 10^{12} \mathrm {~Hz}
E) 400×1012 Hz400 \times 10 ^ { 12 } \mathrm {~Hz}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
7
Choose the one alternative that best completes the statement or answers the question.
Which of the following statements about electromagnetic waves in free space are true? (There could be more than one correct choice.)

A) The frequency of the electric field is higher than the frequency of the magnetic field.
B) The electric field carries more energy than the magnetic field.
C) The electric field carries the same mount of energy as the magnetic field.
D) The frequency of the magnetic field is the same as the frequency of the electric field.
E) The electric and magnetic fields have equal amplitudes.
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
8
Choose the one alternative that best completes the statement or answers the question.
Except for their color, a perfectly black (absorbing) object is identical to a perfectly white (reflecting) object. If identical light falls on both of these objects, what is true about the momentum
They will receive from this light?

A) The white object will receive twice as much as the black object.
B) The black object will receive four times as much as the white object.
C) They will both receive the same amount.
D) The black object will receive twice as much as the white object.
E) The white object will receive four times as much as the black object.
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
9
Choose the one alternative that best completes the statement or answers the question.
What is the wavelength used by a radio station that broadcasts at a frequency of 920kH920 \mathrm { kH } ? (c=3.00( c = 3.00 ×108 m/s\times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } )

A) 175 m175 \mathrm {~m}
B) 22.6 m22.6 \mathrm {~m}
C) 226 m226 \mathrm {~m}
D) 326 m326 \mathrm {~m}
E) 276 m276 \mathrm {~m}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
10
Choose the one alternative that best completes the statement or answers the question.
In an electromagnetic wave in free space, the electric and magnetic fields are

A) perpendicular to one another and parallel to the direction of wave propagation.
B) perpendicular to one another and perpendicular to the direction of wave propagation.
C) parallel to one another and perpendicular to the direction of wave propagation.
D) parallel to one another and parallel to the direction of wave propagation.
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
11
Write the word or phrase that best completes each statement or answers the question.
An FM radio station broadcasts at 96.7MHz96.7 \mathrm { MHz } . What is the wavelength of the radio wave used for this broadcast? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
12
Choose the one alternative that best completes the statement or answers the question.
For an electromagnetic wave in free space having an electric field of amplitude EE and a magnetic field of amplitude BB , the ratio of B/EB / E is equal to

A) 1/c1 / c
B) cc
C) 1/c21 / c ^ { 2 }
D) c2c ^ { 2 }
E) c\sqrt { c }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
13
Choose the one alternative that best completes the statement or answers the question.
The frequency of a microwave signal is 9.76GHz9.76 \mathrm { GHz } . What is its wavelength? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 5.07 cm5.07 \mathrm {~cm}
B) 3.07 cm3.07 \mathrm {~cm}
C) 4.07 cm4.07 \mathrm {~cm}
D) 2.07 cm2.07 \mathrm {~cm}
E) 1.07 cm1.07 \mathrm {~cm}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
14
Choose the one alternative that best completes the statement or answers the question.
What is the frequency of 20−mm20 - \mathrm { mm } microwaves? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 15GHz15 \mathrm { GHz }
B) 100MHz100 \mathrm { MHz }
C) 400MHz400 \mathrm { MHz }
D) 73GHz73 \mathrm { GHz }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
15
Choose the one alternative that best completes the statement or answers the question.
A certain part of the electromagnetic spectrum ranges from 200 nm200 \mathrm {~nm} to 400 nm400 \mathrm {~nm} . What is the highest frequency associated with this portion of the spectrum? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 1.50×1015 Hz1.50 \times 10 ^ { 15 } \mathrm {~Hz}
B) 7.50×1013 Hz7.50 \times 10^{13} \mathrm {~Hz}
C) 1.50×1014 Hz1.50 \times 10 ^ { 14 } \mathrm {~Hz}
D) 7.50×1014 Hz7.50 \times 10 ^ { 14 } \mathrm {~Hz}
E) 7.50×1015 Hz7.50 \times 10^{15} \mathrm {~Hz}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
16
Write the word or phrase that best completes each statement or answers the question.
A cordless phone operates at 900MHz900 \mathrm { MHz } . What is the wavelength of the electromagnetic wave used by this phone? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
17
Choose the one alternative that best completes the statement or answers the question.
Which one of the following expressions is the correct representation for the speed of light in vacuum?

A) 1/ε0μ01 / \sqrt { \varepsilon _ { 0 } \mu _ { 0 } }
B) 1/ε0μ01 / \varepsilon _ { 0 } \mu _ { 0 }
C) ε0μ0\sqrt { \varepsilon _ { 0 } \mu _ { 0 } }
D) ε0/μ0\sqrt { \varepsilon _ { 0 } / \mu _ { 0 } }
E) μ0/ε0\sqrt { \mu _ { 0 } / \varepsilon _ { 0 } }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
18
Choose the one alternative that best completes the statement or answers the question.
Two light beams of different frequency but the same intensity fall on a black (totally absorbing) surface, striking perpendicular to the surface. Which of the following statements are true? (There
Could be more than one correct choice.)

A) Painting the surface white would not affect the pressure on it due to these beams.
B) The high-frequency beam exerts more pressure on the surface.
C) Both beams exert the same pressure on the surface.
D) The light beams exert no pressure on the surface because light is just energy.
E) If the surface were painted white (totally reflecting), the pressure on it would be less than when it was black.
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
19
Choose the one alternative that best completes the statement or answers the question.
Which of the following statements about electromagnetic waves in free space are true? (There could be more than one correct choice.)

A) The higher-frequency travel faster than the lower-frequency waves.
B) The higher-frequency waves have shorter wavelengths than the lower-frequency waves.
C) The wavelengths of the visible waves are some of the shortest electromagnetic waves.
D) The electric field vector is always at right angles to the magnetic field vector.
E) The wavelengths of the visible waves are some of the longest electromagnetic waves.
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
20
Choose the one alternative that best completes the statement or answers the question.
Which one of the following lists gives the correct order of the electromagnetic spectrum from low to high frequencies?

A) radio waves, infrared, microwaves, ultraviolet, visible, x-rays, gamma rays
B) radio waves, microwaves, visible, x-rays, infrared, ultraviolet, gamma rays
C) radio waves, infrared, x-rays, microwaves, ultraviolet, visible, gamma rays
D) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
E) radio waves, ultraviolet, x-rays, microwaves, infrared, visible, gamma rays
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
21
Choose the one alternative that best completes the statement or answers the question.
A 4.4×1014 Hz4.4 \times 10^{14} \mathrm {~Hz} laser emits a 2.1μ2.1 \mu s pulse that is 5.0 mm5.0 \mathrm {~mm} in diameter. The energy density in the beam is 0.24 J/m30.24 \mathrm {~J} / \mathrm { m } ^ { 3 } . How many wavelengths are there in the length of the beam? (c=3.0×108 m/s\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right. , μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2\mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 2.8×1092.8 \times 10 ^ { 9 }
B) 9.2×1099.2 \times 10 ^ { 9 }
C) 2.8×1082.8 \times 10 ^ { 8 }
D) 9.2×1089.2 \times 10 ^ { 8 }
E) 2.8×10102.8 \times 10 ^ { 10 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
22
Choose the one alternative that best completes the statement or answers the question.
How long does it take light to travel 1.0 m1.0 \mathrm {~m} ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 3.3 ns3.3 \mathrm {~ns}
B) 3.3 s3.3 \mathrm {~s}
C) 3.3 ms3.3 \mathrm {~ms}
D) 3.3μs3.3 \mu \mathrm { s }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
23
Choose the one alternative that best completes the statement or answers the question.
If the magnetic field in a traveling electromagnetic wave has a maximum value of 16.5nT16.5 \mathrm { nT } , what is the maximum value of the electric field associated with this wave? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 55.0×10−16 V/m55.0 \times 10 ^ { - 16 } \mathrm {~V} / \mathrm { m }
B) 4.95 V/m4.95 \mathrm {~V} / \mathrm { m }
C) 55.0×10−15 V/m55.0 \times 10 ^ { - 15 } \mathrm {~V} / \mathrm { m }
D) 5.5×10−17 V/m5.5 \times 10 ^ { - 17 } \mathrm {~V} / \mathrm { m }
E) 0.495 V/m0.495 \mathrm {~V} / \mathrm { m }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
24
Choose the one alternative that best completes the statement or answers the question.
At a particular point and instant, the magnetic field component of an electromagnetic wave is 15.015.0 μT\mu \mathrm { T } . What is the magnetic energy density of this wave at that point and instant? (c=3.00×108 m/s\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right. , μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2\mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 2.26×10−4 J/m32.26 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
B) 4.47×10−4 J/m34.47 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
C) 1.79×10−4 J/m31.79 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
D) 8.95×10−5 J/m38.95 \times 10 ^ { - 5 } \mathrm {~J} / \mathrm { m } ^ { 3 }
E) 9.72×10−5 J/m39.72 \times 10 ^ { - 5 } \mathrm {~J} / \mathrm { m } ^ { 3 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
25
Choose the one alternative that best completes the statement or answers the question.
A radio station broadcasts at a frequency of 80MHz80 \mathrm { MHz } . How far from the transmitter will this signal travel in 67 ms67 \mathrm {~ms} ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 80 km80 \mathrm {~km}
B) 20×106 m20 \times 10 ^ { 6 } \mathrm {~m}
C) 40 km40 \mathrm {~km}
D) 60×106 m60 \times 10 ^ { 6 } \mathrm {~m}
E) 67 m67 \mathrm {~m}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
26
Choose the one alternative that best completes the statement or answers the question.
The amplitude of the electric field for a certain type of electromagnetic wave is 570 N/C570 \mathrm {~N} / \mathrm { C } . What is the amplitude of the magnetic field for that wave? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 2.91μT2.91 \mu \mathrm { T }
B) 2.41μT2.41 \mu T
C) 1.41μT1.41 \mu \mathrm { T }
D) 1.10μT1.10 \mu \mathrm { T }
E) 1.90μT1.90 \mu T
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
27
Choose the one alternative that best completes the statement or answers the question.
A radar receiver indicates that a pulse return as an echo in 20μs20 \mu \mathrm { s } after it was sent. How far away is the reflecting object? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 6.0 km6.0 \mathrm {~km}
B) 9.0 km9.0 \mathrm {~km}
C) 3.0 km3.0 \mathrm {~km}
D) 1.5 km1.5 \mathrm {~km}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
28
Choose the one alternative that best completes the statement or answers the question.
The maximum magnetic energy density of a sinusoidal electromagnetic wave is 8.95×10−5 J/m38.95 \times 10 ^ { - 5 } \mathrm {~J} / \mathrm { m } ^ { 3 } . What is the amplitude of the magnetic field component of this wave? (c=3.00×108 m/s,μ0=4π×\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times \right. 10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m210 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 12.0μT12.0 \mu \mathrm { T }
B) 13.0μT13.0 \mu \mathrm { T }
C) 14.0μT14.0 \mu \mathrm { T }
D) 16.0μT16.0 \mu \mathrm { T }
E) 15.0μT15.0 \mu \mathrm { T }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
29
Choose the one alternative that best completes the statement or answers the question.
A sinusoidal electromagnetic wave has a peak electric field of 8.00kV/m8.00 \mathrm { kV } / \mathrm { m } . What is the intensity of the wave? (c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 170 kW/m2170 \mathrm {~kW} / \mathrm { m } ^ { 2 }
B) 11 kW/m211 \mathrm {~kW} / \mathrm { m } ^ { 2 }
C) 85 kW/m285 \mathrm {~kW} / \mathrm { m } ^ { 2 }
D) 21 kW/m221 \mathrm {~kW} / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
30
Choose the one alternative that best completes the statement or answers the question.
How far does a beam of light travel through space in one 365 -day year? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 80×1012 m80 \times 10 ^ { 12 } \mathrm {~m}
B) 20×1015 m20 \times 1015 \mathrm {~m}
C) 95×1014 m95 \times 10 ^ { 14 } \mathrm {~m}
D) 30×108 m30 \times 10 ^ { 8 } \mathrm {~m}
E) 36×1016 m36 \times 10 ^ { 16 } \mathrm {~m}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
31
Choose the one alternative that best completes the statement or answers the question.
A radio station broadcasts at 80MHz80 \mathrm { MHz } . How long does it take for this radio signal to travel a distance of 2.0×107 m2.0 \times 10 ^ { 7 } \mathrm {~m} through space? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 25 ms25 \mathrm {~ms}
B) 20 ms20 \mathrm {~ms}
C) 15 ms15 \mathrm {~ms}
D) 6.7×10−2 s6.7 \times 10 ^ { - 2 } \mathrm {~s}
E) 0.15×10−2 s0.15 \times 10 ^ { - 2 } \mathrm {~s}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
32
Choose the one alternative that best completes the statement or answers the question.
The distance between two asteroids is 1600 km1600 \mathrm {~km} . How much time does it take for a light signal to go from one asteroid to the other? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 5.3 ms5.3 \mathrm {~ms}
B) 19 ms19 \mathrm {~ms}
C) 4.5 ms4.5 \mathrm {~ms}
D) 19μs19 \mu \mathrm { s }
E) 13 ms13 \mathrm {~ms}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
33
Choose the one alternative that best completes the statement or answers the question.
How far does a beam of light travel in 2.0 ms2.0 \mathrm {~ms} ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.66×105 m0.66 \times 10 ^ { 5 } \mathrm {~m}
B) 6.0×105 m6.0 \times 10 ^ { 5 } \mathrm {~m}
C) 60 m60 \mathrm {~m}
D) 90 m90 \mathrm {~m}
E) 70 m70 \mathrm {~m}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
34
Choose the one alternative that best completes the statement or answers the question.
The maximum value of the electric field in an electromagnetic wave is 2.0 V/m2.0 \mathrm {~V} / \mathrm { m } . What is the maximum value of the magnetic field in that wave? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 6.7 T6.7 \mathrm {~T}
B) 6.7μT6.7 \mu T
C) 6.7nT6.7 \mathrm { nT }
D) 6.7pT6.7 \mathrm { pT }
E) 6.7mT6.7 \mathrm { mT }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
35
Choose the one alternative that best completes the statement or answers the question.
A 2.4×1014 Hz2.4 \times 10 ^ { 14 } \mathrm {~Hz} laser emits a 3.5−μ3.5 - \mu s pulse that is 5.0 mm5.0 \mathrm {~mm} in diameter. The average energy density in the beam is 0.65 J/m30.65 \mathrm {~J} / \mathrm { m } ^ { 3 } . What average power is emitted by this laser? (c=3.0×108 m/s,μ0=4π×\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times \right. 10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m210 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 15 kW15 \mathrm {~kW}
B) 7.7 kW7.7 \mathrm {~kW}
C) 3.8 kW3.8 \mathrm {~kW}
D) 12 kW12 \mathrm {~kW}
E) 19 kW19 \mathrm {~kW}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
36
Choose the one alternative that best completes the statement or answers the question.
A laser beam takes 24 ms to travel from a rocket to the reflective surface of a planet and back to the rocket. How far is the rocket from this planet's surface? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 1200 km1200 \mathrm {~km}
B) 3600 km3600 \mathrm {~km}
C) 4800 km4800 \mathrm {~km}
D) 1800 km1800 \mathrm {~km}
E) 2400 km2400 \mathrm {~km}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
37
Choose the one alternative that best completes the statement or answers the question.
How far does light travel in 1.0μs1.0 \mu \mathrm { s } ? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.30 km0.30 \mathrm {~km}
B) 3.0×1014 m3.0 \times 10 ^ { 14 } \mathrm {~m}
C) 3.0 m3.0 \mathrm {~m}
D) 30 cm30 \mathrm {~cm}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
38
Choose the one alternative that best completes the statement or answers the question.
A certain electromagnetic field traveling in vacuum has a maximum electric field of 1200 V/m1200 \mathrm {~V} / \mathrm { m } . What is the maximum magnetic field of this wave? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 9.6×10−6 T9.6 \times 10 ^ { - 6 } \mathrm {~T}
B) 8.7×10−6 T8.7 \times 10 ^ { - 6 } \mathrm {~T}
C) 2.2×10−5 T2.2 \times 10 ^ { - 5 } \mathrm {~T}
D) 3.4×10−4 T3.4 \times 10 ^ { - 4 } \mathrm {~T}
E) 4.0×10−6 T4.0 \times 10 ^ { - 6 } \mathrm {~T}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
39
Choose the one alternative that best completes the statement or answers the question.
About 1350 W/m21350 \mathrm {~W} / \mathrm { m } ^ { 2 } of electromagnetic energy reaches the upper atmosphere of the earth from the sun, which is 1.5×1011 m1.5 \times 10 ^ { 11 } \mathrm {~m} away. Use this information to estimate the average power output of the sun.

A) 1×1026 W1 \times 10 ^ { 26 } \mathrm {~W}
B) 3×1026 W3 \times 10 ^ { 26 } \mathrm {~W}
C) 2×1026 W2 \times 10 ^ { 26 } \mathrm {~W}
D) 4×1026 W4 \times 10 ^ { 26 } \mathrm {~W}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
40
Choose the one alternative that best completes the statement or answers the question.
A 7.55×1014 Hz7.55 \times 10 ^ { 14 } \mathrm {~Hz} electromagnetic wave travels in carbon tetrachloride with a speed of 2.05×1082.05 \times 10 ^ { 8 } m/s\mathrm { m } / \mathrm { s } . What is the wavelength of the wave in this material?

A) 397 nm397 \mathrm {~nm}
B) 272 nm272 \mathrm {~nm}
C) 301 nm301 \mathrm {~nm}
D) 338 nm338 \mathrm {~nm}
E) 361 nm361 \mathrm {~nm}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
41
Choose the one alternative that best completes the statement or answers the question.
An 8.0-mW laser beam emits a cylindrical beam of single-wavelength sinusoidal light 0.90 mm0.90 \mathrm {~mm} in diameter. What is the rms value of the electric field in this laser beam? (ε0=8.85×10−12C2/N\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \right. . m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 1100 N/C1100 \mathrm {~N} / \mathrm { C }
B) 2000 N/C2000 \mathrm {~N} / \mathrm { C }
C) 2200 N/C2200 \mathrm {~N} / \mathrm { C }
D) 1000 N/C1000 \mathrm {~N} / \mathrm { C }
E) 4100 N/C4100 \mathrm {~N} / \mathrm { C }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
42
Choose the one alternative that best completes the statement or answers the question.
A light source radiates 60.0 W60.0 \mathrm {~W} of single-wavelength sinusoidal light uniformly in all directions. What is the average intensity of the light from this bulb at a distance of 0.400 m0.400 \mathrm {~m} from the bulb?

A) 11.9 W/m211.9 \mathrm {~W} / \mathrm { m } ^ { 2 }
B) 29.8 W/m229.8 \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 27.4 W/m227.4 \mathrm {~W} / \mathrm { m } ^ { 2 }
D) 14.9 W/m214.9 \mathrm {~W} / \mathrm { m } ^ { 2 }
E) 37.2 W/m237.2 \mathrm {~W} / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
43
Choose the one alternative that best completes the statement or answers the question.
Radiation of a single frequency reaches the upper atmosphere of the earth with an intensity of 1350 W/m21350 \mathrm {~W} / \mathrm { m } ^ { 2 } . What is the maximum value of the electric field associated with this radiation? (c=( c = 3.00×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m23.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 1400 V/m1400 \mathrm {~V} / \mathrm { m }
B) 675.0 V/m675.0 \mathrm {~V} / \mathrm { m }
C) 1350 V/m1350 \mathrm {~V} / \mathrm { m }
D) 1604 V/m1604 \mathrm {~V} / \mathrm { m }
E) 1010 V/m1010 \mathrm {~V} / \mathrm { m }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
44
Choose the one alternative that best completes the statement or answers the question.
A radiometer has two square vanes (1.0 cm( 1.0 \mathrm {~cm} by 1.0 cm)1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is 6.0 cm6.0 \mathrm {~cm} from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of 300 W/m2300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the vanes. What is the radiation pressure on the blackened vane? (c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)
 <strong>Choose the one alternative that best completes the statement or answers the question. A radiometer has two square vanes  ( 1.0 \mathrm {~cm}  by  1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is  6.0 \mathrm {~cm}  from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of  300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the vanes. What is the radiation pressure on the blackened vane?  \left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)    </strong> A)  1.0 \times 10 ^ { - 10 } \mathrm {~Pa}  B)  1.0 \times 10 ^ { - 7 } \mathrm {~Pa}  C)  1.0 \times 10 ^ { - 8 } \mathrm {~Pa}  D)  1.0 \times 10 ^ { - 6 } \mathrm {~Pa}  E)  1.0 \times 10 ^ { - 9 } \mathrm {~Pa}

A) 1.0×10−10 Pa1.0 \times 10 ^ { - 10 } \mathrm {~Pa}
B) 1.0×10−7 Pa1.0 \times 10 ^ { - 7 } \mathrm {~Pa}
C) 1.0×10−8 Pa1.0 \times 10 ^ { - 8 } \mathrm {~Pa}
D) 1.0×10−6 Pa1.0 \times 10 ^ { - 6 } \mathrm {~Pa}
E) 1.0×10−9 Pa1.0 \times 10 ^ { - 9 } \mathrm {~Pa}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
45
Choose the one alternative that best completes the statement or answers the question.
A radiometer has two square vanes (1.0 cm( 1.0 \mathrm {~cm} by 1.0 cm)1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is 6.0 cm6.0 \mathrm {~cm} from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of 300 W/m2300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the front of both vanes. What is the net torque on the vane assembly, about the vertical axis? (c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A,ε0=8.85×\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times \right. 10−12C2/Nâ‹…m210 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )
 <strong>Choose the one alternative that best completes the statement or answers the question. A radiometer has two square vanes  ( 1.0 \mathrm {~cm}  by  1.0 \mathrm {~cm} ) , attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is  6.0 \mathrm {~cm}  from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of  300 \mathrm {~W} / \mathrm { m } ^ { 2 } , is incident normally upon the front of both vanes. What is the net torque on the vane assembly, about the vertical axis?  \left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times \right.   10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 }  )   </strong> A)  0.0 \mathrm {~N} \cdot \mathrm { m }  B)  1.2 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }  C)  1.8 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }  D)  2.4 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }  E)  6.0 \times 10 ^ { - 12 } \mathrm {~N} \cdot \mathrm { m }

A) 0.0 Nâ‹…m0.0 \mathrm {~N} \cdot \mathrm { m }
B) 1.2×10−11 Nâ‹…m1.2 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }
C) 1.8×10−11 Nâ‹…m1.8 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }
D) 2.4×10−11 Nâ‹…m2.4 \times 10 ^ { - 11 } \mathrm {~N} \cdot \mathrm { m }
E) 6.0×10−12 Nâ‹…m6.0 \times 10 ^ { - 12 } \mathrm {~N} \cdot \mathrm { m }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
46
Choose the one alternative that best completes the statement or answers the question.
An 800−kHz800 - \mathrm { kHz } sinusoidal radio signal is detected at a point 6.6 km6.6 \mathrm {~km} from the transmitter tower. The electric field amplitude of the signal at that point is 0.780 V/m0.780 \mathrm {~V} / \mathrm { m } . Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. What is the amplitude of the magnetic field of the signal at that point? (ε0=8.85×10−12\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \right. C2/Nâ‹…m2,c=3.0×108 m/s,μ0=4π×10−7 Tâ‹…m/A\mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } )

A) 2.6nT2.6 \mathrm { nT }
B) 3.1nT3.1 \mathrm { nT }
C) 3.6nT3.6 \mathrm { nT }
D) 1.6nT1.6 \mathrm { nT }
E) 2.1nT2.1 \mathrm { nT }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
47
Choose the one alternative that best completes the statement or answers the question.
Light with an average intensity of 683 W/m2683 \mathrm {~W} / \mathrm { m } ^ { 2 } falls on a black surface and is completely absorbed. What is the radiation pressure that the light exerts on this surface if it strikes perpendicular to the surface? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 205,000 N/m2205,000 \mathrm {~N} / \mathrm { m } ^ { 2 }
B) 4550nN/m24550 \mathrm { nN } / \mathrm { m } ^ { 2 }
C) 1140nN/m21140 \mathrm { nN } / \mathrm { m } ^ { 2 }
D) 2280nN/m22280 \mathrm { nN } / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
48
Choose the one alternative that best completes the statement or answers the question.
If the average intensity of the sunlight in Miami, Florida, is 1060 W/m21060 \mathrm {~W} / \mathrm { m } ^ { 2 } , what is the average magnitude of the force this light exerts on a 16−m216 - m ^ { 2 } surface of black asphalt that totally absorbs the light? (c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.204×10−5 N0.204 \times 10 ^ { - 5 } \mathrm {~N}
B) 1.63×10−5 N/m21.63 \times 10 ^ { - 5 } \mathrm {~N} / \mathrm { m } ^ { 2 }
C) 5.65×10−5 N5.65 \times 10 ^ { - 5 } \mathrm {~N}
D) 7.83×10−5 N7.83 \times 10 ^ { - 5 } \mathrm {~N}
E) 2.61×10−5 N2.61 \times 10 ^ { - 5 } \mathrm {~N}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
49
Choose the one alternative that best completes the statement or answers the question.
How much energy is transported across a 1.00−cm21.00 - \mathrm { cm } ^ { 2 } area per hour by a sinusoidal electromagnetic wave whose electric field has a maximum strength of 30.4 V/m30.4 \mathrm {~V} / \mathrm { m } ? (ε0=8.85×10−12C2/Nâ‹…m2,μ0=\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } 2 / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = \right. 4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.44 J0.44 \mathrm {~J}
B) 0.44μJ0.44 \mu \mathrm { J }
C) 0.44 mJ0.44 \mathrm {~mJ}
D) 0.44 nJ0.44 \mathrm {~nJ}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
50
Write the word or phrase that best completes each statement or answers the question.
The total electromagnetic power emitted by the sun is 3.8×1026 W3.8 \times 10 ^ { 26 } \mathrm {~W} . What is the radiation pressure it exerts on the perfectly absorbing surface of a satellite near the orbit of Mercury, which is 5.8×1010 m5.8 \times 10 ^ { 10 } \mathrm {~m} from the sun? The radiation strikes the surface of the satellite perpendicular to the surface. (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
51
Choose the one alternative that best completes the statement or answers the question.
What is the maximum value of the magnetic field at a distance of 2.5 m2.5 \mathrm {~m} from a light bulb that radiates 100 W100 \mathrm {~W} of single-frequency sinusoidal electromagnetic waves uniformly in all directions? ( ε0=8.85×10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 0.80μT0.80 \mu \mathrm { T }
B) 0.40μT0.40 \mu \mathrm { T }
C) 0.10μT0.10 \mu \mathrm { T }
D) 0.50μT0.50 \mu \mathrm { T }
E) 0.60μT0.60 \mu \mathrm { T }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
52
Choose the one alternative that best completes the statement or answers the question.
A light source radiates 60.0 W60.0 \mathrm {~W} of single-wavelength sinusoidal light uniformly in all directions. What is the amplitude of the electric field of this light at a distance of 0.400 m0.400 \mathrm {~m} from the bulb? (ε0=\left( \varepsilon _ { 0 } = \right. 8.85×10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.00×108 m/s)\left. 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 52.9 N/C52.9 \mathrm {~N} / \mathrm { C }
B) 212 N/C212 \mathrm {~N} / \mathrm { C }
C) 162 N/C162 \mathrm {~N} / \mathrm { C }
D) 150 N/C150 \mathrm {~N} / \mathrm { C }
E) 82.1 N/C82.1 \mathrm {~N} / \mathrm { C }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
53
Choose the one alternative that best completes the statement or answers the question.
If the average intensity of the sunlight in Miami, Florida, is 1040 W/m21040 \mathrm {~W} / \mathrm { m } ^ { 2 } , what is the average value of the radiation pressure due to this sunlight on a black totally absorbing asphalt surface in Miami?
(c=3.00×108 m/s)\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 7.83×10−6 N7.83 \times 10 ^ { - 6 } \mathrm {~N}
B) 9.78×10−6 N/m29.78 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
C) 1.63×10−6 N/m21.63 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
D) 3.47×10−6 N/m23.47 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
E) 2.28×10−6 N/m22.28 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
54
Write the word or phrase that best completes each statement or answers the question.
The intensity of solar radiation near the earth is 1.4 kW/m21.4 \mathrm {~kW} / \mathrm { m } ^ { 2 } . What magnitude force does this radiation exert when it strikes at right angles to a 5.0−m25.0 - \mathrm { m } ^ { 2 } perfectly reflecting solar panel of an artificial satellite orbiting the earth? (c=3.0×108 m/s)\left( c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
55
Choose the one alternative that best completes the statement or answers the question.
An 8.00-mW laser beam emits a cylindrical beam of single-wavelength sinusoidal light 0.600 mm0.600 \mathrm {~mm} in diameter. What is the maximum value of the magnetic field in the laser beam? (ε0=8.85×\left( \varepsilon _ { 0 } = 8.85 \times \right. 10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 20.5μT20.5 \mu \mathrm { T }
B) 17.2μT17.2 \mu \mathrm { T }
C) 15.4μT15.4 \mu \mathrm { T }
D) 12.4μT12.4 \mu \mathrm { T }
E) 9.24μT9.24 \mu T
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
56
Choose the one alternative that best completes the statement or answers the question.
A radio transmitter is operating at an average power of 4.00 kW4.00 \mathrm {~kW} and is radiating uniformly in all directions. What is the average intensity of the signal 8.00 km8.00 \mathrm {~km} from the transmitter?

A) 2.49μW/m22.49 \mu \mathrm { W } / \mathrm { m } ^ { 2 }
B) 0.00497 W/m20.00497 \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 0.00249 W/m20.00249 \mathrm {~W} / \mathrm { m } ^ { 2 }
D) 4.97μW/m24.97 \mu \mathrm { W } / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
57
Choose the one alternative that best completes the statement or answers the question.
The rate of energy flow per unit area of a sinusoidal electromagnetic wave has an average value of 0.601 W/m20.601 \mathrm {~W} / \mathrm { m } ^ { 2 } . What is the maximum value of the magnetic field in the wave? (c=3.00×108 m/s,μ0\left( c = 3.00 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } , \mu _ { 0 } \right. =4π×10−7 Tâ‹…m/A,ε0=8.85×10−12C2/Nâ‹…m2= 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 7.09×10−8 T7.09 \times 10 ^ { - 8 } \mathrm {~T}
B) 9.81×10−8 T9.81 \times 10 ^ { - 8 } \mathrm {~T}
C) 5.02×10−8 T5.02 \times 10 ^ { - 8 } \mathrm {~T}
D) 3.55×10−8 T3.55 \times 10 ^ { - 8 } \mathrm {~T}
E) 1.42×10−7 T1.42 \times 10 ^ { - 7 } \mathrm {~T}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
58
Choose the one alternative that best completes the statement or answers the question.
An 800-kHz sinusoidal radio signal is detected at a point 2.1 km2.1 \mathrm {~km} distant from a transmitter tower. The electric field amplitude of the signal at that point is 0.80 V/m0.80 \mathrm {~V} / \mathrm { m } . Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. What is the intensity of the radio signal at that point? (ε0=8.85×10−12C2/Nâ‹…m2,μ0=\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = \right. 4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 6.0×10−4 W/m26.0 \times 10 ^ { - 4 } \mathrm {~W} / \mathrm { m } ^ { 2 }
B) 4.2×10−4 W/m24.2 \times 10 ^ { - 4 } \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 1.7×10−3 W/m21.7 \times 10 ^ { - 3 } \mathrm {~W} / \mathrm { m } ^ { 2 }
D) 1.2×10−3 W/m21.2 \times 10 ^ { - 3 } \mathrm {~W} / \mathrm { m } ^ { 2 }
E) 8.5×10−4 W/m28.5 \times 10 ^ { - 4 } \mathrm {~W} / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
59
Choose the one alternative that best completes the statement or answers the question.
The rate of energy flow per unit area of an electromagnetic wave has an average value of 0.6950.695 W/m2\mathrm { W } / \mathrm { m } ^ { 2 } . The wave is incident at right angles upon a rectangular area measuring 1.5 m1.5 \mathrm {~m} by 2.0 m2.0 \mathrm {~m} .
How much total energy falls upon this rectangle each minute? (ε0=8.85×10−12C2/Nâ‹…m2,μ0=4\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } 2 / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \right. π×10−7 Tâ‹…m/A,c=3.0×108 m/s\pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } )

A) 250 J250 \mathrm {~J}
B) 160 J160 \mathrm {~J}
C) 130 J130 \mathrm {~J}
D) 220 J220 \mathrm {~J}
E) 190 J190 \mathrm {~J}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
60
Choose the one alternative that best completes the statement or answers the question.
A light source radiates 60.0 W60.0 \mathrm {~W} of single-wavelength sinusoidal light uniformly in all directions. What is the amplitude of the magnetic field of this light at a distance of 0.700 m0.700 \mathrm {~m} from the bulb? (ε0\left( \varepsilon _ { 0 } \right. =8.85×10−12C2/Nâ‹…m2,μ0=4π×10−7 Tâ‹…m/A,c=3.0×108 m/s)\left. = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } , \mu _ { 0 } = 4 \pi \times 10 ^ { - 7 } \mathrm {~T} \cdot \mathrm { m } / \mathrm { A } , c = 3.0 \times 10 ^ { 8 } \mathrm {~m} / \mathrm { s } \right)

A) 2.86×10−7 T2.86 \times 10 ^ { - 7 } \mathrm {~T}
B) 1.76×10−7 T1.76 \times 10 ^ { - 7 } \mathrm {~T}
C) 2.02×10−7 T2.02 \times 10 ^ { - 7 } \mathrm {~T}
D) 2.22×10−7 T2.22 \times 10 ^ { - 7 } \mathrm {~T}
Unlock Deck
Unlock for access to all 60 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 60 flashcards in this deck.