Deck 17: Electric Potential

Full screen (f)
exit full mode
Question
Write the word or phrase that best completes each statement or answers the question.
An ideal parallel-plate capacitor having circular plates of diameter DD that are a distance dd apart stores energy UU when it is connected across a fixed potential difference. If you want to triple the amount of energy stored in this capacitor by changing only the size of its plates, the diameter should be changed to

A) D3\frac { D } { 3 }
B) 3D3 D .
C) D3D \sqrt { 3 }
D) D3\frac { \mathrm { D } } { \sqrt { 3 } }
E) 9D.
Use Space or
up arrow
down arrow
to flip the card.
Question
Write the word or phrase that best completes each statement or answers the question.
If an electron is accelerated from rest through a potential difference of 1500 V1500 \mathrm {~V} , what speed does it reach? (e=1.60×10−19C,melectron =9.11×10−31 kg)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {electron } } = 9.11 \times 10 ^ { - 31 } \mathrm {~kg} \right)

A) 1.5×107 m/s1.5 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
B) 2.3×107 m/s2.3 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
C) 1.1×107 m/s1.1 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
D) 1.9×107 m/s1.9 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
Question
Write the word or phrase that best completes each statement or answers the question.
A proton with a speed of 2.0×105 m/s2.0 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s } accelerates through a potential difference and thereby increases its speed to 4.0×105 m/s4.0 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s } . Through what magnitude potential difference did the proton accelerate? (e=1.60×10−19C,mproton =1.67×10−27 kg)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} \right)

A) 840 V840 \mathrm {~V}
B) 1000 V1000 \mathrm {~V}
C) 100 V100 \mathrm {~V}
D) 210 V210 \mathrm {~V}
E) 630 V630 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
Four charged particles (two having a charge +Q+ Q and two having a charge −Q- Q ) are arranged in the xyx y -plane as shown in the figure. The charges are all equidistant from the origin. The amount of work required to move a positively charged particle from point PP to point OO (both of which are on the zz -axis) is
 <strong>Write the word or phrase that best completes each statement or answers the question. Four charged particles (two having a charge  + Q  and two having a charge  - Q  ) are arranged in the  x y -plane as shown in the figure. The charges are all equidistant from the origin. The amount of work required to move a positively charged particle from point  P  to point  O  (both of which are on the  z -axis) is   </strong> A) positive. B) negative. C) zero. D) depends on the path in which the charged is moved. <div style=padding-top: 35px>

A) positive.
B) negative.
C) zero.
D) depends on the path in which the charged is moved.
Question
Write the word or phrase that best completes each statement or answers the question.
Four charged particles (two having a charge +Q+ Q and two having a charge −Q- Q ) are arranged in the xyx y -plane, as shown in the figure. These particles are all equidistant from the origin. The electric potential (relative to infinity) at point P\mathrm { P } on the zz -axis due to these particles, is
 <strong>Write the word or phrase that best completes each statement or answers the question. Four charged particles (two having a charge  + Q  and two having a charge  - Q  ) are arranged in the  x y -plane, as shown in the figure. These particles are all equidistant from the origin. The electric potential (relative to infinity) at point  \mathrm { P }  on the  z -axis due to these particles, is   </strong> A) negative. B) positive. C) zero. D) impossible to determine based on the information given. <div style=padding-top: 35px>

A) negative.
B) positive.
C) zero.
D) impossible to determine based on the information given.
Question
Write the word or phrase that best completes each statement or answers the question.
A region of space contains a uniform electric field, directed toward the right, as shown in the figure. Which statement about this situation is correct?
 <strong>Write the word or phrase that best completes each statement or answers the question. A region of space contains a uniform electric field, directed toward the right, as shown in the figure. Which statement about this situation is correct?   </strong> A) The potential at all three locations is the same. B) The potential at points  A  and  B  are equal, and the potential at point  C  is lower than the potential at point  A . C) The potentials at points  A  and  B  are equal, and the potential at point  C  is higher than the potential at point A. D) The potential at point  \mathrm { A }  is the highest, the potential at point  \mathrm { B }  is the second highest, and the potential at point  C  is the lowest. <div style=padding-top: 35px>

A) The potential at all three locations is the same.
B) The potential at points AA and BB are equal, and the potential at point CC is lower than the potential at point AA .
C) The potentials at points AA and BB are equal, and the potential at point CC is higher than the potential at point A.
D) The potential at point A\mathrm { A } is the highest, the potential at point B\mathrm { B } is the second highest, and the potential at point CC is the lowest.
Question
Write the word or phrase that best completes each statement or answers the question.
A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V500 \mathrm {~V} . What speed does the proton gain? (e=1.60×10−19C,m\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m \right. proton =1.67×10−27 kg)\left. = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} \right)

A) 1.1×105 m/s1.1 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
B) 3.1×105 m/s3.1 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
C) 2.2×105 m/s2.2 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
D) 9.6×105 m/s9.6 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
Question
Write the word or phrase that best completes each statement or answers the question.
When a certain capacitor carries charges of ±10μC\pm 10 \mu \mathrm { C } on its plates, the potential difference cross the plates is 25 V25 \mathrm {~V} . Which of the following statements about this capacitor are true? (There could be more than one correct choice.)

A) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the potential difference across the plates will decrease by a factor of two.
B) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the capacitance of the capacitor will also double.
C) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the potential difference across the plates will also double.
D) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the capacitance of the capacitor will not
Question
Write the word or phrase that best completes each statement or answers the question.
If the electric field between the plates of a given air-filled capacitor is weakened by removing charge from the plates, the capacitance of that capacitor

A) does not change.
B) decreases.
C) increases.
D) It cannot be determined from the information given.
Question
Write the word or phrase that best completes each statement or answers the question.
Two ideal parallel-plate capacitors are identical in every respect except that one has twice the plate area of the other. If the smaller capacitor has capacitance CC , the larger one has capacitance

A) 4C4 C .
B) 2C2 \mathrm { C } .
C) C/2C / 2 .
D) C\mathrm { C } .
Question
Write the word or phrase that best completes each statement or answers the question.
How much kinetic energy does a proton gain if it is accelerated, with no friction, through a potential difference of 1.00 V1.00 \mathrm {~V} ? The proton is 1836 times heavier than an electron, and e=1.60×10−19e = 1.60 \times10^{-19} C.

A) 1836eV1836 \mathrm { eV }
B) 1.00 J1.00 \mathrm {~J}

C) 1836 J1836 \mathrm {~J}

D) 1.60×10−19eV1.60 \times 10 ^ { - 19 } \mathrm { eV }

E) 1.00eV1.00 \mathrm { eV }
Question
Write the word or phrase that best completes each statement or answers the question.
A proton is accelerated from rest through a potential difference V0V _ { 0 } and gains a speed v0v _ { 0 } . If it were accelerated instead through a potential difference of 2V02 V _ { 0 } , what speed would it gain?

A) 2v02 v _ { 0 }
B) 8v08 v _ { 0 }
C) v02v 0 \sqrt { 2 }
D) 4v04 v _ { 0 }
Question
Write the word or phrase that best completes each statement or answers the question.
A tiny particle with charge +5.0μC+ 5.0 \mu \mathrm { C } is initially moving at 55 m/s55 \mathrm {~m} / \mathrm { s } . It is then accelerated through a potential difference of 500 V500 \mathrm {~V} . How much kinetic energy does this particle gain during the period of acceleration?

A) 2500 J2500 \mathrm {~J}
B) 2.5×10−3 J2.5 \times 10 ^ { - 3 } \mathrm {~J}
C) 1.0×104 J1.0 \times 10 ^ { 4 } \mathrm {~J}
D) 100 J100 \mathrm {~J}
Question
Write the word or phrase that best completes each statement or answers the question.
If the result of your calculations for a quantity has SI\mathrm { SI } units of C2â‹…s2/(kgâ‹…m2)\mathrm { C } ^ { 2 } \cdot \mathrm { s } ^ { 2 } / \left( \mathrm { kg } \cdot \mathrm { m } ^ { 2 } \right) , that quantity could be

A) a capacitance.
B) an electric potential difference.
C) an electric field strength.
D) a dielectric constant.
E) an electric potential energy.
Question
Write the word or phrase that best completes each statement or answers the question.
An ideal parallel-plate capacitor has a capacitance of CC . If the area of the plates is doubled and the distance between the plates is halved, what is the new capacitance?

A) 2C2 \mathrm { C }
B) C/4\mathrm { C } / 4
C) C/2\mathrm { C } / 2
D) 4C4 \mathrm { C }
Question
Write the word or phrase that best completes each statement or answers the question.
At a distance dd from a point charge QQ , the energy density in its electric field is uu . If we double the charge, what is the energy density at the same point?

A) 4u4 u
B) u2u \sqrt { 2 }
C) 8u8 u
D) 2u2 u
E) 16u16 u
Question
Write the word or phrase that best completes each statement or answers the question.
At a distance dd from a point charge QQ , the energy density in its electric field is uu . If we now go to a distance d/2d / 2 from the charge, what is the energy density at the new location?

A) 8u8 u
B) 16u16 u
C) 4u4 u
D) 2u2 u
E) u2u \sqrt { 2 }
Question
Write the word or phrase that best completes each statement or answers the question.
How much work must we do on an electron to move it from point AA , which is at a potential of +50 V+ 50 \mathrm {~V} , to point B\mathrm { B } , which is at a potential of −50 V- 50 \mathrm {~V} , along the semicircular path shown in the figure? Assume the system is isolated from outside forces. (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. How much work must we do on an electron to move it from point  A , which is at a potential of  + 50 \mathrm {~V} , to point  \mathrm { B } , which is at a potential of  - 50 \mathrm {~V} , along the semicircular path shown in the figure? Assume the system is isolated from outside forces.  \left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)    </strong> A)  1.60 \times 10 ^ { - 17 } \mathrm {~J}  B)  - 1.60 \times 10 ^ { - 17 } \mathrm {~J}  C)  1.6 \mathrm {~J}  D)  - 1.6 \mathrm {~J}  E) This cannot be determined because we do not know the distance traveled. <div style=padding-top: 35px>

A) 1.60×10−17 J1.60 \times 10 ^ { - 17 } \mathrm {~J}
B) −1.60×10−17 J- 1.60 \times 10 ^ { - 17 } \mathrm {~J}
C) 1.6 J1.6 \mathrm {~J}
D) −1.6 J- 1.6 \mathrm {~J}
E) This cannot be determined because we do not know the distance traveled.
Question
Write the word or phrase that best completes each statement or answers the question.
After a proton with an initial speed of 1.50×105 m/s1.50 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s } has increased its speed by accelerating through a potential difference of 0.100kV0.100 \mathrm { kV } , what is its final speed? (e=1.60×10−19C,mproton =\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {proton } } = \right. 1.67×10−27 kg1.67 \times 10 ^ { - 27 } \mathrm {~kg} )

A) 1.55×106 m/s1.55 \times 10^6 \mathrm {~m} / \mathrm { s }
B) 2.04×105 m/s2.04 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
C) 8.80×105 m/s8.80 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
D) 4.56×105 m/s4.56 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
E) 3.55×105 m/s3.55 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
Question
Write the word or phrase that best completes each statement or answers the question.
A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V500 \mathrm {~V} . How much kinetic energy does it gain? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 8.0×10−17 J8.0 \times 10 ^ { - 17 } \mathrm {~J}
B) 500 J500 \mathrm {~J}
C) 1.6×10−19 J1.6 \times 10 ^ { - 19 } \mathrm {~J}
D) 800 J800 \mathrm {~J}
Question
Write the word or phrase that best completes each statement or answers the question.
Two very small +3.00−μC+ 3.00 - \mu \mathrm { C } charges are at the ends of a meter stick. Find the electric potential (relative to infinity) at the center of the meter stick. (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 1.08×105 V1.08 \times 10 ^ { 5 } \mathrm {~V}
B) 2.70×104 V2.70 \times 10 ^ { 4 } \mathrm {~V}
C) 0.00 V0.00 \mathrm {~V}
D) 5.40×104 V5.40 \times 10 ^ { 4 } \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
Three point charges are placed at the following points in a horizontal x−yx - y plane: +4.0μC+ 4.0 \mu \mathrm { C } is at (0.00 m,0.50 m),+1.0μC( 0.00 \mathrm {~m} , 0.50 \mathrm {~m} ) , + 1.0 \mu \mathrm { C } is at (0.20 m,0.00 m)( 0.20 \mathrm {~m} , 0.00 \mathrm {~m} ) , and −5.0×μC- 5.0 \times \mu \mathrm { C } is at (0.20 m,0.50 m)( 0.20 \mathrm {~m} , 0.50 \mathrm {~m} ) . Calculate the electrical potential (relative to infinity) at the origin due to these three point charges. (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
Question
Write the word or phrase that best completes each statement or answers the question.
Point charges +4.00μC+ 4.00 \mu \mathrm { C } and +2.00μC+ 2.00 \mu \mathrm { C } are placed at the opposite corners of a rectangle as shown in the figure. What is the potential at point B due to these charges? (k=1/4πε0=8.99×109 N\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. . m2/C2\mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )
 <strong>Write the word or phrase that best completes each statement or answers the question. Point charges  + 4.00 \mu \mathrm { C }  and  + 2.00 \mu \mathrm { C }  are placed at the opposite corners of a rectangle as shown in the figure. What is the potential at point B due to these charges?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. .  \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 }  )  </strong> A)  89.9 \mathrm { kV }  B)  8.99 \mathrm { kV }  C)  11.2 \mathrm { kV }  D)  899 \mathrm { kV }  E)  112 \mathrm { kV }  <div style=padding-top: 35px>

A) 89.9kV89.9 \mathrm { kV }
B) 8.99kV8.99 \mathrm { kV }
C) 11.2kV11.2 \mathrm { kV }
D) 899kV899 \mathrm { kV }
E) 112kV112 \mathrm { kV }
Question
Write the word or phrase that best completes each statement or answers the question.
A+5.0−μC\mathrm { A } + 5.0 - \mu \mathrm { C } point charge is 12 cm12 \mathrm {~cm} from a −5.0−μC- 5.0 - \mu \mathrm { C } point charge. What is the magnitude of the electric field they produce at the point on the line connecting them where their electric potential (relative to infinity) is zero? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 12.5MN/C12.5 \mathrm { MN } / \mathrm { C }
B) 0 N/C0 \mathrm {~N} / \mathrm { C }
C) 0.75MN/C0.75 \mathrm { MN } / \mathrm { C }
D) 25MN/C25 \mathrm { MN } / \mathrm { C }
E) 1.5MN/C1.5 \mathrm { MN } / \mathrm { C }
Question
Write the word or phrase that best completes each statement or answers the question.
Two 3.0μC3.0 \mu \mathrm { C } charges lie on the xx -axis, one at the origin and the other at 2.0 m2.0 \mathrm {~m} . What is the potential (relative to infinity) due to these charges at a point at 6.0 m6.0 \mathrm {~m} on the xx -axis? (k=1/4πε0=9.0×109\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \right. Nâ‹…m2/C2\mathrm { N } \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 3400 V3400 \mathrm {~V}
B) 11,000 V11,000 \mathrm {~V}
C) 14,000 V14,000 \mathrm {~V}
D) 9000 V9000 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
A square is 1.0 m1.0 \mathrm {~m} on a side. Point charges of +4.0μC+ 4.0 \mu \mathrm { C } are placed in two diagonally opposite corners. In the other two corners are placed charges of +3.0μC+ 3.0 \mu \mathrm { C } and −3.0μC- 3.0 \mu \mathrm { C } . What is the potential (relative to infinity) at the midpoint of the square? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 1.0×104 V1.0 \times 10 ^ { 4 } \mathrm {~V}
B) infinite
C) 1.0×106 V1.0 \times 10 ^ { 6 } \mathrm {~V}
D) 1.0×105 V1.0 \times 10 ^ { 5 } \mathrm {~V}
E) 0 V0 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
How much work is needed to carry an electron from the positive terminal to the negative terminal of a 9.0−V9.0 - \mathrm { V } battery. (e=1.60×10−19C,melectron =9.11×10−31 kg)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {electron } } = 9.11 \times 10 ^ { - 31 } \mathrm {~kg} \right)

A) 14.4×10−19 J14.4 \times 10 ^ { - 19 } \mathrm {~J}
B) 9.0 J9.0 \mathrm {~J}
C) 1.6×10−19 J1.6 \times 10 ^ { - 19 } \mathrm {~J}
D) 17×10−19 J17 \times 10 ^ { - 19 } \mathrm {~J}
E) 14.4×10−19 J/C14.4 \times 10 ^ { - 19 } \mathrm {~J} / \mathrm { C }
Question
Write the word or phrase that best completes each statement or answers the question.
Four point charges of magnitude 6.00μC6.00 \mu \mathrm { C } and are at the corners of a square 2.00 m2.00 \mathrm {~m} on each side. Two of the charges are positive, and two are negative. What is the electric potential at the center of this square, relative to infinity, due to these charges? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 153kV153 \mathrm { kV }
B) 306kV306 \mathrm { kV }
C) 76.4kV76.4 \mathrm { kV }
D) 0 V0 \mathrm {~V}
E) 61.0kV61.0 \mathrm { kV }
Question
Write the word or phrase that best completes each statement or answers the question.
A sphere with radius 2.0 mm2.0 \mathrm {~mm} carries a +2.0μC+ 2.0 \mu \mathrm { C } charge. What is the potential difference, VB−VAV _ { B } - V _ { A } , between point B\mathrm { B } , which is 4.0 m4.0 \mathrm {~m} from the center of the sphere, and point A\mathrm { A } , which is 6.0 m6.0 \mathrm {~m} from the center of the sphere? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 170 V170 \mathrm {~V}
B) −1500 V- 1500 \mathrm {~V}
C) 1500 V1500 \mathrm {~V}
D) −0.63 V- 0.63 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
A+4.0−μC\mathrm { A } + 4.0 - \mu \mathrm { C } and a −4.0−μC- 4.0 - \mu \mathrm { C } point charge are placed as shown in the figure. What is the potential difference between points AA and BB ? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question.  \mathrm { A } + 4.0 - \mu \mathrm { C }  and a  - 4.0 - \mu \mathrm { C }  point charge are placed as shown in the figure. What is the potential difference between points  A  and  B  ?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)    </strong> A)  96 \mathrm { kV }  B)  0 \mathrm {~V}  C)  48 \mathrm { kV }  D)  48 \mathrm {~V}  E)  96 \mathrm {~V}  <div style=padding-top: 35px>

A) 96kV96 \mathrm { kV }
B) 0 V0 \mathrm {~V}
C) 48kV48 \mathrm { kV }
D) 48 V48 \mathrm {~V}
E) 96 V96 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
A 6.9μC6.9 \mu \mathrm { C } negative point charge has a positively charged particle in an elliptical orbit about it. If the mass of the positively charged particle is 1.0μg1.0 \mu \mathrm { g } and its distance from the point charge varies from 4.0 mm4.0 \mathrm {~mm} to 16.0 mm16.0 \mathrm {~mm} , what is the maximum potential difference through which the positive object moves? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) −5.2MV- 5.2 \mathrm { MV }
B) 19MV19 \mathrm { MV }
C) 3.9MV3.9 \mathrm { MV }
D) 12MV12 \mathrm { MV }
Question
Write the word or phrase that best completes each statement or answers the question.
If a Cu2+\mathrm { Cu } ^ { 2 + } ion that is initially at rest accelerates through a potential difference of 12 V12 \mathrm {~V} without friction, how much kinetic energy will it gain? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 12eV12 \mathrm { eV } .
B) 3.0eV3.0 \mathrm { eV } .
C) 6.0eV6.0 \mathrm { eV } .
D) 24eV24 \mathrm { eV } .
Question
Write the word or phrase that best completes each statement or answers the question.
Two 5.0−μC5.0 - \mu \mathrm { C } point charges are 12 cm12 \mathrm {~cm} apart. What is the electric potential (relative to infinity) of this combination at the point where the electric field due to these charges is zero? (k=1/4πε0=9.0×\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times \right. 109 Nâ‹…m2/C210 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 0.75MV0.75 \mathrm { MV }
B) 1.5MV1.5 \mathrm { MV }
C) 12.5MV12.5 \mathrm { MV }
D) 0.0MV0.0 \mathrm { MV }
E) 25MV25 \mathrm { MV }
Question
Write the word or phrase that best completes each statement or answers the question.
If it takes 50 J50 \mathrm {~J} of energy to move 10C10 \mathrm { C } of charge from point AA to point BB , what is the magnitude of the potential difference between points AA and BB ?

A) 500 V500 \mathrm {~V}
B) 0.50 V0.50 \mathrm {~V}
C) 50 V50 \mathrm {~V}
D) 5.0 V5.0 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
Two +6.0−μC+ 6.0 - \mu \mathrm { C } charges are placed at two of the vertices of an equilateral triangle having sides 2.0 m2.0 \mathrm {~m} Iong. What is the electric potential at the third vertex, relative to infinity, due to these charges? (k=( k = 1/4πε0=9.0×109 Nâ‹…m2/C21 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 108 V108 \mathrm {~V}
B) 90kV90 \mathrm { kV }
C) 54kV54 \mathrm { kV }
D) 0 V0 \mathrm {~V}
E) 27kV27 \mathrm { kV }
Question
Write the word or phrase that best completes each statement or answers the question.
Two point charges of +2.00μC+ 2.00 \mu \mathrm { C } and +4.00μC+ 4.00 \mu \mathrm { C } are at the origin and at the point x=0.000 m,y=x = 0.000 \mathrm {~m} , y = −0.300 m- 0.300 \mathrm {~m} , as shown in the figure. What is the electric potential due to these charges, relative to infinity, at the point P\mathrm { P } at x=0.400 mx = 0.400 \mathrm {~m} on the xx -axis? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. Two point charges of  + 2.00 \mu \mathrm { C }  and  + 4.00 \mu \mathrm { C }  are at the origin and at the point  x = 0.000 \mathrm {~m} , y =   - 0.300 \mathrm {~m} , as shown in the figure. What is the electric potential due to these charges, relative to infinity, at the point  \mathrm { P }  at  x = 0.400 \mathrm {~m}  on the  x -axis?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)    </strong> A)  117 \mathrm { kV }  B)  36.0 \mathrm { kV }  C)  15.7 \mathrm { kV }  D)  56.0 \mathrm { kV }  E)  11.7 \mathrm { kV }  <div style=padding-top: 35px>

A) 117kV117 \mathrm { kV }
B) 36.0kV36.0 \mathrm { kV }
C) 15.7kV15.7 \mathrm { kV }
D) 56.0kV56.0 \mathrm { kV }
E) 11.7kV11.7 \mathrm { kV }
Question
Write the word or phrase that best completes each statement or answers the question.
The three point charges shown in the figure form an equilateral triangle with sides 4.9 cm4.9 \mathrm {~cm} long. What is the electric potential (relative to infinity) at the point indicated with the dot, which is equidistant from all three charges? Assume that the numbers in the figure are all accurate to two significant figures. (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. The three point charges shown in the figure form an equilateral triangle with sides  4.9 \mathrm {~cm}  long. What is the electric potential (relative to infinity) at the point indicated with the dot, which is equidistant from all three charges? Assume that the numbers in the figure are all accurate to two significant figures.  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)   </strong> A)  1900 \mathrm {~V}  B)  1300 \mathrm {~V}  C)  640 \mathrm {~V}  D)  0.00 \mathrm {~V}  <div style=padding-top: 35px>

A) 1900 V1900 \mathrm {~V}
B) 1300 V1300 \mathrm {~V}
C) 640 V640 \mathrm {~V}
D) 0.00 V0.00 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
Three point charges, −2.00μC,+4.00μC- 2.00 \mu \mathrm { C } , + 4.00 \mu \mathrm { C } , and +6.00μC+ 6.00 \mu \mathrm { C } , are located along the xx -axis as shown in the figure. What is the electric potential (relative to infinity) at point P\mathrm { P } due to these charges? (k=( k = 1/4πε0=8.99×109 Nâ‹…m2/C21 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )
 <strong>Write the word or phrase that best completes each statement or answers the question. Three point charges,  - 2.00 \mu \mathrm { C } , + 4.00 \mu \mathrm { C } , and  + 6.00 \mu \mathrm { C } , are located along the  x -axis as shown in the figure. What is the electric potential (relative to infinity) at point  \mathrm { P }  due to these charges?  ( k =   1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 }  )   </strong> A)  + 154  kV B)  + 307 \mathrm { kV }  C)  - 307 \mathrm { kV }  D)  0.00 \mathrm { kV }  E)  - 154 \mathrm { kV }  <div style=padding-top: 35px>

A) +154+ 154 kV
B) +307kV+ 307 \mathrm { kV }
C) −307kV- 307 \mathrm { kV }
D) 0.00kV0.00 \mathrm { kV }
E) −154kV- 154 \mathrm { kV }
Question
Write the word or phrase that best completes each statement or answers the question.
Point charges +4.00μC+ 4.00 \mu \mathrm { C } and +2.00μC+ 2.00 \mu \mathrm { C } are placed at the opposite corners of a rectangle as shown in the figure. What is the potential difference VA−VBV _ { \mathrm { A } } - V _ { \mathrm { B } } ? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. Point charges  + 4.00 \mu \mathrm { C }  and  + 2.00 \mu \mathrm { C }  are placed at the opposite corners of a rectangle as shown in the figure. What is the potential difference  V _ { \mathrm { A } } - V _ { \mathrm { B } }  ?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)   </strong> A)  + 22.5 \mathrm { kV }  B)  - 203 \mathrm { kV }  C)  + 203 \mathrm { kV }  D)  - 22.5 \mathrm { kV }  E)  0.00 \mathrm { kV }  <div style=padding-top: 35px>

A) +22.5kV+ 22.5 \mathrm { kV }
B) −203kV- 203 \mathrm { kV }
C) +203kV+ 203 \mathrm { kV }
D) −22.5kV- 22.5 \mathrm { kV }
E) 0.00kV0.00 \mathrm { kV }
Question
Write the word or phrase that best completes each statement or answers the question.
A 4.0-g bead carries a charge of 20μC20 \mu \mathrm { C } . The bead is accelerated from rest through a potential difference VV , and afterward the bead is moving at 2.0 m/s2.0 \mathrm {~m} / \mathrm { s } . What is the magnitude of the potential difference VV ?

A) 800 V800 \mathrm {~V}
B) 200 V200 \mathrm {~V}
C) 800kV800 \mathrm { kV }
D) 400kV400 \mathrm { kV }
E) 400 V400 \mathrm {~V}
Question
Choose the one alternative that best completes the statement or answers the question.
An electric dipole with ±5.0μC\pm 5.0 \mu \mathrm { C } point charges is positioned so that the positive charge is 1.0 mm1.0 \mathrm {~mm} to the right of the origin and the negative charge is at the origin. How much work does it take to bring a 3.0−μC3.0 - \mu \mathrm { C } point charge from very far away to the point x=3.0 mm,y=0.0 mmx = 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} ? (k=1/4πε0=9.0×\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times \right. 109 Nâ‹…m2/C210 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 19 J19 \mathrm {~J}
B) 23 J23 \mathrm {~J}
C) 110 J110 \mathrm {~J}
D) 49 J49 \mathrm {~J}
Question
Choose the one alternative that best completes the statement or answers the question.
A small 4.0−μC4.0 - \mu C charge and a small 1.5−μC1.5 - \mu C charge are initially very far apart. How much work does it take to bring them to a final configuration in which the 4.0−μC4.0 - \mu \mathrm { C } charge is at the point x=1.0x = 1.0 mm,y=1.0 mm\mathrm { mm } , y = 1.0 \mathrm {~mm} , and the 1.5−μC1.5 - \mu \mathrm { C } charge is at the point x=1.0 mm,y=3.0 mmx = 1.0 \mathrm {~mm} , y = 3.0 \mathrm {~mm} ? (k=1/4πε0=8.99\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \right. ×109 Nâ‹…m2/C2\times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 13.5 kJ13.5 \mathrm {~kJ}
B) 27 J27 \mathrm {~J}
C) 13.5 J13.5 \mathrm {~J}
D) 54 J54 \mathrm {~J}
Question
Write the word or phrase that best completes each statement or answers the question.
The potential difference between two square parallel plates is 4.00 V4.00 \mathrm {~V} . If the plate separation is 6.00 cm6.00 \mathrm {~cm} and they each measure 1.5 m1.5 \mathrm {~m} by 1.5 m1.5 \mathrm {~m} , what is the magnitude of the electric field between the plates?
Question
Choose the one alternative that best completes the statement or answers the question.
A 7.0−μC7.0 - \mu \mathrm { C } point charge and a 9.0−μC9.0 - \mu \mathrm { C } point charge are initially extremely far apart. How much work does it take to bring the 7.0−μC7.0 - \mu C point charge to the point x=3.0 mm,y=0.0 mmx = 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} , and the 9.0−μC9.0 - \mu \mathrm { C } point charge to the point x=−3.0 mm,y=0.0 mm?(k=1/4πε0=9.0×109 Nâ‹…m2/C2)x = - 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} ? \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 16 J16 \mathrm {~J}
B) 95 J95 \mathrm {~J}
C) 63 J63 \mathrm {~J}
D) 190 J190 \mathrm {~J}
Question
Choose the one alternative that best completes the statement or answers the question.
In a region where the electric field is uniform and points in the +x+ x direction, the electric potential is −2000 V- 2000 \mathrm {~V} at x=8 mx = 8 \mathrm {~m} and is +400 V+ 400 \mathrm {~V} at x=2 mx = 2 \mathrm {~m} . What is the magnitude of the electric field?

A) 200 V/m200 \mathrm {~V} / \mathrm { m }
B) 600 V/m600 \mathrm {~V} / \mathrm { m }
C) 300 V/m300 \mathrm {~V} / \mathrm { m }
D) 400 V/m400 \mathrm {~V} / \mathrm { m }
E) 500 V/m500 \mathrm {~V} / \mathrm { m }
Question
Choose the one alternative that best completes the statement or answers the question.
The figure shows an arrangement of two particles each having charge Q=−6.8nCQ = - 6.8 \mathrm { nC } and each separated by 5.0 mm5.0 \mathrm {~mm} from a proton. If the two particles are held fixed at their locations and the proton is set into motion as shown, what is the minimum speed the proton needs to totally escape from these particles? (mproton =1.67×10−27 kg,e=1.60×10−19C,k=1/4πε0=9.0×109 N\left( m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} , e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \right. . m2/C2\mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )
 <strong>Choose the one alternative that best completes the statement or answers the question. The figure shows an arrangement of two particles each having charge  Q = - 6.8 \mathrm { nC }  and each separated by  5.0 \mathrm {~mm}  from a proton. If the two particles are held fixed at their locations and the proton is set into motion as shown, what is the minimum speed the proton needs to totally escape from these particles?  \left( m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} , e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \right. .  \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 }  )   </strong> A)  8.3 \times 106 \mathrm {~m} / \mathrm { s }  B)  1.7 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }  C)  4.3 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }  D)  2.2 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }  <div style=padding-top: 35px>

A) 8.3×106 m/s8.3 \times 106 \mathrm {~m} / \mathrm { s }
B) 1.7×107 m/s1.7 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
C) 4.3×106 m/s4.3 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
D) 2.2×106 m/s2.2 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
Question
Write the word or phrase that best completes each statement or answers the question.
A very small 4.8−g4.8 - \mathrm { g } particle carrying a charge of +9.9μC+ 9.9 \mu \mathrm { C } is fired with an initial speed of 8.0 m/s8.0 \mathrm {~m} / \mathrm { s } directly toward a second small 7.8−g7.8 - \mathrm { g } particle carrying a charge of +5.2μC+ 5.2 \mu \mathrm { C } . The second particle is held fixed throughout this process. If these particles are initially very far apart, what is the closest they get to each other? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
Question
Choose the one alternative that best completes the statement or answers the question.
In the figure, +4.0−μC+ 4.0 - \mu \mathrm { C } and −4.0−μC- 4.0 - \mu \mathrm { C } point charges are located as shown. Now an additional +2.00−μC+ 2.00 - \mu \mathrm { C } point charge is placed at point A\mathrm { A } . What is the electric potential energy of this system of three charges, relative to infinity? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Choose the one alternative that best completes the statement or answers the question. In the figure,  + 4.0 - \mu \mathrm { C }  and  - 4.0 - \mu \mathrm { C }  point charges are located as shown. Now an additional  + 2.00 - \mu \mathrm { C }  point charge is placed at point  \mathrm { A } . What is the electric potential energy of this system of three charges, relative to infinity?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)    </strong> A)  + 26.4 \mathrm {~mJ}  B)  - 264 \mathrm {~mJ}  C)  + 264 \mathrm {~mJ}  D)  0.00 \mathrm {~J}  E)  - 26.4 \mathrm {~mJ}  <div style=padding-top: 35px>

A) +26.4 mJ+ 26.4 \mathrm {~mJ}
B) −264 mJ- 264 \mathrm {~mJ}
C) +264 mJ+ 264 \mathrm {~mJ}
D) 0.00 J0.00 \mathrm {~J}
E) −26.4 mJ- 26.4 \mathrm {~mJ}
Question
Write the word or phrase that best completes each statement or answers the question.
Point charges +4.00μC+ 4.00 \mu \mathrm { C } and +2.00μC+ 2.00 \mu \mathrm { C } are placed at the opposite corners of a rectangle as shown in the figure. If these charges are released and are free to move with no friction, what is the maximum amount of kinetic energy they will gain? (k=1/4πε0=8.99×109 N\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. . m2/C2m ^ { 2 } / C ^ { 2 } )
 Write the word or phrase that best completes each statement or answers the question. Point charges  + 4.00 \mu \mathrm { C }  and  + 2.00 \mu \mathrm { C }  are placed at the opposite corners of a rectangle as shown in the figure. If these charges are released and are free to move with no friction, what is the maximum amount of kinetic energy they will gain?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. .  m ^ { 2 } / C ^ { 2 }  )   <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question.
An alpha particle (a helium nucleus, having charge +2e+ 2 e and mass 6.64×10−27 kg6.64 \times 10 ^ { - 27 } \mathrm {~kg} ) moves head-on at a fixed gold nucleus (having charge +79e+ 79 e ). If the distance of closest approach is 2.0×10−10 m2.0 \times 10 ^ { - 10 } \mathrm {~m} , what was the speed of the alpha particle when it was very far away from the gold? (k=1/4πε0=\left( k = 1 / 4 \pi \varepsilon _ { 0 } = \right. 9.0×109 Nâ‹…m2/C2,e=1.60×10−19C)\left. 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } , e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 2.3×105 m/s2.3 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
B) 4.6×106 m/s4.6 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
C) 2.3×106 m/s2.3 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
D) 4.6×105 m/s4.6 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
Question
Write the word or phrase that best completes each statement or answers the question.
Two tiny particles having charges q1=+56.0nCq _ { 1 } = + 56.0 \mathrm { nC } and q2=−46.0nCq _ { 2 } = - 46.0 \mathrm { nC } are separated by 0.500 m0.500 \mathrm {~m} and held in place, as shown in the figure. A third particle, having a charge of 54.0nC54.0 \mathrm { nC } is placed at the point AA , which is 0.18 m0.18 \mathrm {~m} to the left of q2q 2 . How much work is needed to move the third particle from point AA to point BB , which is 0.40 m0.40 \mathrm {~m} to the left of q1q 1 . All the points in the figure lie on the same line. (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 Write the word or phrase that best completes each statement or answers the question. Two tiny particles having charges  q _ { 1 } = + 56.0 \mathrm { nC }  and  q _ { 2 } = - 46.0 \mathrm { nC }  are separated by  0.500 \mathrm {~m}  and held in place, as shown in the figure. A third particle, having a charge of  54.0 \mathrm { nC }  is placed at the point  A , which is  0.18 \mathrm {~m}  to the left of  q 2 . How much work is needed to move the third particle from point  A  to point  B , which is  0.40 \mathrm {~m}  to the left of  q 1 . All the points in the figure lie on the same line.  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)    <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question.
Two tiny grains of sand having charges of 4.0μC4.0 \mu \mathrm { C } and −4.0μC- 4.0 \mu \mathrm { C } are situated along the xx -axis at x1=x _ { 1 } = 2.0 m2.0 \mathrm {~m} and x2=−2.0 mx _ { 2 } = - 2.0 \mathrm {~m} . What is electric potential energy of these grains relative to infinity? (k=1/4( k = 1 / 4 πε0=9.0×109 Nâ‹…m2/C2\pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 0 J0 \mathrm {~J}
B) −72 mJ- 72 \mathrm {~mJ}
C) −36 mJ- 36 \mathrm {~mJ}
D) 36 mJ36 \mathrm {~mJ}
E) 72 mJ72 \mathrm {~mJ}
Question
Choose the one alternative that best completes the statement or answers the question.
A+5.0−nC\mathrm { A } + 5.0 - \mathrm { nC } charge is at the point (0.00 m,0.00 m)( 0.00 \mathrm {~m} , 0.00 \mathrm {~m} ) and a −2.0−nC- 2.0 - \mathrm { nC } charge is at (3.0 m,0.00 m)( 3.0 \mathrm {~m} , 0.00 \mathrm {~m} ) . What work is required to bring a 1.0−nC1.0 - \mathrm { nC } charge from very far away to point (0.00 m,4.0 m)( 0.00 \mathrm {~m} , 4.0 \mathrm {~m} ) ? (k=1/4πε0\left( k = 1 / 4 \pi \varepsilon _ { 0 } \right. =9.0×109 Nâ‹…m2/C2= 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 11 nJ11 \mathrm {~nJ}
B) 7.7 nJ7.7 \mathrm {~nJ}
C) 3.6 nJ3.6 \mathrm {~nJ}
D) 15 nJ15 \mathrm {~nJ}
Question
Choose the one alternative that best completes the statement or answers the question.
The figure shows a group of three particles, all of which have charge Q=8.8nCQ = 8.8 \mathrm { nC } . How much work did it take to assemble this group of charges if they all started out extremely far from each other? (k( k =1/4πε0=9.0×109 Nâ‹…m2/C2)\left. = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
3.0 cm3.0 \mathrm {~cm}
 <strong>Choose the one alternative that best completes the statement or answers the question. The figure shows a group of three particles, all of which have charge  Q = 8.8 \mathrm { nC } . How much work did it take to assemble this group of charges if they all started out extremely far from each other?  ( k   \left. = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)   3.0 \mathrm {~cm}    </strong> A)  5.9 \times 10 - 5 \mathrm {~J}  B)  5.7 \times 10 ^ { - 5 } \mathrm {~J}  C)  6.2 \times 10 ^ { - 5 } \mathrm {~J}  D)  5.5 \times 10 - 5 \mathrm {~J}  <div style=padding-top: 35px>

A) 5.9×10−5 J5.9 \times 10 - 5 \mathrm {~J}
B) 5.7×10−5 J5.7 \times 10 ^ { - 5 } \mathrm {~J}
C) 6.2×10−5 J6.2 \times 10 ^ { - 5 } \mathrm {~J}
D) 5.5×10−5 J5.5 \times 10 - 5 \mathrm {~J}
Question
Choose the one alternative that best completes the statement or answers the question.
A +3.0- μC\mu \mathrm { C } point charge is initially extremely far from a positive point charge QQ . You find that it takes 41 J41 \mathrm {~J} of work to bring the +3.0−μC+ 3.0 - \mu \mathrm { C } charge to the point x=3.0 mm,y=0.0 mmx = 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} and the point charge QQ to the point x=−3.0 mm,y=0.00 mmx = - 3.0 \mathrm {~mm} , y = 0.00 \mathrm {~mm} . What is QQ ? (k=…)( k = \ldots )

A) 4.6μC4.6 \mu \mathrm { C }
B) 55nC55 \mathrm { nC }
C) 27pC27 \mathrm { pC }
D) 9.1μC9.1 \mu \mathrm { C }
Question
Choose the one alternative that best completes the statement or answers the question.
How much energy is necessary to place three +2.0−μC+ 2.0 - \mu \mathrm { C } point charges at the vertices of an equilateral triangle of side 2.0 cm2.0 \mathrm {~cm} if they started out extremely far away? (k=1/4πε0=9.0×109 N\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \right. â‹…m2/C2\cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 6.7 J6.7 \mathrm {~J}
B) 5.4 J5.4 \mathrm {~J}
C) 4.5 J4.5 \mathrm {~J}
D) 7.6 J7.6 \mathrm {~J}
Question
Choose the one alternative that best completes the statement or answers the question.
A point charge of +3.00μC+ 3.00 \mu \mathrm { C } and a second charge QQ are initially very far apart. If it takes 29.0 J29.0 \mathrm {~J} of work to bring them to a final configuration in which the +3.00−μC+ 3.00 - \mu \mathrm { C } charge is at the point x=1.00x = 1.00 mm,y=1.00 mm\mathrm { mm } , y = 1.00 \mathrm {~mm} , and the second charge QQ is at the point x=1.00 mm,y=3.00 mmx = 1.00 \mathrm {~mm} , y = 3.00 \mathrm {~mm} , find the magnitude of the charge Q.(k=1/4πε0=8.99×109 Nâ‹…m2/C2)Q . \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 2.15μC2.15 \mu \mathrm { C }
B) 10.74μC10.74 \mu \mathrm { C }
C) 4.30μC4.30 \mu \mathrm { C }
D) 4.30nC4.30 \mathrm { nC }
Question
Write the word or phrase that best completes each statement or answers the question.
A+7.5−nC\mathrm { A } + 7.5 - \mathrm { nC } point charge is 5.0 cm5.0 \mathrm {~cm} from a −9.4−μC- 9.4 - \mu \mathrm { C } point charge in your laboratory in California. How much work would you have to do if you left the +7.5−nC+ 7.5 - \mathrm { nC } charge in the lab but took the −9.4−μC- 9.4 - \mu \mathrm { C } charge to New York City? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
Question
Choose the one alternative that best completes the statement or answers the question.
An electron is released from rest at a distance of 9.00 cm9.00 \mathrm {~cm} from a fixed proton. How fast will the electron be moving when it is 3.00 cm3.00 \mathrm {~cm} from the proton? (k=1/4πε0=8.99×109 Nâ‹…m2/C2,e=1.60\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } , e = 1.60 \right. ×10−19C,melectron =9.11×10−31 kg,mproton =1.67×10−27 kg)\left. \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {electron } } = 9.11 \times 10 ^ { - 31 } \mathrm {~kg} , m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} \right)

A) 4.64×105 m/s4.64 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
B) 75.0 m/s75.0 \mathrm {~m} / \mathrm { s }
C) 1.06×103 m/s1.06 \times 10 ^ { 3 } \mathrm {~m} / \mathrm { s }
D) 130 m/s130 \mathrm {~m} / \mathrm { s }
E) 106 m/s106 \mathrm {~m} / \mathrm { s }
Question
Choose the one alternative that best completes the statement or answers the question.
Two isolated copper plates, each of area 0.40 m20.40 \mathrm {~m} ^ { 2 } , carry opposite charges of magnitude 7.08×10−107.08 \times 10 ^ { - 10 } C. They are placed opposite each other in parallel alignment, with a spacing of 4.0 cm4.0 \mathrm {~cm} between them. What is the potential difference between the plates? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 3.2 V3.2 \mathrm {~V}
B) 0.40 V0.40 \mathrm {~V}
C) 7.6 V7.6 \mathrm {~V}
D) 3.0 V3.0 \mathrm {~V}
E) 8.0 V8.0 \mathrm {~V}
Question
Write the word or phrase that best completes each statement or answers the question.
The equipotential surfaces for two point charges are shown in the figure, with the value of potential marked on the line for each surface.
(a) What is the potential difference, VG−VDV _ { G } - V _ { D } , between points GG and D?
(b) What is the potential difference, VV A - VGV _ { \mathrm { G } } , between points A\mathrm { A } and G\mathrm { G } ?
 Write the word or phrase that best completes each statement or answers the question. The equipotential surfaces for two point charges are shown in the figure, with the value of potential marked on the line for each surface. (a) What is the potential difference,  V _ { G } - V _ { D } , between points  G  and D? (b) What is the potential difference,  V  A -  V _ { \mathrm { G } } , between points  \mathrm { A }  and  \mathrm { G }  ?   <div style=padding-top: 35px>
Question
Write the word or phrase that best completes each statement or answers the question.
Each plate of an ideal air-filled parallel-plate capacitor has an area of 0.0010 m20.0010 \mathrm {~m} ^ { 2 } , and the separation of the plates is 0.050 mm0.050 \mathrm {~mm} . An electric field of 7.4×106 V/m7.4 \times 10 ^ { 6 } \mathrm {~V} / \mathrm { m } is present between the plates. What is the capacitance of this capacitor? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 300pF300 \mathrm { pF }
B) 120pF120 \mathrm { pF }
C) 180pF180 \mathrm { pF }
D) 240pF240 \mathrm { pF }
E) 360pF360 \mathrm { pF }
Question
Write the word or phrase that best completes each statement or answers the question.
A 12.0-V battery (potential source) is connected across a 6.00−μF6.00 - \mu \mathrm { F } air-filled capacitor.
(a) How much energy can be stored this way?
(b) How much excess charge is on each plate of the capacitor?
Question
Write the word or phrase that best completes each statement or answers the question.
An air-filled parallel-plate capacitor is constructed with a plate area of 0.40 m20.40 \mathrm {~m} ^ { 2 } and a plate separation of 0.10 mm0.10 \mathrm {~mm} . It is then charged to a potential difference of 12 V12 \mathrm {~V} ? (ε0=8.85×\left( \varepsilon _ { 0 } = 8.85 \times \right. 10−12C2/Nâ‹…m210 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )
(a) How much charge is stored on each of its plates?
(b) How much energy is stored in it?
Question
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel-plate capacitor consists of two circular plates, each of radius 0.30 mm0.30 \mathrm {~mm} . How far apart should the plates be for the capacitance to be 300.0−pF?(ε0=8.85×10−12300.0 - \mathrm { pF } ? \left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \right. C2/Nâ‹…m2\mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 0.0042μm0.0042 \mu \mathrm { m }
B) 0.0083μm0.0083 \mu \mathrm { m }
C) 0.00094μm0.00094 \mu \mathrm { m }
D) 0.00047μm0.00047 \mu \mathrm { m }
Question
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel-plate capacitor consists of plates that are 1.0 mm1.0 \mathrm {~mm} apart and have an area of 1.5×10−4 m21.5 \times 10 ^ { - 4 } \mathrm {~m} ^ { 2 } . The capacitor is connected to a 12−V12 - \mathrm { V } potential source (battery). (ε0=8.85×10−12C2/Nâ‹…m2\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right. )
(a) What is the capacitance of this capacitor?
(b) How much charge is on each of its plates?
(c) What is the strength of the electric field between the plates?
Question
Write the word or phrase that best completes each statement or answers the question.
A spherical oil droplet with nine excess electrons is held stationary in an electric field between two large horizontal plates that are 2.25 cm2.25 \mathrm {~cm} apart. The field is produced by maintaining a potential difference of 0.3375kV0.3375 \mathrm { kV } across the plates, and the density of the oil is 824 kg/m3824 \mathrm {~kg} / \mathrm { m } ^ { 3 } . What is the radius of the oil drop? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)
Question
Write the word or phrase that best completes each statement or answers the question.
The equipotential surfaces for two spherical conductors are shown in the figure, with the value of potential marked on the line for each surface.
(a) If the distance between points AA and BB is 2.5 cm2.5 \mathrm {~cm} what is the approximate intensity of the electric field between these two points?
(b) If the distance between points CC and DD is 2.5 cm2.5 \mathrm {~cm} what is the approximate intensity of the electric field between these two points?
 Write the word or phrase that best completes each statement or answers the question. The equipotential surfaces for two spherical conductors are shown in the figure, with the value of potential marked on the line for each surface. (a) If the distance between points  A  and  B  is  2.5 \mathrm {~cm}  what is the approximate intensity of the electric field between these two points? (b) If the distance between points  C  and  D  is  2.5 \mathrm {~cm}  what is the approximate intensity of the electric field between these two points?   <div style=padding-top: 35px>
Question
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel plate capacitor with plate a separation of 4.0 cm4.0 \mathrm {~cm} has a plate area of 0.0400.040 m2\mathrm { m } ^ { 2 } . What is the capacitance of this capacitor with air between these plates? (ε0=8.85×10−12\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \right. C2/Nâ‹…m2\mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 89pF89 \mathrm { pF }
B) 0.89pF0.89 \mathrm { pF }
C) 8.9pF8.9 \mathrm { pF }
D) 8.9μF8.9 \mu \mathrm { F }
E) 8.9nF8.9 \mathrm { nF }
Question
Write the word or phrase that best completes each statement or answers the question.
What charge accumulates on the plates of a 2.0−μF2.0 - \mu \mathrm { F } air-filled capacitor when it is charged until the potential difference across its plates is 100 V100 \mathrm {~V} ?

A) 200μC200 \mu \mathrm { C }
B) 50μC50 \mu \mathrm { C }
C) 100μC100 \mu \mathrm { C }
D) 150μC150 \mu \mathrm { C }
Question
Choose the one alternative that best completes the statement or answers the question.
Two very large parallel metal plates, separated by 0.20 m0.20 \mathrm {~m} , are connected across a 12−V12 - \mathrm { V } source of potential. An electron is released from rest at a location 0.10 m0.10 \mathrm {~m} from the negative plate. When the electron arrives at a distance 0.050 m0.050 \mathrm {~m} from the positive plate, how much kinetic energy has the electron gained? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 9.6×10−19 J9.6 \times 10 ^ { - 19 } \mathrm {~J}
B) 4.8×10−19 J4.8 \times 10 ^ { - 19 } \mathrm {~J}
C) 7.2×10−19 J7.2 \times 10 ^ { - 19 } \mathrm {~J}
D) 2.4×10−19 J2.4 \times 10 ^ { - 19 } \mathrm {~J}
Question
Write the word or phrase that best completes each statement or answers the question.
Each plate of an ideal air-filled parallel-plate capacitor has an area of 0.0020 m20.0020 \mathrm {~m} ^ { 2 } , and the separation of the plates is 0.090 mm0.090 \mathrm {~mm} . An electric field of 2.1×106 N/C2.1 \times 10 ^ { 6 } \mathrm {~N} / \mathrm { C } is present between the plates. What is the surface charge density on the plates? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 28μC/m228 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
B) 47μC/m247 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
C) 9.3μC/m29.3 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
D) 39μC/m239 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
E) 19μC/m219 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
Question
Write the word or phrase that best completes each statement or answers the question.
When the potential difference between the plates of an ideal air-filled parallel plate capacitor is 35 V\mathrm { V } , the electric field between the plates has a strength of 750 V/m750 \mathrm {~V} / \mathrm { m } . If the plate area is 4.0×10−2 m24.0 \times 10 ^ { - 2 } \mathrm {~m} ^ { 2 } , what is the capacitance of this capacitor? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } 2 / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 7.6×10−10 F7.6 \times 10 ^ { - 10 } \mathrm {~F}
B) 7.6×10−11 F7.6 \times 10 ^ { - 11 } \mathrm {~F}
C) 7.6×10−12 F7.6 \times 10 ^ { - 12 } \mathrm {~F}
D) 7.6×10−14 F7.6 \times 10 ^ { - 14 } \mathrm {~F}
E) None of the other choices is correct.
Question
Choose the one alternative that best completes the statement or answers the question.
A uniform electric field, with a magnitude of 500 V/m500 \mathrm {~V} / \mathrm { m } , is points in the +x+ x direction. If the potential at x=5.0 mx = 5.0 \mathrm {~m} is 2500 V2500 \mathrm {~V} , what is the potential at x=2.0 mx = 2.0 \mathrm {~m} ?

A) 2.0kV2.0 \mathrm { kV }
B) 0.50kV0.50 \mathrm { kV }
C) 5.0kV5.0 \mathrm { kV }
D) 1.0kV1.0 \mathrm { kV }
E) 4.0kV4.0 \mathrm { kV }
Question
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel-plate capacitor with horizontal plates has a plate separation of 5.0 cm5.0 \mathrm {~cm} . If the potential difference between the plates is 2000 V2000 \mathrm {~V} , with the top plate at the higher potential, what are the magnitude and direction of the electric field between the plates?

A) 40000 N/C40000 \mathrm {~N} / \mathrm { C } downward
B) 40000 N/C40000 \mathrm {~N} / \mathrm { C } upward
C) 100 N/C100 \mathrm {~N} / \mathrm { C } upward
D) 100 N/C100 \mathrm {~N} / \mathrm { C } downward
Question
Choose the one alternative that best completes the statement or answers the question.
A space probe approaches a planet, taking measurements as it goes. If it detects a potential difference of 6000MV6000 \mathrm { MV } between the altitudes of 253,000 km253,000 \mathrm {~km} and 276,000 km276,000 \mathrm {~km} above the planet's surface, what is the approximate electric field strength produced by the planet at 264,500 km264,500 \mathrm {~km} above the surface? Assume the electric field strength is approximately constant at these altitudes.

A) 493μN/C493 \mu \mathrm { N } / \mathrm { C }
B) 0.261 N/C0.261 \mathrm {~N} / \mathrm { C }
C) 561 N/C561 \mathrm {~N} / \mathrm { C }
D) 261 N/C261 \mathrm {~N} / \mathrm { C }
Question
Write the word or phrase that best completes each statement or answers the question.
A 3.0-pFcapacitor consists of two large closely-spaced parallel plates that have surface charge densities of ±1.0nC/mm2\pm 1.0 \mathrm { nC } / \mathrm { mm } ^ { 2 } . If the potential across the plates is 23.0kV23.0 \mathrm { kV } with only air between them, find the surface area of each of the plates. (ε0=8.85×10−12C2/N⋅m2\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right. )

A) 35 mm235 \mathrm {~mm} ^ { 2 }
B) 69 mm269 \mathrm {~mm} ^ { 2 }
C) 0.0072 mm20.0072 \mathrm {~mm} ^ { 2 }
D) 0.014 mm20.014 \mathrm {~mm} ^ { 2 }
Question
Choose the one alternative that best completes the statement or answers the question.
A proton moves 0.10 m0.10 \mathrm {~m} along the direction of an electric field of magnitude 3.0 V/m3.0 \mathrm {~V} / \mathrm { m } . What is the change in kinetic energy of the proton? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 3.2×10−20 J3.2 \times 10 ^ { - 20 } \mathrm {~J}
B) 1.6×10−20 J1.6 \times 10 ^ { - 20 } \mathrm {~J}
C) 8.0×10−21 J8.0 \times 10 ^ { - 21 } \mathrm {~J}
D) 4.8×10−20 J4.8 \times 10 ^ { - 20 } \mathrm {~J}
Question
Choose the one alternative that best completes the statement or answers the question.
A battery maintains the electrical potential difference of 6.0−V6.0 - \mathrm { V } between two large parallel metal plates separated by 1.0 mm1.0 \mathrm {~mm} . What is the strength of the electric field between the plates?

A) 6.0 V/m6.0 \mathrm {~V} / \mathrm { m }
B) zero
C) 600 V/m600 \mathrm {~V} / \mathrm { m }
D) 6000 V/m6000 \mathrm {~V} / \mathrm { m }
Question
Write the word or phrase that best completes each statement or answers the question.
Two large parallel plates are separated by 1.0 mm1.0 \mathrm {~mm} of air. If the potential difference between them is 3.0 V3.0 \mathrm {~V} , what is the magnitude of their surface charge densities? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 2.7×10−8C/m22.7 \times 10 ^ { - 8 } \mathrm { C } / \mathrm { m } ^ { 2 }
B) 3.3×10−4C/m23.3 \times 10 ^ { - 4 } \mathrm { C } / \mathrm { m } ^ { 2 }
C) 1.6×10−4C/m21.6 \times 10 ^ { - 4 } \mathrm { C } / \mathrm { m } ^ { 2 }
D) 5.3×10−8C/m25.3 \times 10 ^ { - 8 } \mathrm { C } / \mathrm { m } ^ { 2 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/107
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 17: Electric Potential
1
Write the word or phrase that best completes each statement or answers the question.
An ideal parallel-plate capacitor having circular plates of diameter DD that are a distance dd apart stores energy UU when it is connected across a fixed potential difference. If you want to triple the amount of energy stored in this capacitor by changing only the size of its plates, the diameter should be changed to

A) D3\frac { D } { 3 }
B) 3D3 D .
C) D3D \sqrt { 3 }
D) D3\frac { \mathrm { D } } { \sqrt { 3 } }
E) 9D.
C
2
Write the word or phrase that best completes each statement or answers the question.
If an electron is accelerated from rest through a potential difference of 1500 V1500 \mathrm {~V} , what speed does it reach? (e=1.60×10−19C,melectron =9.11×10−31 kg)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {electron } } = 9.11 \times 10 ^ { - 31 } \mathrm {~kg} \right)

A) 1.5×107 m/s1.5 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
B) 2.3×107 m/s2.3 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
C) 1.1×107 m/s1.1 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
D) 1.9×107 m/s1.9 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
B
3
Write the word or phrase that best completes each statement or answers the question.
A proton with a speed of 2.0×105 m/s2.0 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s } accelerates through a potential difference and thereby increases its speed to 4.0×105 m/s4.0 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s } . Through what magnitude potential difference did the proton accelerate? (e=1.60×10−19C,mproton =1.67×10−27 kg)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} \right)

A) 840 V840 \mathrm {~V}
B) 1000 V1000 \mathrm {~V}
C) 100 V100 \mathrm {~V}
D) 210 V210 \mathrm {~V}
E) 630 V630 \mathrm {~V}
E
4
Write the word or phrase that best completes each statement or answers the question.
Four charged particles (two having a charge +Q+ Q and two having a charge −Q- Q ) are arranged in the xyx y -plane as shown in the figure. The charges are all equidistant from the origin. The amount of work required to move a positively charged particle from point PP to point OO (both of which are on the zz -axis) is
 <strong>Write the word or phrase that best completes each statement or answers the question. Four charged particles (two having a charge  + Q  and two having a charge  - Q  ) are arranged in the  x y -plane as shown in the figure. The charges are all equidistant from the origin. The amount of work required to move a positively charged particle from point  P  to point  O  (both of which are on the  z -axis) is   </strong> A) positive. B) negative. C) zero. D) depends on the path in which the charged is moved.

A) positive.
B) negative.
C) zero.
D) depends on the path in which the charged is moved.
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
5
Write the word or phrase that best completes each statement or answers the question.
Four charged particles (two having a charge +Q+ Q and two having a charge −Q- Q ) are arranged in the xyx y -plane, as shown in the figure. These particles are all equidistant from the origin. The electric potential (relative to infinity) at point P\mathrm { P } on the zz -axis due to these particles, is
 <strong>Write the word or phrase that best completes each statement or answers the question. Four charged particles (two having a charge  + Q  and two having a charge  - Q  ) are arranged in the  x y -plane, as shown in the figure. These particles are all equidistant from the origin. The electric potential (relative to infinity) at point  \mathrm { P }  on the  z -axis due to these particles, is   </strong> A) negative. B) positive. C) zero. D) impossible to determine based on the information given.

A) negative.
B) positive.
C) zero.
D) impossible to determine based on the information given.
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
6
Write the word or phrase that best completes each statement or answers the question.
A region of space contains a uniform electric field, directed toward the right, as shown in the figure. Which statement about this situation is correct?
 <strong>Write the word or phrase that best completes each statement or answers the question. A region of space contains a uniform electric field, directed toward the right, as shown in the figure. Which statement about this situation is correct?   </strong> A) The potential at all three locations is the same. B) The potential at points  A  and  B  are equal, and the potential at point  C  is lower than the potential at point  A . C) The potentials at points  A  and  B  are equal, and the potential at point  C  is higher than the potential at point A. D) The potential at point  \mathrm { A }  is the highest, the potential at point  \mathrm { B }  is the second highest, and the potential at point  C  is the lowest.

A) The potential at all three locations is the same.
B) The potential at points AA and BB are equal, and the potential at point CC is lower than the potential at point AA .
C) The potentials at points AA and BB are equal, and the potential at point CC is higher than the potential at point A.
D) The potential at point A\mathrm { A } is the highest, the potential at point B\mathrm { B } is the second highest, and the potential at point CC is the lowest.
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
7
Write the word or phrase that best completes each statement or answers the question.
A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V500 \mathrm {~V} . What speed does the proton gain? (e=1.60×10−19C,m\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m \right. proton =1.67×10−27 kg)\left. = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} \right)

A) 1.1×105 m/s1.1 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
B) 3.1×105 m/s3.1 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
C) 2.2×105 m/s2.2 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
D) 9.6×105 m/s9.6 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
8
Write the word or phrase that best completes each statement or answers the question.
When a certain capacitor carries charges of ±10μC\pm 10 \mu \mathrm { C } on its plates, the potential difference cross the plates is 25 V25 \mathrm {~V} . Which of the following statements about this capacitor are true? (There could be more than one correct choice.)

A) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the potential difference across the plates will decrease by a factor of two.
B) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the capacitance of the capacitor will also double.
C) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the potential difference across the plates will also double.
D) If we double the charges on the plates to ±20μC\pm 20 \mu \mathrm { C } , the capacitance of the capacitor will not
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
9
Write the word or phrase that best completes each statement or answers the question.
If the electric field between the plates of a given air-filled capacitor is weakened by removing charge from the plates, the capacitance of that capacitor

A) does not change.
B) decreases.
C) increases.
D) It cannot be determined from the information given.
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
10
Write the word or phrase that best completes each statement or answers the question.
Two ideal parallel-plate capacitors are identical in every respect except that one has twice the plate area of the other. If the smaller capacitor has capacitance CC , the larger one has capacitance

A) 4C4 C .
B) 2C2 \mathrm { C } .
C) C/2C / 2 .
D) C\mathrm { C } .
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
11
Write the word or phrase that best completes each statement or answers the question.
How much kinetic energy does a proton gain if it is accelerated, with no friction, through a potential difference of 1.00 V1.00 \mathrm {~V} ? The proton is 1836 times heavier than an electron, and e=1.60×10−19e = 1.60 \times10^{-19} C.

A) 1836eV1836 \mathrm { eV }
B) 1.00 J1.00 \mathrm {~J}

C) 1836 J1836 \mathrm {~J}

D) 1.60×10−19eV1.60 \times 10 ^ { - 19 } \mathrm { eV }

E) 1.00eV1.00 \mathrm { eV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
12
Write the word or phrase that best completes each statement or answers the question.
A proton is accelerated from rest through a potential difference V0V _ { 0 } and gains a speed v0v _ { 0 } . If it were accelerated instead through a potential difference of 2V02 V _ { 0 } , what speed would it gain?

A) 2v02 v _ { 0 }
B) 8v08 v _ { 0 }
C) v02v 0 \sqrt { 2 }
D) 4v04 v _ { 0 }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
13
Write the word or phrase that best completes each statement or answers the question.
A tiny particle with charge +5.0μC+ 5.0 \mu \mathrm { C } is initially moving at 55 m/s55 \mathrm {~m} / \mathrm { s } . It is then accelerated through a potential difference of 500 V500 \mathrm {~V} . How much kinetic energy does this particle gain during the period of acceleration?

A) 2500 J2500 \mathrm {~J}
B) 2.5×10−3 J2.5 \times 10 ^ { - 3 } \mathrm {~J}
C) 1.0×104 J1.0 \times 10 ^ { 4 } \mathrm {~J}
D) 100 J100 \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
14
Write the word or phrase that best completes each statement or answers the question.
If the result of your calculations for a quantity has SI\mathrm { SI } units of C2â‹…s2/(kgâ‹…m2)\mathrm { C } ^ { 2 } \cdot \mathrm { s } ^ { 2 } / \left( \mathrm { kg } \cdot \mathrm { m } ^ { 2 } \right) , that quantity could be

A) a capacitance.
B) an electric potential difference.
C) an electric field strength.
D) a dielectric constant.
E) an electric potential energy.
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
15
Write the word or phrase that best completes each statement or answers the question.
An ideal parallel-plate capacitor has a capacitance of CC . If the area of the plates is doubled and the distance between the plates is halved, what is the new capacitance?

A) 2C2 \mathrm { C }
B) C/4\mathrm { C } / 4
C) C/2\mathrm { C } / 2
D) 4C4 \mathrm { C }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
16
Write the word or phrase that best completes each statement or answers the question.
At a distance dd from a point charge QQ , the energy density in its electric field is uu . If we double the charge, what is the energy density at the same point?

A) 4u4 u
B) u2u \sqrt { 2 }
C) 8u8 u
D) 2u2 u
E) 16u16 u
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
17
Write the word or phrase that best completes each statement or answers the question.
At a distance dd from a point charge QQ , the energy density in its electric field is uu . If we now go to a distance d/2d / 2 from the charge, what is the energy density at the new location?

A) 8u8 u
B) 16u16 u
C) 4u4 u
D) 2u2 u
E) u2u \sqrt { 2 }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
18
Write the word or phrase that best completes each statement or answers the question.
How much work must we do on an electron to move it from point AA , which is at a potential of +50 V+ 50 \mathrm {~V} , to point B\mathrm { B } , which is at a potential of −50 V- 50 \mathrm {~V} , along the semicircular path shown in the figure? Assume the system is isolated from outside forces. (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. How much work must we do on an electron to move it from point  A , which is at a potential of  + 50 \mathrm {~V} , to point  \mathrm { B } , which is at a potential of  - 50 \mathrm {~V} , along the semicircular path shown in the figure? Assume the system is isolated from outside forces.  \left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)    </strong> A)  1.60 \times 10 ^ { - 17 } \mathrm {~J}  B)  - 1.60 \times 10 ^ { - 17 } \mathrm {~J}  C)  1.6 \mathrm {~J}  D)  - 1.6 \mathrm {~J}  E) This cannot be determined because we do not know the distance traveled.

A) 1.60×10−17 J1.60 \times 10 ^ { - 17 } \mathrm {~J}
B) −1.60×10−17 J- 1.60 \times 10 ^ { - 17 } \mathrm {~J}
C) 1.6 J1.6 \mathrm {~J}
D) −1.6 J- 1.6 \mathrm {~J}
E) This cannot be determined because we do not know the distance traveled.
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
19
Write the word or phrase that best completes each statement or answers the question.
After a proton with an initial speed of 1.50×105 m/s1.50 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s } has increased its speed by accelerating through a potential difference of 0.100kV0.100 \mathrm { kV } , what is its final speed? (e=1.60×10−19C,mproton =\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {proton } } = \right. 1.67×10−27 kg1.67 \times 10 ^ { - 27 } \mathrm {~kg} )

A) 1.55×106 m/s1.55 \times 10^6 \mathrm {~m} / \mathrm { s }
B) 2.04×105 m/s2.04 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
C) 8.80×105 m/s8.80 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
D) 4.56×105 m/s4.56 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
E) 3.55×105 m/s3.55 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
20
Write the word or phrase that best completes each statement or answers the question.
A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V500 \mathrm {~V} . How much kinetic energy does it gain? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 8.0×10−17 J8.0 \times 10 ^ { - 17 } \mathrm {~J}
B) 500 J500 \mathrm {~J}
C) 1.6×10−19 J1.6 \times 10 ^ { - 19 } \mathrm {~J}
D) 800 J800 \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
21
Write the word or phrase that best completes each statement or answers the question.
Two very small +3.00−μC+ 3.00 - \mu \mathrm { C } charges are at the ends of a meter stick. Find the electric potential (relative to infinity) at the center of the meter stick. (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 1.08×105 V1.08 \times 10 ^ { 5 } \mathrm {~V}
B) 2.70×104 V2.70 \times 10 ^ { 4 } \mathrm {~V}
C) 0.00 V0.00 \mathrm {~V}
D) 5.40×104 V5.40 \times 10 ^ { 4 } \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
22
Write the word or phrase that best completes each statement or answers the question.
Three point charges are placed at the following points in a horizontal x−yx - y plane: +4.0μC+ 4.0 \mu \mathrm { C } is at (0.00 m,0.50 m),+1.0μC( 0.00 \mathrm {~m} , 0.50 \mathrm {~m} ) , + 1.0 \mu \mathrm { C } is at (0.20 m,0.00 m)( 0.20 \mathrm {~m} , 0.00 \mathrm {~m} ) , and −5.0×μC- 5.0 \times \mu \mathrm { C } is at (0.20 m,0.50 m)( 0.20 \mathrm {~m} , 0.50 \mathrm {~m} ) . Calculate the electrical potential (relative to infinity) at the origin due to these three point charges. (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
23
Write the word or phrase that best completes each statement or answers the question.
Point charges +4.00μC+ 4.00 \mu \mathrm { C } and +2.00μC+ 2.00 \mu \mathrm { C } are placed at the opposite corners of a rectangle as shown in the figure. What is the potential at point B due to these charges? (k=1/4πε0=8.99×109 N\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. . m2/C2\mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )
 <strong>Write the word or phrase that best completes each statement or answers the question. Point charges  + 4.00 \mu \mathrm { C }  and  + 2.00 \mu \mathrm { C }  are placed at the opposite corners of a rectangle as shown in the figure. What is the potential at point B due to these charges?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. .  \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 }  )  </strong> A)  89.9 \mathrm { kV }  B)  8.99 \mathrm { kV }  C)  11.2 \mathrm { kV }  D)  899 \mathrm { kV }  E)  112 \mathrm { kV }

A) 89.9kV89.9 \mathrm { kV }
B) 8.99kV8.99 \mathrm { kV }
C) 11.2kV11.2 \mathrm { kV }
D) 899kV899 \mathrm { kV }
E) 112kV112 \mathrm { kV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
24
Write the word or phrase that best completes each statement or answers the question.
A+5.0−μC\mathrm { A } + 5.0 - \mu \mathrm { C } point charge is 12 cm12 \mathrm {~cm} from a −5.0−μC- 5.0 - \mu \mathrm { C } point charge. What is the magnitude of the electric field they produce at the point on the line connecting them where their electric potential (relative to infinity) is zero? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 12.5MN/C12.5 \mathrm { MN } / \mathrm { C }
B) 0 N/C0 \mathrm {~N} / \mathrm { C }
C) 0.75MN/C0.75 \mathrm { MN } / \mathrm { C }
D) 25MN/C25 \mathrm { MN } / \mathrm { C }
E) 1.5MN/C1.5 \mathrm { MN } / \mathrm { C }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
25
Write the word or phrase that best completes each statement or answers the question.
Two 3.0μC3.0 \mu \mathrm { C } charges lie on the xx -axis, one at the origin and the other at 2.0 m2.0 \mathrm {~m} . What is the potential (relative to infinity) due to these charges at a point at 6.0 m6.0 \mathrm {~m} on the xx -axis? (k=1/4πε0=9.0×109\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \right. Nâ‹…m2/C2\mathrm { N } \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 3400 V3400 \mathrm {~V}
B) 11,000 V11,000 \mathrm {~V}
C) 14,000 V14,000 \mathrm {~V}
D) 9000 V9000 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
26
Write the word or phrase that best completes each statement or answers the question.
A square is 1.0 m1.0 \mathrm {~m} on a side. Point charges of +4.0μC+ 4.0 \mu \mathrm { C } are placed in two diagonally opposite corners. In the other two corners are placed charges of +3.0μC+ 3.0 \mu \mathrm { C } and −3.0μC- 3.0 \mu \mathrm { C } . What is the potential (relative to infinity) at the midpoint of the square? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 1.0×104 V1.0 \times 10 ^ { 4 } \mathrm {~V}
B) infinite
C) 1.0×106 V1.0 \times 10 ^ { 6 } \mathrm {~V}
D) 1.0×105 V1.0 \times 10 ^ { 5 } \mathrm {~V}
E) 0 V0 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
27
Write the word or phrase that best completes each statement or answers the question.
How much work is needed to carry an electron from the positive terminal to the negative terminal of a 9.0−V9.0 - \mathrm { V } battery. (e=1.60×10−19C,melectron =9.11×10−31 kg)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {electron } } = 9.11 \times 10 ^ { - 31 } \mathrm {~kg} \right)

A) 14.4×10−19 J14.4 \times 10 ^ { - 19 } \mathrm {~J}
B) 9.0 J9.0 \mathrm {~J}
C) 1.6×10−19 J1.6 \times 10 ^ { - 19 } \mathrm {~J}
D) 17×10−19 J17 \times 10 ^ { - 19 } \mathrm {~J}
E) 14.4×10−19 J/C14.4 \times 10 ^ { - 19 } \mathrm {~J} / \mathrm { C }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
28
Write the word or phrase that best completes each statement or answers the question.
Four point charges of magnitude 6.00μC6.00 \mu \mathrm { C } and are at the corners of a square 2.00 m2.00 \mathrm {~m} on each side. Two of the charges are positive, and two are negative. What is the electric potential at the center of this square, relative to infinity, due to these charges? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 153kV153 \mathrm { kV }
B) 306kV306 \mathrm { kV }
C) 76.4kV76.4 \mathrm { kV }
D) 0 V0 \mathrm {~V}
E) 61.0kV61.0 \mathrm { kV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
29
Write the word or phrase that best completes each statement or answers the question.
A sphere with radius 2.0 mm2.0 \mathrm {~mm} carries a +2.0μC+ 2.0 \mu \mathrm { C } charge. What is the potential difference, VB−VAV _ { B } - V _ { A } , between point B\mathrm { B } , which is 4.0 m4.0 \mathrm {~m} from the center of the sphere, and point A\mathrm { A } , which is 6.0 m6.0 \mathrm {~m} from the center of the sphere? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 170 V170 \mathrm {~V}
B) −1500 V- 1500 \mathrm {~V}
C) 1500 V1500 \mathrm {~V}
D) −0.63 V- 0.63 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
30
Write the word or phrase that best completes each statement or answers the question.
A+4.0−μC\mathrm { A } + 4.0 - \mu \mathrm { C } and a −4.0−μC- 4.0 - \mu \mathrm { C } point charge are placed as shown in the figure. What is the potential difference between points AA and BB ? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question.  \mathrm { A } + 4.0 - \mu \mathrm { C }  and a  - 4.0 - \mu \mathrm { C }  point charge are placed as shown in the figure. What is the potential difference between points  A  and  B  ?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)    </strong> A)  96 \mathrm { kV }  B)  0 \mathrm {~V}  C)  48 \mathrm { kV }  D)  48 \mathrm {~V}  E)  96 \mathrm {~V}

A) 96kV96 \mathrm { kV }
B) 0 V0 \mathrm {~V}
C) 48kV48 \mathrm { kV }
D) 48 V48 \mathrm {~V}
E) 96 V96 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
31
Write the word or phrase that best completes each statement or answers the question.
A 6.9μC6.9 \mu \mathrm { C } negative point charge has a positively charged particle in an elliptical orbit about it. If the mass of the positively charged particle is 1.0μg1.0 \mu \mathrm { g } and its distance from the point charge varies from 4.0 mm4.0 \mathrm {~mm} to 16.0 mm16.0 \mathrm {~mm} , what is the maximum potential difference through which the positive object moves? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) −5.2MV- 5.2 \mathrm { MV }
B) 19MV19 \mathrm { MV }
C) 3.9MV3.9 \mathrm { MV }
D) 12MV12 \mathrm { MV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
32
Write the word or phrase that best completes each statement or answers the question.
If a Cu2+\mathrm { Cu } ^ { 2 + } ion that is initially at rest accelerates through a potential difference of 12 V12 \mathrm {~V} without friction, how much kinetic energy will it gain? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 12eV12 \mathrm { eV } .
B) 3.0eV3.0 \mathrm { eV } .
C) 6.0eV6.0 \mathrm { eV } .
D) 24eV24 \mathrm { eV } .
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
33
Write the word or phrase that best completes each statement or answers the question.
Two 5.0−μC5.0 - \mu \mathrm { C } point charges are 12 cm12 \mathrm {~cm} apart. What is the electric potential (relative to infinity) of this combination at the point where the electric field due to these charges is zero? (k=1/4πε0=9.0×\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times \right. 109 Nâ‹…m2/C210 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 0.75MV0.75 \mathrm { MV }
B) 1.5MV1.5 \mathrm { MV }
C) 12.5MV12.5 \mathrm { MV }
D) 0.0MV0.0 \mathrm { MV }
E) 25MV25 \mathrm { MV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
34
Write the word or phrase that best completes each statement or answers the question.
If it takes 50 J50 \mathrm {~J} of energy to move 10C10 \mathrm { C } of charge from point AA to point BB , what is the magnitude of the potential difference between points AA and BB ?

A) 500 V500 \mathrm {~V}
B) 0.50 V0.50 \mathrm {~V}
C) 50 V50 \mathrm {~V}
D) 5.0 V5.0 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
35
Write the word or phrase that best completes each statement or answers the question.
Two +6.0−μC+ 6.0 - \mu \mathrm { C } charges are placed at two of the vertices of an equilateral triangle having sides 2.0 m2.0 \mathrm {~m} Iong. What is the electric potential at the third vertex, relative to infinity, due to these charges? (k=( k = 1/4πε0=9.0×109 Nâ‹…m2/C21 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 108 V108 \mathrm {~V}
B) 90kV90 \mathrm { kV }
C) 54kV54 \mathrm { kV }
D) 0 V0 \mathrm {~V}
E) 27kV27 \mathrm { kV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
36
Write the word or phrase that best completes each statement or answers the question.
Two point charges of +2.00μC+ 2.00 \mu \mathrm { C } and +4.00μC+ 4.00 \mu \mathrm { C } are at the origin and at the point x=0.000 m,y=x = 0.000 \mathrm {~m} , y = −0.300 m- 0.300 \mathrm {~m} , as shown in the figure. What is the electric potential due to these charges, relative to infinity, at the point P\mathrm { P } at x=0.400 mx = 0.400 \mathrm {~m} on the xx -axis? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. Two point charges of  + 2.00 \mu \mathrm { C }  and  + 4.00 \mu \mathrm { C }  are at the origin and at the point  x = 0.000 \mathrm {~m} , y =   - 0.300 \mathrm {~m} , as shown in the figure. What is the electric potential due to these charges, relative to infinity, at the point  \mathrm { P }  at  x = 0.400 \mathrm {~m}  on the  x -axis?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)    </strong> A)  117 \mathrm { kV }  B)  36.0 \mathrm { kV }  C)  15.7 \mathrm { kV }  D)  56.0 \mathrm { kV }  E)  11.7 \mathrm { kV }

A) 117kV117 \mathrm { kV }
B) 36.0kV36.0 \mathrm { kV }
C) 15.7kV15.7 \mathrm { kV }
D) 56.0kV56.0 \mathrm { kV }
E) 11.7kV11.7 \mathrm { kV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
37
Write the word or phrase that best completes each statement or answers the question.
The three point charges shown in the figure form an equilateral triangle with sides 4.9 cm4.9 \mathrm {~cm} long. What is the electric potential (relative to infinity) at the point indicated with the dot, which is equidistant from all three charges? Assume that the numbers in the figure are all accurate to two significant figures. (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. The three point charges shown in the figure form an equilateral triangle with sides  4.9 \mathrm {~cm}  long. What is the electric potential (relative to infinity) at the point indicated with the dot, which is equidistant from all three charges? Assume that the numbers in the figure are all accurate to two significant figures.  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)   </strong> A)  1900 \mathrm {~V}  B)  1300 \mathrm {~V}  C)  640 \mathrm {~V}  D)  0.00 \mathrm {~V}

A) 1900 V1900 \mathrm {~V}
B) 1300 V1300 \mathrm {~V}
C) 640 V640 \mathrm {~V}
D) 0.00 V0.00 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
38
Write the word or phrase that best completes each statement or answers the question.
Three point charges, −2.00μC,+4.00μC- 2.00 \mu \mathrm { C } , + 4.00 \mu \mathrm { C } , and +6.00μC+ 6.00 \mu \mathrm { C } , are located along the xx -axis as shown in the figure. What is the electric potential (relative to infinity) at point P\mathrm { P } due to these charges? (k=( k = 1/4πε0=8.99×109 Nâ‹…m2/C21 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )
 <strong>Write the word or phrase that best completes each statement or answers the question. Three point charges,  - 2.00 \mu \mathrm { C } , + 4.00 \mu \mathrm { C } , and  + 6.00 \mu \mathrm { C } , are located along the  x -axis as shown in the figure. What is the electric potential (relative to infinity) at point  \mathrm { P }  due to these charges?  ( k =   1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 }  )   </strong> A)  + 154  kV B)  + 307 \mathrm { kV }  C)  - 307 \mathrm { kV }  D)  0.00 \mathrm { kV }  E)  - 154 \mathrm { kV }

A) +154+ 154 kV
B) +307kV+ 307 \mathrm { kV }
C) −307kV- 307 \mathrm { kV }
D) 0.00kV0.00 \mathrm { kV }
E) −154kV- 154 \mathrm { kV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
39
Write the word or phrase that best completes each statement or answers the question.
Point charges +4.00μC+ 4.00 \mu \mathrm { C } and +2.00μC+ 2.00 \mu \mathrm { C } are placed at the opposite corners of a rectangle as shown in the figure. What is the potential difference VA−VBV _ { \mathrm { A } } - V _ { \mathrm { B } } ? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Write the word or phrase that best completes each statement or answers the question. Point charges  + 4.00 \mu \mathrm { C }  and  + 2.00 \mu \mathrm { C }  are placed at the opposite corners of a rectangle as shown in the figure. What is the potential difference  V _ { \mathrm { A } } - V _ { \mathrm { B } }  ?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)   </strong> A)  + 22.5 \mathrm { kV }  B)  - 203 \mathrm { kV }  C)  + 203 \mathrm { kV }  D)  - 22.5 \mathrm { kV }  E)  0.00 \mathrm { kV }

A) +22.5kV+ 22.5 \mathrm { kV }
B) −203kV- 203 \mathrm { kV }
C) +203kV+ 203 \mathrm { kV }
D) −22.5kV- 22.5 \mathrm { kV }
E) 0.00kV0.00 \mathrm { kV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
40
Write the word or phrase that best completes each statement or answers the question.
A 4.0-g bead carries a charge of 20μC20 \mu \mathrm { C } . The bead is accelerated from rest through a potential difference VV , and afterward the bead is moving at 2.0 m/s2.0 \mathrm {~m} / \mathrm { s } . What is the magnitude of the potential difference VV ?

A) 800 V800 \mathrm {~V}
B) 200 V200 \mathrm {~V}
C) 800kV800 \mathrm { kV }
D) 400kV400 \mathrm { kV }
E) 400 V400 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
41
Choose the one alternative that best completes the statement or answers the question.
An electric dipole with ±5.0μC\pm 5.0 \mu \mathrm { C } point charges is positioned so that the positive charge is 1.0 mm1.0 \mathrm {~mm} to the right of the origin and the negative charge is at the origin. How much work does it take to bring a 3.0−μC3.0 - \mu \mathrm { C } point charge from very far away to the point x=3.0 mm,y=0.0 mmx = 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} ? (k=1/4πε0=9.0×\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times \right. 109 Nâ‹…m2/C210 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 19 J19 \mathrm {~J}
B) 23 J23 \mathrm {~J}
C) 110 J110 \mathrm {~J}
D) 49 J49 \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
42
Choose the one alternative that best completes the statement or answers the question.
A small 4.0−μC4.0 - \mu C charge and a small 1.5−μC1.5 - \mu C charge are initially very far apart. How much work does it take to bring them to a final configuration in which the 4.0−μC4.0 - \mu \mathrm { C } charge is at the point x=1.0x = 1.0 mm,y=1.0 mm\mathrm { mm } , y = 1.0 \mathrm {~mm} , and the 1.5−μC1.5 - \mu \mathrm { C } charge is at the point x=1.0 mm,y=3.0 mmx = 1.0 \mathrm {~mm} , y = 3.0 \mathrm {~mm} ? (k=1/4πε0=8.99\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \right. ×109 Nâ‹…m2/C2\times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 13.5 kJ13.5 \mathrm {~kJ}
B) 27 J27 \mathrm {~J}
C) 13.5 J13.5 \mathrm {~J}
D) 54 J54 \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
43
Write the word or phrase that best completes each statement or answers the question.
The potential difference between two square parallel plates is 4.00 V4.00 \mathrm {~V} . If the plate separation is 6.00 cm6.00 \mathrm {~cm} and they each measure 1.5 m1.5 \mathrm {~m} by 1.5 m1.5 \mathrm {~m} , what is the magnitude of the electric field between the plates?
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
44
Choose the one alternative that best completes the statement or answers the question.
A 7.0−μC7.0 - \mu \mathrm { C } point charge and a 9.0−μC9.0 - \mu \mathrm { C } point charge are initially extremely far apart. How much work does it take to bring the 7.0−μC7.0 - \mu C point charge to the point x=3.0 mm,y=0.0 mmx = 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} , and the 9.0−μC9.0 - \mu \mathrm { C } point charge to the point x=−3.0 mm,y=0.0 mm?(k=1/4πε0=9.0×109 Nâ‹…m2/C2)x = - 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} ? \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 16 J16 \mathrm {~J}
B) 95 J95 \mathrm {~J}
C) 63 J63 \mathrm {~J}
D) 190 J190 \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
45
Choose the one alternative that best completes the statement or answers the question.
In a region where the electric field is uniform and points in the +x+ x direction, the electric potential is −2000 V- 2000 \mathrm {~V} at x=8 mx = 8 \mathrm {~m} and is +400 V+ 400 \mathrm {~V} at x=2 mx = 2 \mathrm {~m} . What is the magnitude of the electric field?

A) 200 V/m200 \mathrm {~V} / \mathrm { m }
B) 600 V/m600 \mathrm {~V} / \mathrm { m }
C) 300 V/m300 \mathrm {~V} / \mathrm { m }
D) 400 V/m400 \mathrm {~V} / \mathrm { m }
E) 500 V/m500 \mathrm {~V} / \mathrm { m }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
46
Choose the one alternative that best completes the statement or answers the question.
The figure shows an arrangement of two particles each having charge Q=−6.8nCQ = - 6.8 \mathrm { nC } and each separated by 5.0 mm5.0 \mathrm {~mm} from a proton. If the two particles are held fixed at their locations and the proton is set into motion as shown, what is the minimum speed the proton needs to totally escape from these particles? (mproton =1.67×10−27 kg,e=1.60×10−19C,k=1/4πε0=9.0×109 N\left( m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} , e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \right. . m2/C2\mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )
 <strong>Choose the one alternative that best completes the statement or answers the question. The figure shows an arrangement of two particles each having charge  Q = - 6.8 \mathrm { nC }  and each separated by  5.0 \mathrm {~mm}  from a proton. If the two particles are held fixed at their locations and the proton is set into motion as shown, what is the minimum speed the proton needs to totally escape from these particles?  \left( m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} , e = 1.60 \times 10 ^ { - 19 } \mathrm { C } , k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \right. .  \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 }  )   </strong> A)  8.3 \times 106 \mathrm {~m} / \mathrm { s }  B)  1.7 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }  C)  4.3 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }  D)  2.2 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }

A) 8.3×106 m/s8.3 \times 106 \mathrm {~m} / \mathrm { s }
B) 1.7×107 m/s1.7 \times 10 ^ { 7 } \mathrm {~m} / \mathrm { s }
C) 4.3×106 m/s4.3 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
D) 2.2×106 m/s2.2 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
47
Write the word or phrase that best completes each statement or answers the question.
A very small 4.8−g4.8 - \mathrm { g } particle carrying a charge of +9.9μC+ 9.9 \mu \mathrm { C } is fired with an initial speed of 8.0 m/s8.0 \mathrm {~m} / \mathrm { s } directly toward a second small 7.8−g7.8 - \mathrm { g } particle carrying a charge of +5.2μC+ 5.2 \mu \mathrm { C } . The second particle is held fixed throughout this process. If these particles are initially very far apart, what is the closest they get to each other? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
48
Choose the one alternative that best completes the statement or answers the question.
In the figure, +4.0−μC+ 4.0 - \mu \mathrm { C } and −4.0−μC- 4.0 - \mu \mathrm { C } point charges are located as shown. Now an additional +2.00−μC+ 2.00 - \mu \mathrm { C } point charge is placed at point A\mathrm { A } . What is the electric potential energy of this system of three charges, relative to infinity? (k=1/4πε0=8.99×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 <strong>Choose the one alternative that best completes the statement or answers the question. In the figure,  + 4.0 - \mu \mathrm { C }  and  - 4.0 - \mu \mathrm { C }  point charges are located as shown. Now an additional  + 2.00 - \mu \mathrm { C }  point charge is placed at point  \mathrm { A } . What is the electric potential energy of this system of three charges, relative to infinity?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)    </strong> A)  + 26.4 \mathrm {~mJ}  B)  - 264 \mathrm {~mJ}  C)  + 264 \mathrm {~mJ}  D)  0.00 \mathrm {~J}  E)  - 26.4 \mathrm {~mJ}

A) +26.4 mJ+ 26.4 \mathrm {~mJ}
B) −264 mJ- 264 \mathrm {~mJ}
C) +264 mJ+ 264 \mathrm {~mJ}
D) 0.00 J0.00 \mathrm {~J}
E) −26.4 mJ- 26.4 \mathrm {~mJ}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
49
Write the word or phrase that best completes each statement or answers the question.
Point charges +4.00μC+ 4.00 \mu \mathrm { C } and +2.00μC+ 2.00 \mu \mathrm { C } are placed at the opposite corners of a rectangle as shown in the figure. If these charges are released and are free to move with no friction, what is the maximum amount of kinetic energy they will gain? (k=1/4πε0=8.99×109 N\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. . m2/C2m ^ { 2 } / C ^ { 2 } )
 Write the word or phrase that best completes each statement or answers the question. Point charges  + 4.00 \mu \mathrm { C }  and  + 2.00 \mu \mathrm { C }  are placed at the opposite corners of a rectangle as shown in the figure. If these charges are released and are free to move with no friction, what is the maximum amount of kinetic energy they will gain?  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \right. .  m ^ { 2 } / C ^ { 2 }  )
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
50
Choose the one alternative that best completes the statement or answers the question.
An alpha particle (a helium nucleus, having charge +2e+ 2 e and mass 6.64×10−27 kg6.64 \times 10 ^ { - 27 } \mathrm {~kg} ) moves head-on at a fixed gold nucleus (having charge +79e+ 79 e ). If the distance of closest approach is 2.0×10−10 m2.0 \times 10 ^ { - 10 } \mathrm {~m} , what was the speed of the alpha particle when it was very far away from the gold? (k=1/4πε0=\left( k = 1 / 4 \pi \varepsilon _ { 0 } = \right. 9.0×109 Nâ‹…m2/C2,e=1.60×10−19C)\left. 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } , e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 2.3×105 m/s2.3 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
B) 4.6×106 m/s4.6 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
C) 2.3×106 m/s2.3 \times 10 ^ { 6 } \mathrm {~m} / \mathrm { s }
D) 4.6×105 m/s4.6 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
51
Write the word or phrase that best completes each statement or answers the question.
Two tiny particles having charges q1=+56.0nCq _ { 1 } = + 56.0 \mathrm { nC } and q2=−46.0nCq _ { 2 } = - 46.0 \mathrm { nC } are separated by 0.500 m0.500 \mathrm {~m} and held in place, as shown in the figure. A third particle, having a charge of 54.0nC54.0 \mathrm { nC } is placed at the point AA , which is 0.18 m0.18 \mathrm {~m} to the left of q2q 2 . How much work is needed to move the third particle from point AA to point BB , which is 0.40 m0.40 \mathrm {~m} to the left of q1q 1 . All the points in the figure lie on the same line. (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
 Write the word or phrase that best completes each statement or answers the question. Two tiny particles having charges  q _ { 1 } = + 56.0 \mathrm { nC }  and  q _ { 2 } = - 46.0 \mathrm { nC }  are separated by  0.500 \mathrm {~m}  and held in place, as shown in the figure. A third particle, having a charge of  54.0 \mathrm { nC }  is placed at the point  A , which is  0.18 \mathrm {~m}  to the left of  q 2 . How much work is needed to move the third particle from point  A  to point  B , which is  0.40 \mathrm {~m}  to the left of  q 1 . All the points in the figure lie on the same line.  \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
52
Choose the one alternative that best completes the statement or answers the question.
Two tiny grains of sand having charges of 4.0μC4.0 \mu \mathrm { C } and −4.0μC- 4.0 \mu \mathrm { C } are situated along the xx -axis at x1=x _ { 1 } = 2.0 m2.0 \mathrm {~m} and x2=−2.0 mx _ { 2 } = - 2.0 \mathrm {~m} . What is electric potential energy of these grains relative to infinity? (k=1/4( k = 1 / 4 πε0=9.0×109 Nâ‹…m2/C2\pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 0 J0 \mathrm {~J}
B) −72 mJ- 72 \mathrm {~mJ}
C) −36 mJ- 36 \mathrm {~mJ}
D) 36 mJ36 \mathrm {~mJ}
E) 72 mJ72 \mathrm {~mJ}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
53
Choose the one alternative that best completes the statement or answers the question.
A+5.0−nC\mathrm { A } + 5.0 - \mathrm { nC } charge is at the point (0.00 m,0.00 m)( 0.00 \mathrm {~m} , 0.00 \mathrm {~m} ) and a −2.0−nC- 2.0 - \mathrm { nC } charge is at (3.0 m,0.00 m)( 3.0 \mathrm {~m} , 0.00 \mathrm {~m} ) . What work is required to bring a 1.0−nC1.0 - \mathrm { nC } charge from very far away to point (0.00 m,4.0 m)( 0.00 \mathrm {~m} , 4.0 \mathrm {~m} ) ? (k=1/4πε0\left( k = 1 / 4 \pi \varepsilon _ { 0 } \right. =9.0×109 Nâ‹…m2/C2= 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 11 nJ11 \mathrm {~nJ}
B) 7.7 nJ7.7 \mathrm {~nJ}
C) 3.6 nJ3.6 \mathrm {~nJ}
D) 15 nJ15 \mathrm {~nJ}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
54
Choose the one alternative that best completes the statement or answers the question.
The figure shows a group of three particles, all of which have charge Q=8.8nCQ = 8.8 \mathrm { nC } . How much work did it take to assemble this group of charges if they all started out extremely far from each other? (k( k =1/4πε0=9.0×109 Nâ‹…m2/C2)\left. = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
3.0 cm3.0 \mathrm {~cm}
 <strong>Choose the one alternative that best completes the statement or answers the question. The figure shows a group of three particles, all of which have charge  Q = 8.8 \mathrm { nC } . How much work did it take to assemble this group of charges if they all started out extremely far from each other?  ( k   \left. = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)   3.0 \mathrm {~cm}    </strong> A)  5.9 \times 10 - 5 \mathrm {~J}  B)  5.7 \times 10 ^ { - 5 } \mathrm {~J}  C)  6.2 \times 10 ^ { - 5 } \mathrm {~J}  D)  5.5 \times 10 - 5 \mathrm {~J}

A) 5.9×10−5 J5.9 \times 10 - 5 \mathrm {~J}
B) 5.7×10−5 J5.7 \times 10 ^ { - 5 } \mathrm {~J}
C) 6.2×10−5 J6.2 \times 10 ^ { - 5 } \mathrm {~J}
D) 5.5×10−5 J5.5 \times 10 - 5 \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
55
Choose the one alternative that best completes the statement or answers the question.
A +3.0- μC\mu \mathrm { C } point charge is initially extremely far from a positive point charge QQ . You find that it takes 41 J41 \mathrm {~J} of work to bring the +3.0−μC+ 3.0 - \mu \mathrm { C } charge to the point x=3.0 mm,y=0.0 mmx = 3.0 \mathrm {~mm} , y = 0.0 \mathrm {~mm} and the point charge QQ to the point x=−3.0 mm,y=0.00 mmx = - 3.0 \mathrm {~mm} , y = 0.00 \mathrm {~mm} . What is QQ ? (k=…)( k = \ldots )

A) 4.6μC4.6 \mu \mathrm { C }
B) 55nC55 \mathrm { nC }
C) 27pC27 \mathrm { pC }
D) 9.1μC9.1 \mu \mathrm { C }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
56
Choose the one alternative that best completes the statement or answers the question.
How much energy is necessary to place three +2.0−μC+ 2.0 - \mu \mathrm { C } point charges at the vertices of an equilateral triangle of side 2.0 cm2.0 \mathrm {~cm} if they started out extremely far away? (k=1/4πε0=9.0×109 N\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \right. â‹…m2/C2\cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } )

A) 6.7 J6.7 \mathrm {~J}
B) 5.4 J5.4 \mathrm {~J}
C) 4.5 J4.5 \mathrm {~J}
D) 7.6 J7.6 \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
57
Choose the one alternative that best completes the statement or answers the question.
A point charge of +3.00μC+ 3.00 \mu \mathrm { C } and a second charge QQ are initially very far apart. If it takes 29.0 J29.0 \mathrm {~J} of work to bring them to a final configuration in which the +3.00−μC+ 3.00 - \mu \mathrm { C } charge is at the point x=1.00x = 1.00 mm,y=1.00 mm\mathrm { mm } , y = 1.00 \mathrm {~mm} , and the second charge QQ is at the point x=1.00 mm,y=3.00 mmx = 1.00 \mathrm {~mm} , y = 3.00 \mathrm {~mm} , find the magnitude of the charge Q.(k=1/4πε0=8.99×109 Nâ‹…m2/C2)Q . \left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)

A) 2.15μC2.15 \mu \mathrm { C }
B) 10.74μC10.74 \mu \mathrm { C }
C) 4.30μC4.30 \mu \mathrm { C }
D) 4.30nC4.30 \mathrm { nC }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
58
Write the word or phrase that best completes each statement or answers the question.
A+7.5−nC\mathrm { A } + 7.5 - \mathrm { nC } point charge is 5.0 cm5.0 \mathrm {~cm} from a −9.4−μC- 9.4 - \mu \mathrm { C } point charge in your laboratory in California. How much work would you have to do if you left the +7.5−nC+ 7.5 - \mathrm { nC } charge in the lab but took the −9.4−μC- 9.4 - \mu \mathrm { C } charge to New York City? (k=1/4πε0=9.0×109 Nâ‹…m2/C2)\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 9.0 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } \right)
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
59
Choose the one alternative that best completes the statement or answers the question.
An electron is released from rest at a distance of 9.00 cm9.00 \mathrm {~cm} from a fixed proton. How fast will the electron be moving when it is 3.00 cm3.00 \mathrm {~cm} from the proton? (k=1/4πε0=8.99×109 Nâ‹…m2/C2,e=1.60\left( k = 1 / 4 \pi \varepsilon _ { 0 } = 8.99 \times 10 ^ { 9 } \mathrm {~N} \cdot \mathrm { m } ^ { 2 } / \mathrm { C } ^ { 2 } , e = 1.60 \right. ×10−19C,melectron =9.11×10−31 kg,mproton =1.67×10−27 kg)\left. \times 10 ^ { - 19 } \mathrm { C } , m _ { \text {electron } } = 9.11 \times 10 ^ { - 31 } \mathrm {~kg} , m _ { \text {proton } } = 1.67 \times 10 ^ { - 27 } \mathrm {~kg} \right)

A) 4.64×105 m/s4.64 \times 10 ^ { 5 } \mathrm {~m} / \mathrm { s }
B) 75.0 m/s75.0 \mathrm {~m} / \mathrm { s }
C) 1.06×103 m/s1.06 \times 10 ^ { 3 } \mathrm {~m} / \mathrm { s }
D) 130 m/s130 \mathrm {~m} / \mathrm { s }
E) 106 m/s106 \mathrm {~m} / \mathrm { s }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
60
Choose the one alternative that best completes the statement or answers the question.
Two isolated copper plates, each of area 0.40 m20.40 \mathrm {~m} ^ { 2 } , carry opposite charges of magnitude 7.08×10−107.08 \times 10 ^ { - 10 } C. They are placed opposite each other in parallel alignment, with a spacing of 4.0 cm4.0 \mathrm {~cm} between them. What is the potential difference between the plates? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 3.2 V3.2 \mathrm {~V}
B) 0.40 V0.40 \mathrm {~V}
C) 7.6 V7.6 \mathrm {~V}
D) 3.0 V3.0 \mathrm {~V}
E) 8.0 V8.0 \mathrm {~V}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
61
Write the word or phrase that best completes each statement or answers the question.
The equipotential surfaces for two point charges are shown in the figure, with the value of potential marked on the line for each surface.
(a) What is the potential difference, VG−VDV _ { G } - V _ { D } , between points GG and D?
(b) What is the potential difference, VV A - VGV _ { \mathrm { G } } , between points A\mathrm { A } and G\mathrm { G } ?
 Write the word or phrase that best completes each statement or answers the question. The equipotential surfaces for two point charges are shown in the figure, with the value of potential marked on the line for each surface. (a) What is the potential difference,  V _ { G } - V _ { D } , between points  G  and D? (b) What is the potential difference,  V  A -  V _ { \mathrm { G } } , between points  \mathrm { A }  and  \mathrm { G }  ?
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
62
Write the word or phrase that best completes each statement or answers the question.
Each plate of an ideal air-filled parallel-plate capacitor has an area of 0.0010 m20.0010 \mathrm {~m} ^ { 2 } , and the separation of the plates is 0.050 mm0.050 \mathrm {~mm} . An electric field of 7.4×106 V/m7.4 \times 10 ^ { 6 } \mathrm {~V} / \mathrm { m } is present between the plates. What is the capacitance of this capacitor? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 300pF300 \mathrm { pF }
B) 120pF120 \mathrm { pF }
C) 180pF180 \mathrm { pF }
D) 240pF240 \mathrm { pF }
E) 360pF360 \mathrm { pF }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
63
Write the word or phrase that best completes each statement or answers the question.
A 12.0-V battery (potential source) is connected across a 6.00−μF6.00 - \mu \mathrm { F } air-filled capacitor.
(a) How much energy can be stored this way?
(b) How much excess charge is on each plate of the capacitor?
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
64
Write the word or phrase that best completes each statement or answers the question.
An air-filled parallel-plate capacitor is constructed with a plate area of 0.40 m20.40 \mathrm {~m} ^ { 2 } and a plate separation of 0.10 mm0.10 \mathrm {~mm} . It is then charged to a potential difference of 12 V12 \mathrm {~V} ? (ε0=8.85×\left( \varepsilon _ { 0 } = 8.85 \times \right. 10−12C2/Nâ‹…m210 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )
(a) How much charge is stored on each of its plates?
(b) How much energy is stored in it?
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
65
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel-plate capacitor consists of two circular plates, each of radius 0.30 mm0.30 \mathrm {~mm} . How far apart should the plates be for the capacitance to be 300.0−pF?(ε0=8.85×10−12300.0 - \mathrm { pF } ? \left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \right. C2/Nâ‹…m2\mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 0.0042μm0.0042 \mu \mathrm { m }
B) 0.0083μm0.0083 \mu \mathrm { m }
C) 0.00094μm0.00094 \mu \mathrm { m }
D) 0.00047μm0.00047 \mu \mathrm { m }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
66
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel-plate capacitor consists of plates that are 1.0 mm1.0 \mathrm {~mm} apart and have an area of 1.5×10−4 m21.5 \times 10 ^ { - 4 } \mathrm {~m} ^ { 2 } . The capacitor is connected to a 12−V12 - \mathrm { V } potential source (battery). (ε0=8.85×10−12C2/Nâ‹…m2\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right. )
(a) What is the capacitance of this capacitor?
(b) How much charge is on each of its plates?
(c) What is the strength of the electric field between the plates?
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
67
Write the word or phrase that best completes each statement or answers the question.
A spherical oil droplet with nine excess electrons is held stationary in an electric field between two large horizontal plates that are 2.25 cm2.25 \mathrm {~cm} apart. The field is produced by maintaining a potential difference of 0.3375kV0.3375 \mathrm { kV } across the plates, and the density of the oil is 824 kg/m3824 \mathrm {~kg} / \mathrm { m } ^ { 3 } . What is the radius of the oil drop? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
68
Write the word or phrase that best completes each statement or answers the question.
The equipotential surfaces for two spherical conductors are shown in the figure, with the value of potential marked on the line for each surface.
(a) If the distance between points AA and BB is 2.5 cm2.5 \mathrm {~cm} what is the approximate intensity of the electric field between these two points?
(b) If the distance between points CC and DD is 2.5 cm2.5 \mathrm {~cm} what is the approximate intensity of the electric field between these two points?
 Write the word or phrase that best completes each statement or answers the question. The equipotential surfaces for two spherical conductors are shown in the figure, with the value of potential marked on the line for each surface. (a) If the distance between points  A  and  B  is  2.5 \mathrm {~cm}  what is the approximate intensity of the electric field between these two points? (b) If the distance between points  C  and  D  is  2.5 \mathrm {~cm}  what is the approximate intensity of the electric field between these two points?
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
69
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel plate capacitor with plate a separation of 4.0 cm4.0 \mathrm {~cm} has a plate area of 0.0400.040 m2\mathrm { m } ^ { 2 } . What is the capacitance of this capacitor with air between these plates? (ε0=8.85×10−12\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \right. C2/Nâ‹…m2\mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } )

A) 89pF89 \mathrm { pF }
B) 0.89pF0.89 \mathrm { pF }
C) 8.9pF8.9 \mathrm { pF }
D) 8.9μF8.9 \mu \mathrm { F }
E) 8.9nF8.9 \mathrm { nF }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
70
Write the word or phrase that best completes each statement or answers the question.
What charge accumulates on the plates of a 2.0−μF2.0 - \mu \mathrm { F } air-filled capacitor when it is charged until the potential difference across its plates is 100 V100 \mathrm {~V} ?

A) 200μC200 \mu \mathrm { C }
B) 50μC50 \mu \mathrm { C }
C) 100μC100 \mu \mathrm { C }
D) 150μC150 \mu \mathrm { C }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
71
Choose the one alternative that best completes the statement or answers the question.
Two very large parallel metal plates, separated by 0.20 m0.20 \mathrm {~m} , are connected across a 12−V12 - \mathrm { V } source of potential. An electron is released from rest at a location 0.10 m0.10 \mathrm {~m} from the negative plate. When the electron arrives at a distance 0.050 m0.050 \mathrm {~m} from the positive plate, how much kinetic energy has the electron gained? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 9.6×10−19 J9.6 \times 10 ^ { - 19 } \mathrm {~J}
B) 4.8×10−19 J4.8 \times 10 ^ { - 19 } \mathrm {~J}
C) 7.2×10−19 J7.2 \times 10 ^ { - 19 } \mathrm {~J}
D) 2.4×10−19 J2.4 \times 10 ^ { - 19 } \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
72
Write the word or phrase that best completes each statement or answers the question.
Each plate of an ideal air-filled parallel-plate capacitor has an area of 0.0020 m20.0020 \mathrm {~m} ^ { 2 } , and the separation of the plates is 0.090 mm0.090 \mathrm {~mm} . An electric field of 2.1×106 N/C2.1 \times 10 ^ { 6 } \mathrm {~N} / \mathrm { C } is present between the plates. What is the surface charge density on the plates? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 28μC/m228 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
B) 47μC/m247 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
C) 9.3μC/m29.3 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
D) 39μC/m239 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
E) 19μC/m219 \mu \mathrm { C } / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
73
Write the word or phrase that best completes each statement or answers the question.
When the potential difference between the plates of an ideal air-filled parallel plate capacitor is 35 V\mathrm { V } , the electric field between the plates has a strength of 750 V/m750 \mathrm {~V} / \mathrm { m } . If the plate area is 4.0×10−2 m24.0 \times 10 ^ { - 2 } \mathrm {~m} ^ { 2 } , what is the capacitance of this capacitor? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } 2 / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 7.6×10−10 F7.6 \times 10 ^ { - 10 } \mathrm {~F}
B) 7.6×10−11 F7.6 \times 10 ^ { - 11 } \mathrm {~F}
C) 7.6×10−12 F7.6 \times 10 ^ { - 12 } \mathrm {~F}
D) 7.6×10−14 F7.6 \times 10 ^ { - 14 } \mathrm {~F}
E) None of the other choices is correct.
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
74
Choose the one alternative that best completes the statement or answers the question.
A uniform electric field, with a magnitude of 500 V/m500 \mathrm {~V} / \mathrm { m } , is points in the +x+ x direction. If the potential at x=5.0 mx = 5.0 \mathrm {~m} is 2500 V2500 \mathrm {~V} , what is the potential at x=2.0 mx = 2.0 \mathrm {~m} ?

A) 2.0kV2.0 \mathrm { kV }
B) 0.50kV0.50 \mathrm { kV }
C) 5.0kV5.0 \mathrm { kV }
D) 1.0kV1.0 \mathrm { kV }
E) 4.0kV4.0 \mathrm { kV }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
75
Write the word or phrase that best completes each statement or answers the question.
An ideal air-filled parallel-plate capacitor with horizontal plates has a plate separation of 5.0 cm5.0 \mathrm {~cm} . If the potential difference between the plates is 2000 V2000 \mathrm {~V} , with the top plate at the higher potential, what are the magnitude and direction of the electric field between the plates?

A) 40000 N/C40000 \mathrm {~N} / \mathrm { C } downward
B) 40000 N/C40000 \mathrm {~N} / \mathrm { C } upward
C) 100 N/C100 \mathrm {~N} / \mathrm { C } upward
D) 100 N/C100 \mathrm {~N} / \mathrm { C } downward
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
76
Choose the one alternative that best completes the statement or answers the question.
A space probe approaches a planet, taking measurements as it goes. If it detects a potential difference of 6000MV6000 \mathrm { MV } between the altitudes of 253,000 km253,000 \mathrm {~km} and 276,000 km276,000 \mathrm {~km} above the planet's surface, what is the approximate electric field strength produced by the planet at 264,500 km264,500 \mathrm {~km} above the surface? Assume the electric field strength is approximately constant at these altitudes.

A) 493μN/C493 \mu \mathrm { N } / \mathrm { C }
B) 0.261 N/C0.261 \mathrm {~N} / \mathrm { C }
C) 561 N/C561 \mathrm {~N} / \mathrm { C }
D) 261 N/C261 \mathrm {~N} / \mathrm { C }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
77
Write the word or phrase that best completes each statement or answers the question.
A 3.0-pFcapacitor consists of two large closely-spaced parallel plates that have surface charge densities of ±1.0nC/mm2\pm 1.0 \mathrm { nC } / \mathrm { mm } ^ { 2 } . If the potential across the plates is 23.0kV23.0 \mathrm { kV } with only air between them, find the surface area of each of the plates. (ε0=8.85×10−12C2/N⋅m2\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right. )

A) 35 mm235 \mathrm {~mm} ^ { 2 }
B) 69 mm269 \mathrm {~mm} ^ { 2 }
C) 0.0072 mm20.0072 \mathrm {~mm} ^ { 2 }
D) 0.014 mm20.014 \mathrm {~mm} ^ { 2 }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
78
Choose the one alternative that best completes the statement or answers the question.
A proton moves 0.10 m0.10 \mathrm {~m} along the direction of an electric field of magnitude 3.0 V/m3.0 \mathrm {~V} / \mathrm { m } . What is the change in kinetic energy of the proton? (e=1.60×10−19C)\left( e = 1.60 \times 10 ^ { - 19 } \mathrm { C } \right)

A) 3.2×10−20 J3.2 \times 10 ^ { - 20 } \mathrm {~J}
B) 1.6×10−20 J1.6 \times 10 ^ { - 20 } \mathrm {~J}
C) 8.0×10−21 J8.0 \times 10 ^ { - 21 } \mathrm {~J}
D) 4.8×10−20 J4.8 \times 10 ^ { - 20 } \mathrm {~J}
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
79
Choose the one alternative that best completes the statement or answers the question.
A battery maintains the electrical potential difference of 6.0−V6.0 - \mathrm { V } between two large parallel metal plates separated by 1.0 mm1.0 \mathrm {~mm} . What is the strength of the electric field between the plates?

A) 6.0 V/m6.0 \mathrm {~V} / \mathrm { m }
B) zero
C) 600 V/m600 \mathrm {~V} / \mathrm { m }
D) 6000 V/m6000 \mathrm {~V} / \mathrm { m }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
80
Write the word or phrase that best completes each statement or answers the question.
Two large parallel plates are separated by 1.0 mm1.0 \mathrm {~mm} of air. If the potential difference between them is 3.0 V3.0 \mathrm {~V} , what is the magnitude of their surface charge densities? (ε0=8.85×10−12C2/Nâ‹…m2)\left( \varepsilon _ { 0 } = 8.85 \times 10 ^ { - 12 } \mathrm { C } ^ { 2 } / \mathrm { N } \cdot \mathrm { m } ^ { 2 } \right)

A) 2.7×10−8C/m22.7 \times 10 ^ { - 8 } \mathrm { C } / \mathrm { m } ^ { 2 }
B) 3.3×10−4C/m23.3 \times 10 ^ { - 4 } \mathrm { C } / \mathrm { m } ^ { 2 }
C) 1.6×10−4C/m21.6 \times 10 ^ { - 4 } \mathrm { C } / \mathrm { m } ^ { 2 }
D) 5.3×10−8C/m25.3 \times 10 ^ { - 8 } \mathrm { C } / \mathrm { m } ^ { 2 }
Unlock Deck
Unlock for access to all 107 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 107 flashcards in this deck.