Deck 4: Polynomial and Rational Functions

Full screen (f)
exit full mode
Question
Use the leading-term test to match the function with the correct graph.
f(x)=0.6x6x5+5x43x36x2+x3f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the leading-term test to match the function with the correct graph.
f(x)=x44x3+15x2+x14f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the zeros of the polynomial function and state the multiplicity of each.
f(x)=x3+8x2x8f ( x ) = x ^ { 3 } + 8 x ^ { 2 } - x - 8

A) 1- 1 , multiplicity 1;11 ; 1 , multiplicity 1;81 ; 8 , multiplicity 1
B) 8- 8 , multiplicity 2;12 ; 1 , multiplicity 1
C) 8- 8 , multiplicity 1;11 ; - 1 , multiplicity 1;11 ; 1 , multiplicity 1
D) 8- 8 , multiplicity 1;11 ; - 1 , multiplicity 2
Question
Solve.
x2>25\mathrm { x } ^ { 2 } > 25

A) (,5)(5,)( - \infty , - 5 ) \cup ( 5 , \infty )
B) (5,)( - 5 , \infty )
C) (5,5)( - 5,5 )
D) (5,)( 5 , \infty )
Question
Use the leading-term test to match the function with the correct graph.
f(x)=2x2+6f ( x ) = 2 x ^ { 2 } + 6

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the equation with the appropriate graph.
f(x)=18x2+9f ( x ) = \frac { 18 } { x ^ { 2 } + 9 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the equation with the appropriate graph.
f(x)=2x2x24f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the equation with the appropriate graph.
f(x)=x3x2+9f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Use the leading-term test to match the function with the correct graph.
f(x)=4x+4x29x3f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 }

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Use the leading-term test to match the function with the correct graph.
f(x)=0.3x7+0.14x60.13x5+x4+x38x5f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the function.
f(x)=x33x2f ( x ) = x ^ { 3 } - 3 x ^ { 2 }
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

C)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
Question
Use the leading-term test to match the function with the correct graph.
f(x)=x5x3+x2+4f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the given inequality (a related function is graphed).
5xx290\frac { 5 x } { x ^ { 2 } - 9 } \geq 0
 <strong>Solve the given inequality (a related function is graphed).  \frac { 5 x } { x ^ { 2 } - 9 } \geq 0    </strong> A)  ( - 3,0 ) \cup ( 3 , \infty )  B)  ( - 3,0 ] \cup ( 3 , \infty )  C)  ( - 3 , \infty )  D)  ( - \infty , - 3 ) \cup [ 0,3 )  <div style=padding-top: 35px>

A) (3,0)(3,)( - 3,0 ) \cup ( 3 , \infty )
B) (3,0](3,)( - 3,0 ] \cup ( 3 , \infty )
C) (3,)( - 3 , \infty )
D) (,3)[0,3)( - \infty , - 3 ) \cup [ 0,3 )
Question
Use the leading-term test to match the function with the correct graph.
f(x)=13x36x2+8x+33f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the correct end behavior diagram for the given polynomial function.
f(x)=x55x32x+1f ( x ) = - x ^ { 5 } - 5 x ^ { 3 } - 2 x + 1
 Find the correct end behavior diagram for the given polynomial function.  f ( x ) = - x ^ { 5 } - 5 x ^ { 3 } - 2 x + 1    <div style=padding-top: 35px>
Question
Use the leading-term test to match the function with the correct graph.
f(x)=14x25f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the equation with the appropriate graph.
f(x)=18x29f ( x ) = \frac { 18 } { x ^ { 2 } - 9 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the equation with the appropriate graph.
f(x)=6xx21f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the equation with the appropriate graph.
f(x)=x3x24f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=x4x+5f ( x ) = \frac { x - 4 } { x + 5 }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;  <div style=padding-top: 35px>
A) x-intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , - \frac { 4 } { 5 } \right) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;  <div style=padding-top: 35px>
B) x-intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , \frac { 4 } { 5 } \right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;  <div style=padding-top: 35px>
C) xx -intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , - \frac { 4 } { 5 } \right) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;  <div style=padding-top: 35px>
D) xx -intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , \frac { 4 } { 5 } \right) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;  <div style=padding-top: 35px>
Question
Solve.
The population P\mathrm { P } , in thousands, of Pine Grove is given by P(t)=600t2t2+9\mathrm { P } ( \mathrm { t } ) = \frac { 600 \mathrm { t } } { 2 \mathrm { t } ^ { 2 } + 9 } , where tt is the time, in months. Find the interval on which the population was 40 thousand or greater.

A) [0.526,5.474][ 0.526,5.474 ]
B) (,)( - \infty , \infty )
C) [0.658,6.842][ 0.658,6.842 ]
D) [5.474,)[ 5.474 , \infty )
Question
Solve the problem.
Assume that a person's threshold weight WW , defined as the weight above which the risk of death rises dramatically, is given by W(h)=(h12.3)3W ( h ) = \left( \frac { h } { 12.3 } \right) ^ { 3 } , where WW is in pounds and hh is the person's height in inches. Find the threshold weight for a person who is 6ft16 \mathrm { ft } 1 in. tall. Round your answer to the nearest pound.

A) 122lb122 \mathrm { lb }
B) 209.1lb209.1 \mathrm { lb }
C) 221.5lb221.5 \mathrm { lb }
D) 235.9lb235.9 \mathrm { lb }
Question
Solve the problem.
The position of an object moving in a straight line is given by s=6t24ts = 6 t ^ { 2 } - 4 t , where ss is in meters and tt is the time in seconds the object has been in motion. How far will an object move in 20 seconds?

A) 40 m40 \mathrm {~m}
B) 800 m800 \mathrm {~m}
C) 1480 m1480 \mathrm {~m}
D) 2320 m2320 \mathrm {~m}
Question
Find the oblique asymptote, if any, of the rational function.
f(x)=x35x2+4x1x2+4xf ( x ) = \frac { x ^ { 3 } - 5 x ^ { 2 } + 4 x - 1 } { x ^ { 2 } + 4 x }

A) y=x9y = x - 9
B) y=x+9y = x + 9
C) None
D) y=xy = x
Question
Use synthetic division to find the function value.
f(x)=x32x2+5x4; find f(5)f ( x ) = x ^ { 3 } - 2 x ^ { 2 } + 5 x - 4 ; \text { find } f ( 5 )

A) 150- 150
B) 104
C) 154- 154
D) 96
Question
Solve.
x32x2<29x30x ^ { 3 } - 2 x ^ { 2 } < 29 x - 30

A) (,1)(6,)( - \infty , 1 ) \cup ( 6 , \infty )
B) (,1)( - \infty , 1 )
C) (5,1)(6,)( - 5,1 ) \cup ( 6 , \infty )
D) (,5)(1,6)( - \infty , - 5 ) \cup ( 1,6 )
Question
Using synthetic division, determine whether the numbers are zeros of the polynomial.
3,0;f(x)=4x3+x2+2x+7- 3,0 ; f ( x ) = - 4 x ^ { 3 } + x ^ { 2 } + 2 x + 7

A) No; no
B) No; yes
C) Yes; no
D) Yes; yes
Question
Solve the problem.
If there are xx teams in a sports league and all the teams play each other twice, a total of N(x)N ( x ) games are played, where N(x)=x2xN ( x ) = x ^ { 2 } - x . A soccer league has 6 teams, each of which plays the others twice. If the league pays $49\$ 49 per game for the field and officials, how much will it cost to play the entire schedule?

A) $2058\$ 2058
B) $1470\$ 1470
C) $1764\$ 1764
D) $1568\$ 1568
Question
Find the zeros of the polynomial function and state the multiplicity of each.
f(x)=x3+x23x3f ( x ) = x ^ { 3 } + x ^ { 2 } - 3 x - 3

A) 1- 1 , multiplicity 1;11 ; 1 , multiplicity 1;31 ; \sqrt { 3 } , multiplicity 1
B) 1- 1 , multiplicity 1 ; 1 , multiplicity 1 ; 5 , multiplicity 1
C) 1- 1 , multiplicity 1;11 ; 1 , multiplicity 1;31 ; \sqrt { 3 } , multiplicity 1;31 ; - \sqrt { 3 } , multiplicity 1
D) 1- 1 , multiplicity 1;31 ; \sqrt { 3 } , multiplicity 1;31 ; - \sqrt { 3 } , multiplicity 1
Question
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=1x2f ( x ) = \frac { 1 } { x - 2 }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)    <div style=padding-top: 35px>
 A) No x-intercepts, y-intercept: (0,12)\text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)    <div style=padding-top: 35px>
 B) No x-intercepts, y-intercept: (0,12)\text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)    <div style=padding-top: 35px>

 C) No x-intercepts, y-intercept: (0,12)\text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)    <div style=padding-top: 35px>
D)  No x-intercepts, y-intercept: (0,13)\text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)    <div style=padding-top: 35px>
Question
Find the requested polynomial.
Find a polynomial function of degree 3 with 2, i, -i as zeros. A) f(x)=x32x2+x2f ( x ) = x ^ { 3 } - 2 x ^ { 2 } + x - 2
B) f(x)=x32ix2+x2if ( x ) = x ^ { 3 } - 2 i x ^ { 2 } + x - 2 i
C) f(x)=x32x2+ix2if ( x ) = x ^ { 3 } - 2 x ^ { 2 } + i x - 2 i
D) f(x)=x3+2x2x+2f ( x ) = x ^ { 3 } + 2 x ^ { 2 } - x + 2
Question
Find the correct end behavior diagram for the given polynomial function.
f(x)=x6+3x5x24x+3f ( x ) = - x ^ { 6 } + 3 x ^ { 5 } - x ^ { 2 } - 4 x + 3
 Find the correct end behavior diagram for the given polynomial function.  f ( x ) = - x ^ { 6 } + 3 x ^ { 5 } - x ^ { 2 } - 4 x + 3    <div style=padding-top: 35px>
Question
Solve.
An open-top rectangular box has a square base and it will hold 103 cubic centimeters (cc). Each side of the base has length x cmx \mathrm {~cm} , and the box has a height of y cmy \mathrm {~cm} . Express the surface area SS as a function of the length xx of a side of the base.

A) S(x)=412x+x2S ( x ) = \frac { 412 } { x } + x ^ { 2 }
B) S(x)=206x+x2S ( x ) = \frac { 206 } { x } + x ^ { 2 }
C) S(x)=412+x2S ( x ) = 412 + x ^ { 2 }
D) S(x)=103x+x2S ( x ) = \frac { 103 } { x } + x ^ { 2 }
Question
Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.
f(x)=2x3+x213x+6f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve.
The profit made when tt units are sold is given by P=t224t+140P = t ^ { 2 } - 24 t + 140 for t>0t > 0 . Determine the values of tt for which P<0P < 0 (a loss is taken).

A) (10,14)( 10,14 )
B) (0,)( 0 , \infty )
C) [10,14][ 10,14 ]
D) (,10)(14,)( - \infty , 10 ) \cup ( 14 , \infty )
Question
Use long division to determine whether the binomial is a factor of f(x).
f(x)=x4x33x2+4x+7;x+2f ( x ) = x ^ { 4 } - x ^ { 3 } - 3 x ^ { 2 } + 4 x + 7 ; x + 2

A) Yes
B) No\mathrm { No }
Question
List the critical values of the related function. Then solve the inequality.
xx2+3x4+2x2162xx25x+4\frac { x } { x ^ { 2 } + 3 x - 4 } + \frac { 2 } { x ^ { 2 } - 16 } \leq \frac { 2 x } { x ^ { 2 } - 5 x + 4 }

A) 523,4,5+23,1,4;[523,4)[5+23,1)(4,)- 5 - \sqrt { 23 } , - 4 , - 5 + \sqrt { 23 } , 1,4 ; [ - 5 - \sqrt { 23 } , - 4 ) \cup [ - 5 + \sqrt { 23 } , 1 ) \cup ( 4 , \infty )
B) 423,5,4+23,1,5;[423,5)[4+23,1)(5,)- 4 - \sqrt { 23 } , - 5 , - 4 + \sqrt { 23 } , 1,5 ; [ - 4 - \sqrt { 23 } , - 5 ) \cup [ - 4 + \sqrt { 23 } , 1 ) \cup ( 5 , \infty )
C) No critical values; \varnothing
D) 533,4,5+33,1,4;[533,4)[5+33,1)(4,)- 5 - \sqrt { 33 } , - 4 , - 5 + \sqrt { 33 } , 1,4 ; [ - 5 - \sqrt { 33 } , - 4 ) \cup [ - 5 + \sqrt { 33 } , 1 ) \cup ( 4 , \infty )
Question
Solve the inequality.
For the function h(x)=2x(x2)(x6)h ( x ) = \frac { 2 x } { ( x - 2 ) ( x - 6 ) } , solve h(x)<0h ( x ) < 0 .

A) (,2)(6,)( - \infty , 2 ) \cup ( 6 , \infty )
B) (,0)(2,6)( - \infty , 0 ) \cup ( 2,6 )
C) [2,6][ 2,6 ]
D) (,2][6,)( - \infty , 2 ] \cup [ 6 , \infty )
Question
Solve.
x3+5x24x200x ^ { 3 } + 5 x ^ { 2 } - 4 x - 20 \geq 0

A) [5,)[ - 5 , \infty )
B) [5,2][2,)[ - 5 , - 2 ] \cup [ 2 , \infty )
C) [2,2][5,)[ - 2,2 ] \cup [ 5 , \infty )
D) [5,2][ - 5,2 ]
Question
Use Descartes' Rule of Signs to determine the possible number of positive real zeros and the possible number of negative
real zeros for the function.
P(x)=5x4+4x37x2+5x4P ( x ) = - 5 x ^ { 4 } + 4 x ^ { 3 } - 7 x ^ { 2 } + 5 x - 4

A) 0 , 2, or 4 positive; 0 , 2 , or 4 negative
B) 0 or 2 positive; 0,2 , or 4 negative
C) 0 or 2 positive; 0 negative
D) 0,2 , or 4 positive; 0 negative
Question
Solve.
x3+10x2+23x0x ^ { 3 } + 10 x ^ { 2 } + 23 x \geq 0

A) [52,5+2][0,)[ - 5 - \sqrt { 2 } , - 5 + \sqrt { 2 } ] \cup [ 0 , \infty )
B) (,52][0,]( - \infty , - 5 - \sqrt { 2 } ] \cup [ 0 , \infty ]
C) [52,)[ - 5 - \sqrt { 2 } , \infty )
D) (,52][5+2,)( - \infty , - 5 - \sqrt { 2 } ] \cup [ - 5 + \sqrt { 2 } , \infty )
Question
Use substitution to determine whether the given number is a zero of the given polynomial.
3; f(x)=x48x25x+168f ( x ) = - x ^ { 4 } - 8 x ^ { 2 } - 5 x + 168

A) Yes
B) No\mathrm { No }
Question
Find the horizontal asymptote, if any, of the rational function.
f(x)=x2+5x7x7f ( x ) = \frac { x ^ { 2 } + 5 x - 7 } { x - 7 }

A) y=1y = 1
B) y=5y = - 5
C) y=0y = 0
D) None
Question
Classify the polynomial as constant, linear, quadratic, cubic, or quartic, and determine the leading term, the leading
coefficient, and the degree of the polynomial.
f(x)=13x2f ( x ) = - 13 - x ^ { 2 }

A) Constant; 13;13;0- 13 ; - 13 ; 0
B) Linear; x2;1;1- x ^ { 2 } ; - 1 ; 1
C) Linear; 13;13;1- 13 ; - 13 ; 1
D) Quadratic; x2;1;2- x ^ { 2 } ; - 1 ; 2
Question
Use synthetic division to find the function value.
f(x)=x3+11f ( x ) = x ^ { 3 } + 11 ; find f(2+i)f ( 2 + i ) .

A) 2+11i2 + 11 i
B) 2+12i2 + 12 \mathrm { i }
C) 13+12i13 + 12 \mathrm { i }
D) 13+11i13 + 11 \mathrm { i }
Question
Solve.
There are nn people in a room. The number NN of possible handshakes by all the people in the room is given by the function N(n)=n(n1)2N ( n ) = \frac { n ( n - 1 ) } { 2 } . For what number n of people is 91N19091 \leq N \leq 190 ?

A) {n13n22}\{ n \mid 13 \leq n \leq 22 \}
B) {n15n19}\{ n \mid 15 \leq n \leq 19 \}
C) {n16n19}\{ \mathrm { n } \mid 16 \leq \mathrm { n } \leq 19 \}
D) {n14n20}\{ n \mid 14 \leq n \leq 20 \}
Question
Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.
f(x)=x3+2x2+39x+72f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;   <div style=padding-top: 35px>

A) 3,3,8- 3,3,8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;   <div style=padding-top: 35px>
B) 3,3,8- 3,3 , - 8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;   <div style=padding-top: 35px>
C) 3- 3 (multiplicity 2), 8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;   <div style=padding-top: 35px>
D) 3- 3 (multiplicity 2), 8- 8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;   <div style=padding-top: 35px>
Question
Find the horizontal asymptote, if any, of the rational function.
f(x)=3x39x77x35x+2f ( x ) = \frac { 3 x ^ { 3 } - 9 x - 7 } { 7 x ^ { 3 } - 5 x + 2 }

A) y=37y = \frac { 3 } { 7 }
B) y=95y = \frac { 9 } { 5 }
C) y=0\mathrm { y } = 0
D) None
Question
Given that the polynomial function has the given zero, find the other zeros.
f(x)=x32x211x+52;4f ( x ) = x ^ { 3 } - 2 x ^ { 2 } - 11 x + 52 ; - 4

A) 3+4i,34i3 + 4 \mathrm { i } , 3 - 4 \mathrm { i }
B) 3+2i,32i3 + 2 i , 3 - 2 i
C) 1+213i,1213i1 + 2 \sqrt { 13 } i , 1 - 2 \sqrt { 13 } i
D) 1+2i,12i1 + 2 i , 1 - 2 i
Question
Solve.
x24x12<0x ^ { 2 } - 4 x - 12 < 0

A) (2,6)( - 2,6 )
B) (6,)( 6 , \infty )
C) (,2)(6,)( - \infty , - 2 ) \cup ( 6 , \infty )
D) (,2)( - \infty , - 2 )
Question
Use synthetic division to find the quotient and the remainder.
(3x4+2x21)÷(x+12)\left( 3 x ^ { 4 } + 2 x ^ { 2 } - 1 \right) \div \left( x + \frac { 1 } { 2 } \right)

A) Q(x)=3x3+32x2118x+118;R(x)=516Q ( x ) = 3 x ^ { 3 } + \frac { 3 } { 2 } x ^ { 2 } - \frac { 11 } { 8 } x + \frac { 11 } { 8 } ; R ( x ) = - \frac { 5 } { 16 }
B) Q(x)=3x31;R(x)=2Q ( x ) = 3 x ^ { 3 } - 1 ; R ( x ) = - 2
C) Q(x)=3x31;R(x)=0Q ( x ) = 3 x ^ { 3 } - 1 ; R ( x ) = 0
D) Q(x)=3x332x2+114x118;R(x)=516Q ( x ) = 3 x ^ { 3 } - \frac { 3 } { 2 } x ^ { 2 } + \frac { 11 } { 4 } x - \frac { 11 } { 8 } ; R ( x ) = - \frac { 5 } { 16 }
Question
Solve.
x2+6<2xx ^ { 2 } + 6 < 2 x

A) {2}\{ 2 \}
B) \varnothing
C) (,2)( - \infty , - 2 )
D) (2,)( 2 , \infty )
Question
Find only the rational zeros.
f(x)=x48x3+4x2+24x21f ( x ) = x ^ { 4 } - 8 x ^ { 3 } + 4 x ^ { 2 } + 24 x - 21

A) 7,1- 7,1
B) 7,1
C) 7,17 , - 1
D) No rational zeros
Question
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=x29x+2f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;  <div style=padding-top: 35px>
A) xx -intercepts: (3,0)( - 3,0 ) and (3,0),y( 3,0 ) , y -intercept: (0,92)\left( 0 , \frac { 9 } { 2 } \right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;  <div style=padding-top: 35px>
B) xx -intercepts: (3,0)( - 3,0 ) and (3,0),y( 3,0 ) , \mathrm { y } -intercept: (0,92)\left( 0 , - \frac { 9 } { 2 } \right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;  <div style=padding-top: 35px>
C) x-intercept: (0,0),y( 0,0 ) , y -intercept: (0,0)( 0,0 ) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;  <div style=padding-top: 35px>
D) xx -intercept: (0,0),y( 0,0 ) , y -intercept: (0,0)( 0,0 ) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;  <div style=padding-top: 35px>
Question
Find the zeros of the polynomial function and state the multiplicity of each.
f(x)=(x+2)2(x1)f ( x ) = ( x + 2 ) ^ { 2 } ( x - 1 )

A) 2 , multiplicity 2;12 ; 1 , multiplicity 1
B) 2- 2 , multiplicity 1;11 ; 1 , multiplicity 1
C) -2, multiplicity 1;11 ; 1 , multiplicity 2
D) 2- 2 , multiplicity 2;12 ; 1 , multiplicity 1
Question
Find the correct end behavior diagram for the given polynomial function.
f(x)=3x6x5+7x24f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4

A) <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)   <div style=padding-top: 35px>
B) <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)   <div style=padding-top: 35px>
C) <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)   <div style=padding-top: 35px>
D)  <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)   <div style=padding-top: 35px>
Question
For the function find the maximum number of real zeros that the function can have, the maximum number of x-intercepts
that the function can have, and the maximum number of turning points that the graph of the function can have.
f(x)=8x3+8x28x+7f ( x ) = 8 x ^ { 3 } + 8 x ^ { 2 } - 8 x + 7

A) 3;3;23 ; 3 ; 2
B) 3;2;13 ; 2 ; 1
C) 3;3;33 ; 3 ; 3
D) 2;2;12 ; 2 ; 1
Question
Classify the polynomial as constant, linear, quadratic, cubic, or quartic, and determine the leading term, the leading
coefficient, and the degree of the polynomial.
f(x)=7x210+0.12x7x3f ( x ) = 7 x ^ { 2 } - 10 + 0.12 x - 7 x ^ { 3 }

A) Constant; 10;10;1- 10 ; - 10 ; 1
B) Cubic; 7x3;7;3- 7 x ^ { 3 } ; - 7 ; 3
C) Cubic; x3;7;3x ^ { 3 } ; - 7 ; 3
D) Quadratic; 7x2;7;27 x ^ { 2 } ; 7 ; 2
Question
Use substitution to determine whether the given number is a zero of the given polynomial.
3;f(x)=x43x254- 3 ; f ( x ) = x ^ { 4 } - 3 x ^ { 2 } - 54

A) Yes
B) No
Question
Solve.
x2+10x+250x ^ { 2 } + 10 x + 25 \leq 0

A) [5,)[ 5 , \infty )
B) {5}\{ 5 \}
C) (,5][5,)( - \infty , - 5 ] \cup [ - 5 , \infty )
D) {5}\{ - 5 \}
Question
State the domain of the rational function.
f(x)=x2+4x12x22x8f ( x ) = \frac { x ^ { 2 } + 4 x - 12 } { x ^ { 2 } - 2 x - 8 }

A) (,4)(4,2)(2,)( - \infty , - 4 ) \cup ( - 4,2 ) \cup ( 2 , \infty )
B) (,2)(2,4)(4,)( - \infty , - 2 ) \cup ( - 2,4 ) \cup ( 4 , \infty )
C) (,)( - \infty , \infty )
D) (,4)(4,)( - \infty , 4 ) \cup ( 4 , \infty )
Question
Solve.
An open-top rectangular box has a square base and it will hold 256 cubic centimeters (cc). Each side of the base has length x cmx \mathrm {~cm} . The box's surface area SS is given by
S(x)=1024x+x2.S ( x ) = \frac { 1024 } { x } + x ^ { 2 } .
Estimate the minimum surface area and the value of xx that will yield it.

A) 256 cm2256 \mathrm {~cm} ^ { 2 } when x=6 cmx = 6 \mathrm {~cm}
B) 207 cm2207 \mathrm {~cm} ^ { 2 } when x=6 cmx = 6 \mathrm {~cm}
C) 256 cm2256 \mathrm {~cm} ^ { 2 } when x=8 cmx = 8 \mathrm {~cm}
D) 192 cm2192 \mathrm {~cm} ^ { 2 } when x=8 cm\mathrm { x } = 8 \mathrm {~cm}
Question
Find only the rational zeros.
f(x)=x55x4+5x3+15x236x+20f ( x ) = x ^ { 5 } - 5 x ^ { 4 } + 5 x ^ { 3 } + 15 x ^ { 2 } - 36 x + 20

A) 1,2,2- 1,2 , - 2
B) 1,2,31,2,3
C) 1,2,21,2 , - 2
D) No rational zeros
Question
Find the horizontal asymptote, if any, of the rational function.
f(x)=5x2+2f ( x ) = \frac { 5 } { x ^ { 2 } + 2 }

A) y=5y = 5
B) y=0y = 0
C) x=0x = 0
D) None
Question
Provide the requested response.
Suppose that a polynomial function of degree 5 with rational coefficients has 5,4,3,5i- 5,4 , - 3,5 - i as zeros. Find the other zero(s).

A) 5+i5 + i
B) 5i- 5 - \mathrm { i }
C) 5,4,3,5+i5 , - 4,3,5 + \mathrm { i }
D) 5+i- 5 + \mathrm { i }
Question
Use long division to determine whether the binomial is a factor of f(x).
f(x)=x34x231x+70;x+5f ( x ) = x ^ { 3 } - 4 x ^ { 2 } - 31 x + 70 ; x + 5

A) Yes
B) No\mathrm { No }
Question
For the function find the maximum number of real zeros that the function can have, the maximum number of x-intercepts
that the function can have, and the maximum number of turning points that the graph of the function can have.
f(x)=x6+8x5x24x+9f ( x ) = - x ^ { 6 } + 8 x ^ { 5 } - x ^ { 2 } - 4 x + 9

A) 6;6;56 ; 6 ; 5
B) 6;5;56 ; 5 ; 5
C) 6;6;66 ; 6 ; 6
D) 5;5;65 ; 5 ; 6
Question
List the critical values of the related function. Then solve the inequality.
2x2+144x2+3\frac { 2 } { x ^ { 2 } + 1 } \geq \frac { 4 } { 4 x ^ { 2 } + 3 }

A) No critical values; (,)( - \infty , \infty )
B) 2;(,2]2 ; ( - \infty , 2 ]
C) No critical values; \varnothing
D) 4;[4,)4 ; [ 4 , \infty )
Question
Factor the polynomial f(x). Then solve the equation f(x) = 0.
f(x)=x3+11x2+36x+36f ( x ) = x ^ { 3 } + 11 x ^ { 2 } + 36 x + 36

A) (x+2)(x+3)(x+6);2,3,6( x + 2 ) ( x + 3 ) ( x + 6 ) ; 2,3,6
B) (x+2)(x+3)(x+6);2,3,6( x + 2 ) ( x + 3 ) ( x + 6 ) ; - 2 , - 3 , - 6
C) (x3)(x4)(x7);3,4,7( x - 3 ) ( x - 4 ) ( x - 7 ) ; 3,4,7
D) (x+3)(x+4)(x+7);3,4,7( x + 3 ) ( x + 4 ) ( x + 7 ) ; 3,4,7
Question
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=x23x43x2+2f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;   <div style=padding-top: 35px>

A) No xx -intercepts, yy -intercept: (0,4)( 0 , - 4 ) ;
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;   <div style=padding-top: 35px>
B) No xx -intercepts, yy -intercept: (0,4)( 0 , - 4 ) ;
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;   <div style=padding-top: 35px>
C) x-intercepts: (1,0)( 1,0 ) and (4,0)( - 4,0 ) ,
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;   <div style=padding-top: 35px>
D) x-intercepts: (1,0)( - 1,0 ) and (4,0)( 4,0 ) , y-intercept: (0,2)( 0 , - 2 ) ; y\mathrm { y } -intercept: (0,2)( 0 , - 2 ) ;
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;   <div style=padding-top: 35px>
Question
List the critical values of the related function. Then solve the inequality.
1x40\frac { 1 } { x - 4 } \leq 0

A) 4,4;[4,4]- 4,4 ; [ - 4,4 ]
B) 4;(,4)4 ; ( - \infty , 4 )
C) No critical values; \varnothing
D) 4;(,4]- 4 ; ( - \infty , - 4 ]
Question
Graph the function.
h(x)=x517x2+16xh ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

C)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
Question
Provide the requested response.
Suppose that a polynomial function of degree 4 with rational coefficients has 6, 4, 3i as zeros. Find the other zero.

A)3- i
B)- 3i
C)-6  D) 3i\text { D) } \sqrt { 3 } \mathrm { i }
Question
Solve.
The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function A(x)=14x+80x for x>0A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0
Graph the function on the interval (0,)( 0 , \infty ) and complete the following:
A(x)ــــــــــ as x\mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. } A)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .<div style=padding-top: 35px>
A(x)1\mathrm { A } ( \mathrm { x } ) \rightarrow 1 as x\mathrm { x } \rightarrow \infty .
B)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .<div style=padding-top: 35px>

A(x)0\mathrm { A } ( \mathrm { x } ) \rightarrow 0 as x.\mathrm { x } \rightarrow \infty .
C)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .<div style=padding-top: 35px>
A(x)19\mathrm { A } ( \mathrm { x } ) \rightarrow 19 as x.\mathrm { x } \rightarrow \infty .
D)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .<div style=padding-top: 35px>
A(x)14\mathrm { A } ( \mathrm { x } ) \rightarrow 14 as x\mathrm { x } \rightarrow \infty .
Question
Find a rational function that satisfies the given conditions. Answers may vary, but try to give the simplest answer
possible.
Oblique asymptote y=x+5y = x + 5

A) f(x)=x25x+15xf ( x ) = \frac { x ^ { 2 } - 5 x + 1 } { 5 x }
B) f(x)=x2+5x+1xf ( x ) = \frac { x ^ { 2 } + 5 x + 1 } { x }
C) f(x)=x2+5x+15xf ( x ) = \frac { x ^ { 2 } + 5 x + 1 } { 5 x }
D) f(x)=x25x+1xf ( x ) = \frac { x ^ { 2 } - 5 x + 1 } { x }
Question
Classify the polynomial as constant, linear, quadratic, cubic, or quartic, and determine the leading term, the leading
coefficient, and the degree of the polynomial.
g(x)=12x312x+8g ( x ) = \frac { 1 } { 2 } x ^ { 3 } - 12 x + 8

A) Linear; 12x;12;1- 12 x ; - 12 ; 1
B) Quadratic; 12x2;12;2\frac { 1 } { 2 } x ^ { 2 } ; \frac { 1 } { 2 } ; 2
C) Cubic; 12x3;12;3\frac { 1 } { 2 } x ^ { 3 } ; \frac { 1 } { 2 } ; 3
D) Linear; 8;8;18 ; 8 ; 1
Question
Given that the polynomial function has the given zero, find the other zeros.
f(x)=x421x2100;2if ( x ) = x ^ { 4 } - 21 x ^ { 2 } - 100 ; - 2 i

A) 2i,5i,5i2 \mathrm { i } , 5 \mathrm { i } , - 5 \mathrm { i }
B) 2i,10,102 \mathrm { i } , 10 , - 10
C) 2i,5,52 \mathrm { i } , 5 , - 5
D) 2i,10i,10i2 \mathrm { i } , 10 \mathrm { i } , - 10 \mathrm { i }
Question
Given that the polynomial function has the given zero, find the other zeros.
f(x)=x364;4f ( x ) = x ^ { 3 } - 64 ; 4

A) 2+3i,23i- 2 + \sqrt { 3 } i , - 2 - \sqrt { 3 } i
B) 2+23i,223i- 2 + 2 \sqrt { 3 } i , - 2 - 2 \sqrt { 3 } i
C) 1+23i,123i- 1 + 2 \sqrt { 3 } i , - 1 - 2 \sqrt { 3 } i
D) 2+43i,243i- 2 + 4 \sqrt { 3 } i , - 2 - 4 \sqrt { 3 } i
Question
Solve the inequality.
For the function f(x)=x22x35f ( x ) = x ^ { 2 } - 2 x - 35 , solve f(x)0f ( x ) \leq 0 .

A) (,5][7,)( - \infty , - 5 ] \cup [ 7 , \infty )
B) [5,7][ - 5,7 ]
C) (,5]( - \infty , - 5 ]
D) [7,)[ 7 , \infty )
Question
Use synthetic division to find the function value.
f(x)=x510x4+15x34x300;f ( x ) = x ^ { 5 } - 10 x ^ { 4 } + 15 x ^ { 3 } - 4 x - 300 ; find f(2)f ( 2 )

A) 314- 314
B) 284
C) 318- 318
D) 316- 316
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/94
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Polynomial and Rational Functions
1
Use the leading-term test to match the function with the correct graph.
f(x)=0.6x6x5+5x43x36x2+x3f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.6 x ^ { 6 } - x ^ { 5 } + 5 x ^ { 4 } - 3 x ^ { 3 } - 6 x ^ { 2 } + x - 3 </strong> A)   B)   C)   D)
D
2
Use the leading-term test to match the function with the correct graph.
f(x)=x44x3+15x2+x14f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 15 x ^ { 2 } + x - 14 </strong> A)   B)   C)   D)
D
3
Find the zeros of the polynomial function and state the multiplicity of each.
f(x)=x3+8x2x8f ( x ) = x ^ { 3 } + 8 x ^ { 2 } - x - 8

A) 1- 1 , multiplicity 1;11 ; 1 , multiplicity 1;81 ; 8 , multiplicity 1
B) 8- 8 , multiplicity 2;12 ; 1 , multiplicity 1
C) 8- 8 , multiplicity 1;11 ; - 1 , multiplicity 1;11 ; 1 , multiplicity 1
D) 8- 8 , multiplicity 1;11 ; - 1 , multiplicity 2
C
4
Solve.
x2>25\mathrm { x } ^ { 2 } > 25

A) (,5)(5,)( - \infty , - 5 ) \cup ( 5 , \infty )
B) (5,)( - 5 , \infty )
C) (5,5)( - 5,5 )
D) (5,)( 5 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
5
Use the leading-term test to match the function with the correct graph.
f(x)=2x2+6f ( x ) = 2 x ^ { 2 } + 6

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 2 x ^ { 2 } + 6 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
6
Match the equation with the appropriate graph.
f(x)=18x2+9f ( x ) = \frac { 18 } { x ^ { 2 } + 9 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
7
Match the equation with the appropriate graph.
f(x)=2x2x24f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 2 x ^ { 2 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
8
Match the equation with the appropriate graph.
f(x)=x3x2+9f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } + 9 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
9
Use the leading-term test to match the function with the correct graph.
f(x)=4x+4x29x3f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 }

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = 4 x + 4 x ^ { 2 } - 9 x ^ { 3 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
10
Use the leading-term test to match the function with the correct graph.
f(x)=0.3x7+0.14x60.13x5+x4+x38x5f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - 0.3 x ^ { 7 } + 0.14 x ^ { 6 } - 0.13 x ^ { 5 } + x ^ { 4 } + x ^ { 3 } - 8 x - 5 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
11
Graph the function.
f(x)=x33x2f ( x ) = x ^ { 3 } - 3 x ^ { 2 }
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)

A)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)
B)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)

C)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)
D)
 <strong>Graph the function.  f ( x ) = x ^ { 3 } - 3 x ^ { 2 }   </strong> A)   B)    C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
12
Use the leading-term test to match the function with the correct graph.
f(x)=x5x3+x2+4f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = x ^ { 5 } - x ^ { 3 } + x ^ { 2 } + 4 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
13
Solve the given inequality (a related function is graphed).
5xx290\frac { 5 x } { x ^ { 2 } - 9 } \geq 0
 <strong>Solve the given inequality (a related function is graphed).  \frac { 5 x } { x ^ { 2 } - 9 } \geq 0    </strong> A)  ( - 3,0 ) \cup ( 3 , \infty )  B)  ( - 3,0 ] \cup ( 3 , \infty )  C)  ( - 3 , \infty )  D)  ( - \infty , - 3 ) \cup [ 0,3 )

A) (3,0)(3,)( - 3,0 ) \cup ( 3 , \infty )
B) (3,0](3,)( - 3,0 ] \cup ( 3 , \infty )
C) (3,)( - 3 , \infty )
D) (,3)[0,3)( - \infty , - 3 ) \cup [ 0,3 )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
14
Use the leading-term test to match the function with the correct graph.
f(x)=13x36x2+8x+33f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = - \frac { 1 } { 3 } x ^ { 3 } - 6 x ^ { 2 } + 8 x + 33 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
15
Find the correct end behavior diagram for the given polynomial function.
f(x)=x55x32x+1f ( x ) = - x ^ { 5 } - 5 x ^ { 3 } - 2 x + 1
 Find the correct end behavior diagram for the given polynomial function.  f ( x ) = - x ^ { 5 } - 5 x ^ { 3 } - 2 x + 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
16
Use the leading-term test to match the function with the correct graph.
f(x)=14x25f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5

A)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)
B)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)
C)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)
D)
 <strong>Use the leading-term test to match the function with the correct graph.  f ( x ) = \frac { 1 } { 4 } x ^ { 2 } - 5 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
17
Match the equation with the appropriate graph.
f(x)=18x29f ( x ) = \frac { 18 } { x ^ { 2 } - 9 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 18 } { x ^ { 2 } - 9 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
18
Match the equation with the appropriate graph.
f(x)=6xx21f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
19
Match the equation with the appropriate graph.
f(x)=x3x24f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 }

A)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with the appropriate graph.  f ( x ) = \frac { x ^ { 3 } } { x ^ { 2 } - 4 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
20
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=x4x+5f ( x ) = \frac { x - 4 } { x + 5 }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;
A) x-intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , - \frac { 4 } { 5 } \right) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;
B) x-intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , \frac { 4 } { 5 } \right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;
C) xx -intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , - \frac { 4 } { 5 } \right) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;
D) xx -intercept: (4,0);y( 4,0 ) ; y -intercept: (0,45)\left( 0 , \frac { 4 } { 5 } \right) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x - 4 } { x + 5 }    A) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   B) x-intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right)    C)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , - \frac { 4 } { 5 } \right) ;   D)  x -intercept:  ( 4,0 ) ; y -intercept:  \left( 0 , \frac { 4 } { 5 } \right) ;
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
21
Solve.
The population P\mathrm { P } , in thousands, of Pine Grove is given by P(t)=600t2t2+9\mathrm { P } ( \mathrm { t } ) = \frac { 600 \mathrm { t } } { 2 \mathrm { t } ^ { 2 } + 9 } , where tt is the time, in months. Find the interval on which the population was 40 thousand or greater.

A) [0.526,5.474][ 0.526,5.474 ]
B) (,)( - \infty , \infty )
C) [0.658,6.842][ 0.658,6.842 ]
D) [5.474,)[ 5.474 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
22
Solve the problem.
Assume that a person's threshold weight WW , defined as the weight above which the risk of death rises dramatically, is given by W(h)=(h12.3)3W ( h ) = \left( \frac { h } { 12.3 } \right) ^ { 3 } , where WW is in pounds and hh is the person's height in inches. Find the threshold weight for a person who is 6ft16 \mathrm { ft } 1 in. tall. Round your answer to the nearest pound.

A) 122lb122 \mathrm { lb }
B) 209.1lb209.1 \mathrm { lb }
C) 221.5lb221.5 \mathrm { lb }
D) 235.9lb235.9 \mathrm { lb }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
23
Solve the problem.
The position of an object moving in a straight line is given by s=6t24ts = 6 t ^ { 2 } - 4 t , where ss is in meters and tt is the time in seconds the object has been in motion. How far will an object move in 20 seconds?

A) 40 m40 \mathrm {~m}
B) 800 m800 \mathrm {~m}
C) 1480 m1480 \mathrm {~m}
D) 2320 m2320 \mathrm {~m}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
24
Find the oblique asymptote, if any, of the rational function.
f(x)=x35x2+4x1x2+4xf ( x ) = \frac { x ^ { 3 } - 5 x ^ { 2 } + 4 x - 1 } { x ^ { 2 } + 4 x }

A) y=x9y = x - 9
B) y=x+9y = x + 9
C) None
D) y=xy = x
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
25
Use synthetic division to find the function value.
f(x)=x32x2+5x4; find f(5)f ( x ) = x ^ { 3 } - 2 x ^ { 2 } + 5 x - 4 ; \text { find } f ( 5 )

A) 150- 150
B) 104
C) 154- 154
D) 96
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
26
Solve.
x32x2<29x30x ^ { 3 } - 2 x ^ { 2 } < 29 x - 30

A) (,1)(6,)( - \infty , 1 ) \cup ( 6 , \infty )
B) (,1)( - \infty , 1 )
C) (5,1)(6,)( - 5,1 ) \cup ( 6 , \infty )
D) (,5)(1,6)( - \infty , - 5 ) \cup ( 1,6 )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
27
Using synthetic division, determine whether the numbers are zeros of the polynomial.
3,0;f(x)=4x3+x2+2x+7- 3,0 ; f ( x ) = - 4 x ^ { 3 } + x ^ { 2 } + 2 x + 7

A) No; no
B) No; yes
C) Yes; no
D) Yes; yes
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
28
Solve the problem.
If there are xx teams in a sports league and all the teams play each other twice, a total of N(x)N ( x ) games are played, where N(x)=x2xN ( x ) = x ^ { 2 } - x . A soccer league has 6 teams, each of which plays the others twice. If the league pays $49\$ 49 per game for the field and officials, how much will it cost to play the entire schedule?

A) $2058\$ 2058
B) $1470\$ 1470
C) $1764\$ 1764
D) $1568\$ 1568
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
29
Find the zeros of the polynomial function and state the multiplicity of each.
f(x)=x3+x23x3f ( x ) = x ^ { 3 } + x ^ { 2 } - 3 x - 3

A) 1- 1 , multiplicity 1;11 ; 1 , multiplicity 1;31 ; \sqrt { 3 } , multiplicity 1
B) 1- 1 , multiplicity 1 ; 1 , multiplicity 1 ; 5 , multiplicity 1
C) 1- 1 , multiplicity 1;11 ; 1 , multiplicity 1;31 ; \sqrt { 3 } , multiplicity 1;31 ; - \sqrt { 3 } , multiplicity 1
D) 1- 1 , multiplicity 1;31 ; \sqrt { 3 } , multiplicity 1;31 ; - \sqrt { 3 } , multiplicity 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
30
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=1x2f ( x ) = \frac { 1 } { x - 2 }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)
 A) No x-intercepts, y-intercept: (0,12)\text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)
 B) No x-intercepts, y-intercept: (0,12)\text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)

 C) No x-intercepts, y-intercept: (0,12)\text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)
D)  No x-intercepts, y-intercept: (0,13)\text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { 1 } { x - 2 }     \text { A) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }     \text { B) No x-intercepts, } y \text {-intercept: }\left(0, \frac{1}{2}\right) \text {; }      \text { C) No } x \text {-intercepts, } y \text {-intercept: } \left( 0 , - \frac { 1 } { 2 } \right) \text {; }    D) \text { No } x \text {-intercepts, } y \text {-intercept: }\left(0, \frac{1}{3}\right)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
31
Find the requested polynomial.
Find a polynomial function of degree 3 with 2, i, -i as zeros. A) f(x)=x32x2+x2f ( x ) = x ^ { 3 } - 2 x ^ { 2 } + x - 2
B) f(x)=x32ix2+x2if ( x ) = x ^ { 3 } - 2 i x ^ { 2 } + x - 2 i
C) f(x)=x32x2+ix2if ( x ) = x ^ { 3 } - 2 x ^ { 2 } + i x - 2 i
D) f(x)=x3+2x2x+2f ( x ) = x ^ { 3 } + 2 x ^ { 2 } - x + 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
32
Find the correct end behavior diagram for the given polynomial function.
f(x)=x6+3x5x24x+3f ( x ) = - x ^ { 6 } + 3 x ^ { 5 } - x ^ { 2 } - 4 x + 3
 Find the correct end behavior diagram for the given polynomial function.  f ( x ) = - x ^ { 6 } + 3 x ^ { 5 } - x ^ { 2 } - 4 x + 3
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
33
Solve.
An open-top rectangular box has a square base and it will hold 103 cubic centimeters (cc). Each side of the base has length x cmx \mathrm {~cm} , and the box has a height of y cmy \mathrm {~cm} . Express the surface area SS as a function of the length xx of a side of the base.

A) S(x)=412x+x2S ( x ) = \frac { 412 } { x } + x ^ { 2 }
B) S(x)=206x+x2S ( x ) = \frac { 206 } { x } + x ^ { 2 }
C) S(x)=412+x2S ( x ) = 412 + x ^ { 2 }
D) S(x)=103x+x2S ( x ) = \frac { 103 } { x } + x ^ { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
34
Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.
f(x)=2x3+x213x+6f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)

A)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)
B)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)
C)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)
D)
 <strong>Sketch the graph of the polynomial function. Use the rational zeros theorem when finding the zeros.  f ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 13 x + 6   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
35
Solve.
The profit made when tt units are sold is given by P=t224t+140P = t ^ { 2 } - 24 t + 140 for t>0t > 0 . Determine the values of tt for which P<0P < 0 (a loss is taken).

A) (10,14)( 10,14 )
B) (0,)( 0 , \infty )
C) [10,14][ 10,14 ]
D) (,10)(14,)( - \infty , 10 ) \cup ( 14 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
36
Use long division to determine whether the binomial is a factor of f(x).
f(x)=x4x33x2+4x+7;x+2f ( x ) = x ^ { 4 } - x ^ { 3 } - 3 x ^ { 2 } + 4 x + 7 ; x + 2

A) Yes
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
37
List the critical values of the related function. Then solve the inequality.
xx2+3x4+2x2162xx25x+4\frac { x } { x ^ { 2 } + 3 x - 4 } + \frac { 2 } { x ^ { 2 } - 16 } \leq \frac { 2 x } { x ^ { 2 } - 5 x + 4 }

A) 523,4,5+23,1,4;[523,4)[5+23,1)(4,)- 5 - \sqrt { 23 } , - 4 , - 5 + \sqrt { 23 } , 1,4 ; [ - 5 - \sqrt { 23 } , - 4 ) \cup [ - 5 + \sqrt { 23 } , 1 ) \cup ( 4 , \infty )
B) 423,5,4+23,1,5;[423,5)[4+23,1)(5,)- 4 - \sqrt { 23 } , - 5 , - 4 + \sqrt { 23 } , 1,5 ; [ - 4 - \sqrt { 23 } , - 5 ) \cup [ - 4 + \sqrt { 23 } , 1 ) \cup ( 5 , \infty )
C) No critical values; \varnothing
D) 533,4,5+33,1,4;[533,4)[5+33,1)(4,)- 5 - \sqrt { 33 } , - 4 , - 5 + \sqrt { 33 } , 1,4 ; [ - 5 - \sqrt { 33 } , - 4 ) \cup [ - 5 + \sqrt { 33 } , 1 ) \cup ( 4 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
38
Solve the inequality.
For the function h(x)=2x(x2)(x6)h ( x ) = \frac { 2 x } { ( x - 2 ) ( x - 6 ) } , solve h(x)<0h ( x ) < 0 .

A) (,2)(6,)( - \infty , 2 ) \cup ( 6 , \infty )
B) (,0)(2,6)( - \infty , 0 ) \cup ( 2,6 )
C) [2,6][ 2,6 ]
D) (,2][6,)( - \infty , 2 ] \cup [ 6 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
39
Solve.
x3+5x24x200x ^ { 3 } + 5 x ^ { 2 } - 4 x - 20 \geq 0

A) [5,)[ - 5 , \infty )
B) [5,2][2,)[ - 5 , - 2 ] \cup [ 2 , \infty )
C) [2,2][5,)[ - 2,2 ] \cup [ 5 , \infty )
D) [5,2][ - 5,2 ]
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
40
Use Descartes' Rule of Signs to determine the possible number of positive real zeros and the possible number of negative
real zeros for the function.
P(x)=5x4+4x37x2+5x4P ( x ) = - 5 x ^ { 4 } + 4 x ^ { 3 } - 7 x ^ { 2 } + 5 x - 4

A) 0 , 2, or 4 positive; 0 , 2 , or 4 negative
B) 0 or 2 positive; 0,2 , or 4 negative
C) 0 or 2 positive; 0 negative
D) 0,2 , or 4 positive; 0 negative
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
41
Solve.
x3+10x2+23x0x ^ { 3 } + 10 x ^ { 2 } + 23 x \geq 0

A) [52,5+2][0,)[ - 5 - \sqrt { 2 } , - 5 + \sqrt { 2 } ] \cup [ 0 , \infty )
B) (,52][0,]( - \infty , - 5 - \sqrt { 2 } ] \cup [ 0 , \infty ]
C) [52,)[ - 5 - \sqrt { 2 } , \infty )
D) (,52][5+2,)( - \infty , - 5 - \sqrt { 2 } ] \cup [ - 5 + \sqrt { 2 } , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
42
Use substitution to determine whether the given number is a zero of the given polynomial.
3; f(x)=x48x25x+168f ( x ) = - x ^ { 4 } - 8 x ^ { 2 } - 5 x + 168

A) Yes
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
43
Find the horizontal asymptote, if any, of the rational function.
f(x)=x2+5x7x7f ( x ) = \frac { x ^ { 2 } + 5 x - 7 } { x - 7 }

A) y=1y = 1
B) y=5y = - 5
C) y=0y = 0
D) None
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
44
Classify the polynomial as constant, linear, quadratic, cubic, or quartic, and determine the leading term, the leading
coefficient, and the degree of the polynomial.
f(x)=13x2f ( x ) = - 13 - x ^ { 2 }

A) Constant; 13;13;0- 13 ; - 13 ; 0
B) Linear; x2;1;1- x ^ { 2 } ; - 1 ; 1
C) Linear; 13;13;1- 13 ; - 13 ; 1
D) Quadratic; x2;1;2- x ^ { 2 } ; - 1 ; 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
45
Use synthetic division to find the function value.
f(x)=x3+11f ( x ) = x ^ { 3 } + 11 ; find f(2+i)f ( 2 + i ) .

A) 2+11i2 + 11 i
B) 2+12i2 + 12 \mathrm { i }
C) 13+12i13 + 12 \mathrm { i }
D) 13+11i13 + 11 \mathrm { i }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
46
Solve.
There are nn people in a room. The number NN of possible handshakes by all the people in the room is given by the function N(n)=n(n1)2N ( n ) = \frac { n ( n - 1 ) } { 2 } . For what number n of people is 91N19091 \leq N \leq 190 ?

A) {n13n22}\{ n \mid 13 \leq n \leq 22 \}
B) {n15n19}\{ n \mid 15 \leq n \leq 19 \}
C) {n16n19}\{ \mathrm { n } \mid 16 \leq \mathrm { n } \leq 19 \}
D) {n14n20}\{ n \mid 14 \leq n \leq 20 \}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
47
Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.
f(x)=x3+2x2+39x+72f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;

A) 3,3,8- 3,3,8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;
B) 3,3,8- 3,3 , - 8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;
C) 3- 3 (multiplicity 2), 8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;
D) 3- 3 (multiplicity 2), 8- 8 ;
 <strong>Graph the polynomial function. Use synthetic division and the remainder theorem to find the zeros.  f ( x ) = - x ^ { 3 } + 2 x ^ { 2 } + 39 x + 72   </strong> A)  - 3,3,8 ;   B)  - 3,3 , - 8 ;   C)  - 3  (multiplicity 2), 8 ;   D)  - 3  (multiplicity 2),  - 8 ;
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
48
Find the horizontal asymptote, if any, of the rational function.
f(x)=3x39x77x35x+2f ( x ) = \frac { 3 x ^ { 3 } - 9 x - 7 } { 7 x ^ { 3 } - 5 x + 2 }

A) y=37y = \frac { 3 } { 7 }
B) y=95y = \frac { 9 } { 5 }
C) y=0\mathrm { y } = 0
D) None
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
49
Given that the polynomial function has the given zero, find the other zeros.
f(x)=x32x211x+52;4f ( x ) = x ^ { 3 } - 2 x ^ { 2 } - 11 x + 52 ; - 4

A) 3+4i,34i3 + 4 \mathrm { i } , 3 - 4 \mathrm { i }
B) 3+2i,32i3 + 2 i , 3 - 2 i
C) 1+213i,1213i1 + 2 \sqrt { 13 } i , 1 - 2 \sqrt { 13 } i
D) 1+2i,12i1 + 2 i , 1 - 2 i
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
50
Solve.
x24x12<0x ^ { 2 } - 4 x - 12 < 0

A) (2,6)( - 2,6 )
B) (6,)( 6 , \infty )
C) (,2)(6,)( - \infty , - 2 ) \cup ( 6 , \infty )
D) (,2)( - \infty , - 2 )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
51
Use synthetic division to find the quotient and the remainder.
(3x4+2x21)÷(x+12)\left( 3 x ^ { 4 } + 2 x ^ { 2 } - 1 \right) \div \left( x + \frac { 1 } { 2 } \right)

A) Q(x)=3x3+32x2118x+118;R(x)=516Q ( x ) = 3 x ^ { 3 } + \frac { 3 } { 2 } x ^ { 2 } - \frac { 11 } { 8 } x + \frac { 11 } { 8 } ; R ( x ) = - \frac { 5 } { 16 }
B) Q(x)=3x31;R(x)=2Q ( x ) = 3 x ^ { 3 } - 1 ; R ( x ) = - 2
C) Q(x)=3x31;R(x)=0Q ( x ) = 3 x ^ { 3 } - 1 ; R ( x ) = 0
D) Q(x)=3x332x2+114x118;R(x)=516Q ( x ) = 3 x ^ { 3 } - \frac { 3 } { 2 } x ^ { 2 } + \frac { 11 } { 4 } x - \frac { 11 } { 8 } ; R ( x ) = - \frac { 5 } { 16 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
52
Solve.
x2+6<2xx ^ { 2 } + 6 < 2 x

A) {2}\{ 2 \}
B) \varnothing
C) (,2)( - \infty , - 2 )
D) (2,)( 2 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
53
Find only the rational zeros.
f(x)=x48x3+4x2+24x21f ( x ) = x ^ { 4 } - 8 x ^ { 3 } + 4 x ^ { 2 } + 24 x - 21

A) 7,1- 7,1
B) 7,1
C) 7,17 , - 1
D) No rational zeros
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
54
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=x29x+2f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;
A) xx -intercepts: (3,0)( - 3,0 ) and (3,0),y( 3,0 ) , y -intercept: (0,92)\left( 0 , \frac { 9 } { 2 } \right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;
B) xx -intercepts: (3,0)( - 3,0 ) and (3,0),y( 3,0 ) , \mathrm { y } -intercept: (0,92)\left( 0 , - \frac { 9 } { 2 } \right)
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;
C) x-intercept: (0,0),y( 0,0 ) , y -intercept: (0,0)( 0,0 ) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;
D) xx -intercept: (0,0),y( 0,0 ) , y -intercept: (0,0)( 0,0 ) ;
 Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 9 } { x + 2 }    A)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , y -intercept:  \left( 0 , \frac { 9 } { 2 } \right)    B)  x -intercepts:  ( - 3,0 )  and  ( 3,0 ) , \mathrm { y } -intercept:  \left( 0 , - \frac { 9 } { 2 } \right)    C) x-intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;   D)  x -intercept:  ( 0,0 ) , y -intercept:  ( 0,0 ) ;
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
55
Find the zeros of the polynomial function and state the multiplicity of each.
f(x)=(x+2)2(x1)f ( x ) = ( x + 2 ) ^ { 2 } ( x - 1 )

A) 2 , multiplicity 2;12 ; 1 , multiplicity 1
B) 2- 2 , multiplicity 1;11 ; 1 , multiplicity 1
C) -2, multiplicity 1;11 ; 1 , multiplicity 2
D) 2- 2 , multiplicity 2;12 ; 1 , multiplicity 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
56
Find the correct end behavior diagram for the given polynomial function.
f(x)=3x6x5+7x24f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4

A) <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)
B) <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)
C) <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)
D)  <strong>Find the correct end behavior diagram for the given polynomial function.  f ( x ) = \sqrt { 3 } x ^ { 6 } - x ^ { 5 } + 7 x ^ { 2 } - 4 </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
57
For the function find the maximum number of real zeros that the function can have, the maximum number of x-intercepts
that the function can have, and the maximum number of turning points that the graph of the function can have.
f(x)=8x3+8x28x+7f ( x ) = 8 x ^ { 3 } + 8 x ^ { 2 } - 8 x + 7

A) 3;3;23 ; 3 ; 2
B) 3;2;13 ; 2 ; 1
C) 3;3;33 ; 3 ; 3
D) 2;2;12 ; 2 ; 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
58
Classify the polynomial as constant, linear, quadratic, cubic, or quartic, and determine the leading term, the leading
coefficient, and the degree of the polynomial.
f(x)=7x210+0.12x7x3f ( x ) = 7 x ^ { 2 } - 10 + 0.12 x - 7 x ^ { 3 }

A) Constant; 10;10;1- 10 ; - 10 ; 1
B) Cubic; 7x3;7;3- 7 x ^ { 3 } ; - 7 ; 3
C) Cubic; x3;7;3x ^ { 3 } ; - 7 ; 3
D) Quadratic; 7x2;7;27 x ^ { 2 } ; 7 ; 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
59
Use substitution to determine whether the given number is a zero of the given polynomial.
3;f(x)=x43x254- 3 ; f ( x ) = x ^ { 4 } - 3 x ^ { 2 } - 54

A) Yes
B) No
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
60
Solve.
x2+10x+250x ^ { 2 } + 10 x + 25 \leq 0

A) [5,)[ 5 , \infty )
B) {5}\{ 5 \}
C) (,5][5,)( - \infty , - 5 ] \cup [ - 5 , \infty )
D) {5}\{ - 5 \}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
61
State the domain of the rational function.
f(x)=x2+4x12x22x8f ( x ) = \frac { x ^ { 2 } + 4 x - 12 } { x ^ { 2 } - 2 x - 8 }

A) (,4)(4,2)(2,)( - \infty , - 4 ) \cup ( - 4,2 ) \cup ( 2 , \infty )
B) (,2)(2,4)(4,)( - \infty , - 2 ) \cup ( - 2,4 ) \cup ( 4 , \infty )
C) (,)( - \infty , \infty )
D) (,4)(4,)( - \infty , 4 ) \cup ( 4 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
62
Solve.
An open-top rectangular box has a square base and it will hold 256 cubic centimeters (cc). Each side of the base has length x cmx \mathrm {~cm} . The box's surface area SS is given by
S(x)=1024x+x2.S ( x ) = \frac { 1024 } { x } + x ^ { 2 } .
Estimate the minimum surface area and the value of xx that will yield it.

A) 256 cm2256 \mathrm {~cm} ^ { 2 } when x=6 cmx = 6 \mathrm {~cm}
B) 207 cm2207 \mathrm {~cm} ^ { 2 } when x=6 cmx = 6 \mathrm {~cm}
C) 256 cm2256 \mathrm {~cm} ^ { 2 } when x=8 cmx = 8 \mathrm {~cm}
D) 192 cm2192 \mathrm {~cm} ^ { 2 } when x=8 cm\mathrm { x } = 8 \mathrm {~cm}
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
63
Find only the rational zeros.
f(x)=x55x4+5x3+15x236x+20f ( x ) = x ^ { 5 } - 5 x ^ { 4 } + 5 x ^ { 3 } + 15 x ^ { 2 } - 36 x + 20

A) 1,2,2- 1,2 , - 2
B) 1,2,31,2,3
C) 1,2,21,2 , - 2
D) No rational zeros
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
64
Find the horizontal asymptote, if any, of the rational function.
f(x)=5x2+2f ( x ) = \frac { 5 } { x ^ { 2 } + 2 }

A) y=5y = 5
B) y=0y = 0
C) x=0x = 0
D) None
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
65
Provide the requested response.
Suppose that a polynomial function of degree 5 with rational coefficients has 5,4,3,5i- 5,4 , - 3,5 - i as zeros. Find the other zero(s).

A) 5+i5 + i
B) 5i- 5 - \mathrm { i }
C) 5,4,3,5+i5 , - 4,3,5 + \mathrm { i }
D) 5+i- 5 + \mathrm { i }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
66
Use long division to determine whether the binomial is a factor of f(x).
f(x)=x34x231x+70;x+5f ( x ) = x ^ { 3 } - 4 x ^ { 2 } - 31 x + 70 ; x + 5

A) Yes
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
67
For the function find the maximum number of real zeros that the function can have, the maximum number of x-intercepts
that the function can have, and the maximum number of turning points that the graph of the function can have.
f(x)=x6+8x5x24x+9f ( x ) = - x ^ { 6 } + 8 x ^ { 5 } - x ^ { 2 } - 4 x + 9

A) 6;6;56 ; 6 ; 5
B) 6;5;56 ; 5 ; 5
C) 6;6;66 ; 6 ; 6
D) 5;5;65 ; 5 ; 6
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
68
List the critical values of the related function. Then solve the inequality.
2x2+144x2+3\frac { 2 } { x ^ { 2 } + 1 } \geq \frac { 4 } { 4 x ^ { 2 } + 3 }

A) No critical values; (,)( - \infty , \infty )
B) 2;(,2]2 ; ( - \infty , 2 ]
C) No critical values; \varnothing
D) 4;[4,)4 ; [ 4 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
69
Factor the polynomial f(x). Then solve the equation f(x) = 0.
f(x)=x3+11x2+36x+36f ( x ) = x ^ { 3 } + 11 x ^ { 2 } + 36 x + 36

A) (x+2)(x+3)(x+6);2,3,6( x + 2 ) ( x + 3 ) ( x + 6 ) ; 2,3,6
B) (x+2)(x+3)(x+6);2,3,6( x + 2 ) ( x + 3 ) ( x + 6 ) ; - 2 , - 3 , - 6
C) (x3)(x4)(x7);3,4,7( x - 3 ) ( x - 4 ) ( x - 7 ) ; 3,4,7
D) (x+3)(x+4)(x+7);3,4,7( x + 3 ) ( x + 4 ) ( x + 7 ) ; 3,4,7
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
70
Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and
y-intercepts.
f(x)=x23x43x2+2f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;

A) No xx -intercepts, yy -intercept: (0,4)( 0 , - 4 ) ;
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;
B) No xx -intercepts, yy -intercept: (0,4)( 0 , - 4 ) ;
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;
C) x-intercepts: (1,0)( 1,0 ) and (4,0)( - 4,0 ) ,
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;
D) x-intercepts: (1,0)( - 1,0 ) and (4,0)( 4,0 ) , y-intercept: (0,2)( 0 , - 2 ) ; y\mathrm { y } -intercept: (0,2)( 0 , - 2 ) ;
 <strong>Graph the function, showing all asymptotes (those that do not correspond to an axis) as dashed lines. List the x- and y-intercepts.  f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { 3 x ^ { 2 } + 2 }   </strong> A) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   B) No  x -intercepts,  y -intercept:  ( 0 , - 4 ) ;   C) x-intercepts:  ( 1,0 )  and  ( - 4,0 ) ,   D) x-intercepts:  ( - 1,0 )  and  ( 4,0 ) , y-intercept:  ( 0 , - 2 ) ;  \mathrm { y } -intercept:  ( 0 , - 2 ) ;
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
71
List the critical values of the related function. Then solve the inequality.
1x40\frac { 1 } { x - 4 } \leq 0

A) 4,4;[4,4]- 4,4 ; [ - 4,4 ]
B) 4;(,4)4 ; ( - \infty , 4 )
C) No critical values; \varnothing
D) 4;(,4]- 4 ; ( - \infty , - 4 ]
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
72
Graph the function.
h(x)=x517x2+16xh ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)

A)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)
B)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)

C)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)
D)
 <strong>Graph the function.  h ( x ) = x ^ { 5 } - 17 x ^ { 2 } + 16 x   </strong> A)   B)    C)   D)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
73
Provide the requested response.
Suppose that a polynomial function of degree 4 with rational coefficients has 6, 4, 3i as zeros. Find the other zero.

A)3- i
B)- 3i
C)-6  D) 3i\text { D) } \sqrt { 3 } \mathrm { i }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
74
Solve.
The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function A(x)=14x+80x for x>0A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0
Graph the function on the interval (0,)( 0 , \infty ) and complete the following:
A(x)ــــــــــ as x\mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. } A)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .
A(x)1\mathrm { A } ( \mathrm { x } ) \rightarrow 1 as x\mathrm { x } \rightarrow \infty .
B)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .

A(x)0\mathrm { A } ( \mathrm { x } ) \rightarrow 0 as x.\mathrm { x } \rightarrow \infty .
C)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .
A(x)19\mathrm { A } ( \mathrm { x } ) \rightarrow 19 as x.\mathrm { x } \rightarrow \infty .
D)
 Solve. The average cost per tape, in dollars, for a company to produce x sports videotapes is given by the function  A ( x ) = \frac { 14 x + 80 } { x } \text { for } x > 0  Graph the function on the interval  ( 0 , \infty )  and complete the following:  \mathrm { A } ( \mathrm { x } ) \rightarrowــــــــــ \quad \text { as } \mathrm { x } \rightarrow \infty \text {. }  A)    \mathrm { A } ( \mathrm { x } ) \rightarrow 1  as  \mathrm { x } \rightarrow \infty . B)     \mathrm { A } ( \mathrm { x } ) \rightarrow 0  as  \mathrm { x } \rightarrow \infty .  C)    \mathrm { A } ( \mathrm { x } ) \rightarrow 19  as  \mathrm { x } \rightarrow \infty .  D)    \mathrm { A } ( \mathrm { x } ) \rightarrow 14  as  \mathrm { x } \rightarrow \infty .
A(x)14\mathrm { A } ( \mathrm { x } ) \rightarrow 14 as x\mathrm { x } \rightarrow \infty .
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
75
Find a rational function that satisfies the given conditions. Answers may vary, but try to give the simplest answer
possible.
Oblique asymptote y=x+5y = x + 5

A) f(x)=x25x+15xf ( x ) = \frac { x ^ { 2 } - 5 x + 1 } { 5 x }
B) f(x)=x2+5x+1xf ( x ) = \frac { x ^ { 2 } + 5 x + 1 } { x }
C) f(x)=x2+5x+15xf ( x ) = \frac { x ^ { 2 } + 5 x + 1 } { 5 x }
D) f(x)=x25x+1xf ( x ) = \frac { x ^ { 2 } - 5 x + 1 } { x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
76
Classify the polynomial as constant, linear, quadratic, cubic, or quartic, and determine the leading term, the leading
coefficient, and the degree of the polynomial.
g(x)=12x312x+8g ( x ) = \frac { 1 } { 2 } x ^ { 3 } - 12 x + 8

A) Linear; 12x;12;1- 12 x ; - 12 ; 1
B) Quadratic; 12x2;12;2\frac { 1 } { 2 } x ^ { 2 } ; \frac { 1 } { 2 } ; 2
C) Cubic; 12x3;12;3\frac { 1 } { 2 } x ^ { 3 } ; \frac { 1 } { 2 } ; 3
D) Linear; 8;8;18 ; 8 ; 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
77
Given that the polynomial function has the given zero, find the other zeros.
f(x)=x421x2100;2if ( x ) = x ^ { 4 } - 21 x ^ { 2 } - 100 ; - 2 i

A) 2i,5i,5i2 \mathrm { i } , 5 \mathrm { i } , - 5 \mathrm { i }
B) 2i,10,102 \mathrm { i } , 10 , - 10
C) 2i,5,52 \mathrm { i } , 5 , - 5
D) 2i,10i,10i2 \mathrm { i } , 10 \mathrm { i } , - 10 \mathrm { i }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
78
Given that the polynomial function has the given zero, find the other zeros.
f(x)=x364;4f ( x ) = x ^ { 3 } - 64 ; 4

A) 2+3i,23i- 2 + \sqrt { 3 } i , - 2 - \sqrt { 3 } i
B) 2+23i,223i- 2 + 2 \sqrt { 3 } i , - 2 - 2 \sqrt { 3 } i
C) 1+23i,123i- 1 + 2 \sqrt { 3 } i , - 1 - 2 \sqrt { 3 } i
D) 2+43i,243i- 2 + 4 \sqrt { 3 } i , - 2 - 4 \sqrt { 3 } i
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
79
Solve the inequality.
For the function f(x)=x22x35f ( x ) = x ^ { 2 } - 2 x - 35 , solve f(x)0f ( x ) \leq 0 .

A) (,5][7,)( - \infty , - 5 ] \cup [ 7 , \infty )
B) [5,7][ - 5,7 ]
C) (,5]( - \infty , - 5 ]
D) [7,)[ 7 , \infty )
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
80
Use synthetic division to find the function value.
f(x)=x510x4+15x34x300;f ( x ) = x ^ { 5 } - 10 x ^ { 4 } + 15 x ^ { 3 } - 4 x - 300 ; find f(2)f ( 2 )

A) 314- 314
B) 284
C) 318- 318
D) 316- 316
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 94 flashcards in this deck.