Deck 7: Radicals, Radical Functions, and Rational Exponents

Full screen (f)
exit full mode
Question
Find the square root if it is a real number, or state that the expression is not a real number.
100200\sqrt { 100 - 200 }

A) 100- 100
B) 10
C) not a real number
D) 10- 10
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the square root if it is a real number, or state that the expression is not a real number.
64\sqrt { - 64 }

A) 4096
B) 864\frac { 8 } { 64 }
C) 8
D) not a real number
Question
Find the square root if it is a real number, or state that the expression is not a real number.
4\sqrt { 4 }

A) 14\frac { 1 } { 4 }
B) not a real number
C) 16
D) 2
Question
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=4xf ( x ) = \sqrt { 4 - x }

A) domain of f:[4,)f : [ 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )    <div style=padding-top: 35px>
B) domain of f:(,4]\mathrm { f } : ( \infty , 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )    <div style=padding-top: 35px>
C) domain of f:(,4]f : ( * , - 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )    <div style=padding-top: 35px>
D) domain of f:[4,)f : [ - 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )    <div style=padding-top: 35px>
Question
Find the square root if it is a real number, or state that the expression is not a real number.
36- \sqrt { 36 }

A) 18- 18
B) not a real number
C) 6
D) 6- 6
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
Evaluate f(x)=x25f ( x ) = \sqrt { x - 25 } for f(1)f ( 1 )

A) 24- \sqrt { 24 }
B) not a real number
C) 24
D) 4- 4
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate f(x)=2x+5 for f(2)\text { Evaluate } f ( x ) = - \sqrt { 2 x + 5 } \text { for } f ( 2 )

A) -1.73
B) 3
C) not a real number
D) -3
Question
Find the square root if it is a real number, or state that the expression is not a real number.
144+25\sqrt { 144 + 25 }

A) 119\sqrt { 119 }
B) 13
C) 169
D) 17
Question
Find the square root if it is a real number, or state that the expression is not a real number.
49256\sqrt { \frac { 49 } { 256 } }

A) 12\frac { 1 } { 2 }
B) 717\frac { 7 } { 17 }
C) 316\frac { 3 } { 16 }
D) 716\frac { 7 } { 16 }
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
Evaluate g(x)=x5g ( x ) = \sqrt { x - 5 } for g(30)g ( 30 )

A) 5
B) not a real number
C) 3.243.24
D) 5.48 g5.48 \mathrm {~g}
Question
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=x2f ( x ) = \sqrt { x - 2 }

A) domain of f:[2,)\mathrm { f: } [ 2 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]    <div style=padding-top: 35px>
B) domain of f:[2,)f : [ - 2 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]    <div style=padding-top: 35px>
C) domain of f:(,2]f : ( - , - 2 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]    <div style=padding-top: 35px>
D) domain of f:(,2]f : ( * , 2 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]    <div style=padding-top: 35px>
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate t(x)=x+6 for t(2)\text { Evaluate } t ( x ) = - \sqrt { x + 6 } \text { for } t ( - 2 )

A) -1.41
B) 2
C) -2
D) not a real number
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate f(x)=x+34 for f(2)\text { Evaluate } f ( x ) = \sqrt { - x + 34 } \text { for } f ( - 2 )

A) 6
B) 2.45
C) not a real number
D) 5.66
Question
Find the square root if it is a real number, or state that the expression is not a real number.
305\sqrt { 30 - 5 }

A) 25
B) 30+5\sqrt { 30 } + \sqrt { 5 }
C) 5
D) not a real number
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
z(x)=(x+7)2z ( x ) = \sqrt { ( x + 7 ) ^ { 2 } } for z(3)z ( - 3 )

A) 16
B) 4
C) not a real number
D) 58
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
Evaluate m(x)=x2m ( x ) = - \sqrt { x - 2 } for m(27)m ( 27 )

A) m(5)m ( - 5 )
B) 5
C) not a real number
D) 5- 5
Question
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate c(x)=x+6 for c(2)\text { Evaluate } c ( x ) = \sqrt { x + 6 } \text { for } c ( - 2 )

A) 2
B) not a real number
C) -2
D) 1.41
Question
Find the square root if it is a real number, or state that the expression is not a real number.
- 0.49

A) not a real number
B) 0.07
C) -0.7
D) -0.07
Question
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=x+3f ( x ) = \sqrt { x + 3 }

A) domain of f:[3,)f : [ - 3 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]    <div style=padding-top: 35px>
B) domain of f:[3,)f : [ 3 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]    <div style=padding-top: 35px>
C) domain of f:(,3]\mathrm { f } : ( \infty , - 3 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]    <div style=padding-top: 35px>
D) domain of f:(,3]\mathrm { f } : ( \infty , 3 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]    <div style=padding-top: 35px>
Question
Find the square root if it is a real number, or state that the expression is not a real number.
181\sqrt { \frac { 1 } { 81 } }

A) 9
B) 19\frac { 1 } { 9 }
C) 16561\frac { 1 } { 6561 }
D) 81
Question
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=9x36f ( x ) = \sqrt { 9 x - 36 }

A) domain of f:(,4]f : ( * , 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]    <div style=padding-top: 35px>
B) domain of f:[4,)\mathrm { f } : [ - 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]    <div style=padding-top: 35px>
C) domain of f:[4,)f : [ 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]    <div style=padding-top: 35px>
D) domain of f:(x,4]f : ( x , - 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]    <div style=padding-top: 35px>
Question
Find the indicated function value for the function.
Evaluate m(x)=2x23m ( x ) = - \sqrt [ 3 ] { 2 x - 2 } for m(5)m ( 5 )

A) 23\sqrt [ 3 ] { 2 }
B) 2
C) 3
D) 2- 2
Question
Find the cube root.
7293- \sqrt [ 3 ] { 729 }

A) 9
B) 81
C) 729- 729
D) 9- 9
Question
Solve the problem.
The formula v=2.5r\mathrm { v } = \sqrt { 2.5 \mathrm { r } } models the safe maximum speed, v\mathrm { v } , in miles per hour, at which a car can travel on a curved road with radius of curvature, rr , in feet. A highway crew measures the radius of curvature at an exit ramp as 360 feet. What is the maximum safe speed?

A) 30 mph
B) 36 mph
C) 27 mph
D) 35 mph
Question
Find the cube root.
83\sqrt [ 3 ] { - 8 }

A) -2
B) 4
C) ±2
D) not a real number
Question
Simplify the expression.
(x5)2\sqrt { ( x - 5 ) ^ { 2 } }

A) x5| x - 5 |
B) 5x- 5 \sqrt { x }
C) x5x - 5
D) x210x+25x ^ { 2 } - 10 x + 25
Question
Simplify the expression.
x214x+49\sqrt { x ^ { 2 } - 14 x + 49 }
B) x7x - 7
C) (x7)(x+7)| ( x - 7 ) ( x + 7 ) |
D) x7| x - 7 |
Question
Simplify the expression.
(5)2\sqrt { ( - 5 ) ^ { 2 } }
B) 5- \sqrt { 5 }
C) 5
D) 25

A) 5- 5
B) 5- \sqrt { 5 }
C) 5
Question
Find the indicated function value for the function.
 Evaluate f(x)=x+73 for f(118)\text { Evaluate } \mathrm { f } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 7 } \text { for } \mathrm { f } ( 118 )

A) 5
B) 5, -5
C) 12
D) 125
Question
Simplify the expression.
49x8- \sqrt { 49 x ^ { 8 } }

A) 7x4\left| 7 x ^ { 4 } \right|
B) 49x4- \left| 49 x ^ { 4 } \right|
C) 7x8- 7 x ^ { 8 }
D) 7x4- \left| 7 x ^ { 4 } \right|
Question
Find the cube root.
1253\sqrt [ 3 ] { 125 }

A) 11
B) 5
C) 25
D) ±5
Question
Find the indicated function value for the function.
 Evaluate f(x)=x273 for f(0)\text { Evaluate } f ( x ) = \sqrt [ 3 ] { x - 27 } \text { for } f ( 0 )

A) 3
B) not a real number
C) -3
D) 0
Question
Simplify the expression.
x216x+64- \sqrt { x ^ { 2 } - 16 x + 64 }

A) x8- | x - 8 |
B) x+8- x + 8
C) x8| x - 8 |
D) x8- x - 8
Question
Simplify the expression.
52\sqrt { 5 ^ { 2 } }

A) 10\sqrt { 10 }
B) 52\frac { 5 } { 2 }
C) 25
D) 5
Question
Find the cube root.
1643\sqrt [ 3 ] { \frac { 1 } { 64 } }

A) 14\frac { 1 } { 4 }
B) 4
C) 143\frac { 1 } { \sqrt [ 3 ] { 4 } }
D) 116\frac { 1 } { 16 }
Question
Find the indicated function value for the function.
 Evaluate f(x)=x+33 for f(11)\text { Evaluate } f ( x ) = \sqrt [ 3 ] { x + 3 } \text { for } f ( - 11 )

A) 2
B) -8
C) -2
D) not a real number
Question
Solve the problem.
The formula v=20 L\mathrm { v } = \sqrt { 20 \mathrm {~L} } can be used to estimate the speed of a car, v\mathrm { v } , in miles per hour, based on the length, L, in feet, of its skid marks upon sudden braking on a dry asphalt road. If a car is involved in an accident and its skid marks measure 45 feet, at what estimated speed was the car traveling when it applied its brakes just prior to the accident?

A) 25 mph
B) 40 mph
C) 30 mph
D) 35 mph
Question
Solve the problem.
The average height of a boy in the United States, from birth through 60 months, can be modeled by y = 2.9x + 20.1 where y is the average height, in inches, of boys who are x months of age. What would be the expected difference in height between a child 25 months of age and a child 16 months of age?

A) 43.1 in.
B) 14.5 in.
C) 4.9 in.
D) 2.9 in.
Question
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=648xf ( x ) = \sqrt { 64 - 8 x }

A) domain of f:[8,)f : [ 8 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]    <div style=padding-top: 35px>
B) domain of f:[8,)\mathrm { f } : [ - 8 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]    <div style=padding-top: 35px>
C) domain of f:(,8]f : ( \infty , - 8 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]    <div style=padding-top: 35px>
D) domain of f:(,8]\mathrm { f } : ( \infty , 8 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]    <div style=padding-top: 35px>
Question
Simplify the expression.
4x8\sqrt { 4 x ^ { 8 } }

A) 2x82 x ^ { 8 }
B) 4x44 x ^ { 4 }
C) 2x| 2 x |
D) 2x42 x ^ { 4 }
Question
Simplify the expression. Include absolute value bars where necessary.
64x33\sqrt [ 3 ] { - 64 x ^ { 3 } }

A) 4x4 x
B) 4x- | - 4 | x
C) 4x| - 4 | x
D) 4x- 4 x
Question
Find the indicated root, or state that the expression is not a real number.
814\sqrt [ 4 ] { 81 }

A) 9
B) 12
C) 3
D) 3- 3
Question
Find the indicated root, or state that the expression is not a real number.
273\sqrt [ 3 ] { - 27 }

A) 3- 3
B) 3
C) not a real number
D) 33- \sqrt [ 3 ] { 3 }
Question
Simplify the expression. Include absolute value bars where necessary.
8(x3)33\sqrt [ 3 ] { - 8 ( x - 3 ) ^ { 3 } }
B) 2x6- 2 x - 6
C) 8x3- 8 x - 3
D) 2x+6| - 2 x + 6 |
Question
Simplify the expression. Include absolute value bars where necessary.
(4)44\sqrt [ 4 ] { ( - 4 ) ^ { 4 } }
B) 256| - 256 |
C) 4- | - 4 |
D) 4

A) 4- 4
Question
Find the indicated root, or state that the expression is not a real number.
164- \sqrt [ 4 ] { 16 }

A) not a real number
B) 2- 2
C) 4- 4
D) 2
Question
Find the indicated function value for the function.
Evaluate g(x)=2x703g ( x ) = - \sqrt [ 3 ] { - 2 x - 70 } for g(3)g ( - 3 )

A) not a real number
B) 4- 4
C) 43\sqrt [ 3 ] { 4 }
D) 4
Question
Find the indicated root, or state that the expression is not a real number.
16\sqrt [ 6 ] { - 1 }

A) 1
B) 1- 1
C) not a real number
D) 0
Question
Simplify the expression. Include absolute value bars where necessary.
(2)55\sqrt [ 5 ] { ( - 2 ) ^ { 5 } }

A) 2- 2
B) 2| - 2 |
C) 2
D) (2)5( - 2 ) ^ { 5 }
Question
Find the indicated root, or state that the expression is not a real number.
643\sqrt [ 3 ] { 64 }

A) 43\sqrt [ 3 ] { 4 }
B) 12
C) 4
D) 4- 4
Question
Simplify the expression. Include absolute value bars where necessary.
(x+2)66\sqrt [ 6 ] { ( x + 2 ) ^ { 6 } }

A) x+2| x + 2 |
B) x+2| x | + 2
C) ±x+2\pm x + 2
D) x+2x + 2
Question
Find the indicated root, or state that the expression is not a real number.
15\sqrt [ 5 ] { - 1 }

A) 15- \frac { 1 } { 5 }
B) not a real number
C) 1
D) 1- 1
Question
Find the indicated function value for the function.
Evaluate f(x)=64x13f ( x ) = - \sqrt [ 3 ] { 64 x - 1 } for f(0)f ( 0 )

A) not a real number
B) 1
C) 1- 1
D) 3- 3
Question
Find the indicated root, or state that the expression is not a real number.
2564- \sqrt [ 4 ] { - 256 }

A) not a real number
B) 4- 4
C) 16- 16
D) 4
Question
Simplify the expression. Include absolute value bars where necessary.
x88\sqrt [ 8 ] { x ^ { 8 } }

A) x- x
B) xx
C) x| x |
D) x- | x |
Question
Simplify the expression. Include absolute value bars where necessary.
(x+81)44\sqrt [ 4 ] { ( x + 81 ) ^ { 4 } }

A) x+3| x + 3 |
B) x+3x + 3
C) x+81x + 81
D) x+81| x + 81 |
Question
Simplify the expression. Include absolute value bars where necessary.
g77\sqrt [ 7 ] { g ^ { 7 } }

A) g\mathrm { g }
B) g- g
C) g7\sqrt [ 7 ] { \mathrm { g } }
D) g7g ^ { 7 }
Question
Find the indicated root, or state that the expression is not a real number.
2564\sqrt [ 4 ] { - 256 }

A) not a real number
B) -16
C) -4
D) 4
Question
Find the indicated root, or state that the expression is not a real number.
1253- \sqrt [ 3 ] { - 125 }

A) not a real number
B) 5
C) 5- 5
D) 125
Question
Find the indicated root, or state that the expression is not a real number.
83- \sqrt [ 3 ] { 8 }

A) 2- 2
B) 2
C) 23- \sqrt [ 3 ] { 2 }
D) not a real number
Question
Rewrite the expression with a rational exponent.
6\sqrt { 6 }

A) 162\frac { 1 } { 6 ^ { 2 } }
B) 61/26 ^ { 1 / 2 }
C) 626 ^ { 2 }
D) 126\frac { 1 } { 2 } \cdot 6
Question
Use radical notation to rewrite the expression. Simplify, if possible.
(2xy4)1/5\left( 2 x y ^ { 4 } \right) ^ { 1 / 5 }

A) 2xy45\sqrt [ 5 ] { 2 x y ^ { 4 } }
B) 12xy4\frac { 1 } { 2 x y ^ { 4 } }
C) y2x5y \sqrt [ 5 ] { 2 x }
D) 12xy45\frac { 1 } { \sqrt [ 5 ] { 2 x y ^ { 4 } } }
Question
Use radical notation to rewrite the expression. Simplify, if possible.
161/416 ^ { 1 / 4 }

A) 4
B) 12\frac { 1 } { 2 }
C) 2
D) 24- \sqrt [ 4 ] { 2 }
Question
Rewrite the expression with a rational exponent.
9x6y5\sqrt [ 5 ] { 9 x ^ { 6 } y }

A) 15(9x6y)\frac { 1 } { 5 } \cdot \left( 9 x ^ { 6 } y \right)
B) (9x6y)1/5\left( 9 x ^ { 6 } y \right) ^ { 1 / 5 }
C) (9x6y)5\left( 9 x ^ { 6 } y \right) ^ { 5 }
D) 1(9x6y)5\frac { 1 } { \left( 9 x ^ { 6 } y \right) ^ { 5 } }
Question
Use radical notation to rewrite the expression. Simplify, if possible.
(xy)1/5( x y ) ^ { 1 / 5 }

A) xy5\sqrt [ 5 ] { x y }
B) xy55\frac { \sqrt [ 5 ] { x y } } { 5 }
C) 1xy5\frac { 1 } { \sqrt [ 5 ] { x y } }
D) x5y5\sqrt { \mathrm { x } ^ { 5 } \mathrm { y } ^ { 5 } }
Question
Use radical notation to rewrite the expression. Simplify, if possible.
(xy)8/9( x y ) ^ { 8 / 9 }

A) xy89\sqrt [ 9 ] { \mathrm { xy } ^ { 8 } }
B) (xy)89\sqrt [ 9 ] { ( x y ) ^ { 8 } }
C) (xy)89\frac { ( x y ) ^ { 8 } } { 9 }
D) (xy)98\sqrt [ 8 ] { ( x y ) ^ { 9 } }
Question
Rewrite the expression with a rational exponent.
453\sqrt [ 3 ] { 45 }

A) 1345\frac { 1 } { 3 } \cdot 45
B) 45345 ^ { 3 }
C) 1453\frac { 1 } { 45 ^ { 3 } }
D) 451/345 ^ { 1 / 3 }
Question
Use radical notation to rewrite the expression. Simplify, if possible.
(64)4/3( - 64 ) ^ { 4 / 3 }

A) not a real number
В) 256
C) 4096
D) 256- 256
Question
Use radical notation to rewrite the expression. Simplify, if possible.
1254/3125 ^ { 4 / 3 }

A) 78,125
B) 3125
C) 15,625
D) 625
Question
Use radical notation to rewrite the expression. Simplify, if possible.
1441/2144 ^ { 1 / 2 }

A) 72
B) 12
C) 6
D) 16\frac { 1 } { 6 }
Question
Use radical notation to rewrite the expression. Simplify, if possible.
(125)2/3( 125 ) ^ { 2 / 3 }

A) 5
В) 2503\frac { 250 } { 3 }
C) 10
D) 25
Question
Use radical notation to rewrite the expression. Simplify, if possible.
324/532 ^ { 4 / 5 }

A) 512
B) 16
C) 128
D) 256
Question
Use radical notation to rewrite the expression. Simplify, if possible.
6255/4625 ^ { 5 / 4 }

A) 390,625
В) 78,125
C) 3125
D) 1,953,1251,953,125
Question
Use radical notation to rewrite the expression. Simplify, if possible.
161/4- 16 ^ { 1 / 4 }

A) 24- \sqrt [ 4 ] { 2 }
B) 12- \frac { 1 } { 2 }
C) 2- 2
D) 2
Question
Rewrite the expression with a rational exponent.
84\sqrt [ 4 ] { 8 }

A) 848 ^ { 4 }
B) 184\frac { 1 } { 8 ^ { 4 } }
C) 148\frac { 1 } { 4 } \cdot 8
D) 81/48 ^ { 1 / 4 }
Question
Use radical notation to rewrite the expression. Simplify, if possible.
(125)2/3( - 125 ) ^ { 2 / 3 }

A) 25
B) 15- \frac { 1 } { 5 }
C) 5- 5
D) 25- 25
Question
Use radical notation to rewrite the expression. Simplify, if possible.
(27)1/3( - 27 ) ^ { 1 / 3 }

A) 393- 3 \sqrt [ 3 ] { 9 }
B) 3
C) 3- 3
D) 13- \frac { 1 } { 3 }
Question
Rewrite the expression with a rational exponent.
xy27\sqrt [ 7 ] { x y ^ { 2 } }

A) (xy2)7\left( x y ^ { 2 } \right) ^ { 7 }
B) (xy2)1/7\left( x y ^ { 2 } \right) ^ { 1 / 7 }
C) 1(xy2)7\frac { 1 } { \left( x y ^ { 2 } \right) ^ { 7 } }
D) x1/7y2x ^ { 1 / 7 } y ^ { 2 }
Question
Use radical notation to rewrite the expression. Simplify, if possible.
163/4+642/316 ^ { 3 / 4 } + 64 ^ { 2 / 3 }

A) 11313113 \frac { 1 } { 3 }
B) 24
C) 25
D) 542354 \frac { 2 } { 3 }
Question
Rewrite the expression with a rational exponent.
5p3\sqrt [ 3 ] { 5 p }

A) (5p)3( 5 p ) ^ { 3 }
B) 1(5p)3\frac { 1 } { ( 5 p ) ^ { 3 } }
C) 51/3p5 ^ { 1 / 3 } \mathrm { p }
D) (5p)1/3( 5 p ) ^ { 1 / 3 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/98
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Radicals, Radical Functions, and Rational Exponents
1
Find the square root if it is a real number, or state that the expression is not a real number.
100200\sqrt { 100 - 200 }

A) 100- 100
B) 10
C) not a real number
D) 10- 10
C
2
Find the square root if it is a real number, or state that the expression is not a real number.
64\sqrt { - 64 }

A) 4096
B) 864\frac { 8 } { 64 }
C) 8
D) not a real number
D
3
Find the square root if it is a real number, or state that the expression is not a real number.
4\sqrt { 4 }

A) 14\frac { 1 } { 4 }
B) not a real number
C) 16
D) 2
D
4
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=4xf ( x ) = \sqrt { 4 - x }

A) domain of f:[4,)f : [ 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )
B) domain of f:(,4]\mathrm { f } : ( \infty , 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )
C) domain of f:(,4]f : ( * , - 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )
D) domain of f:[4,)f : [ - 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 4 - x }  </strong> A) domain of  f : [ 4 , \infty )    B) domain of  \mathrm { f } : ( \infty , 4 ]    C) domain of  f : ( * , - 4 ]    D) domain of  f : [ - 4 , \infty )
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
5
Find the square root if it is a real number, or state that the expression is not a real number.
36- \sqrt { 36 }

A) 18- 18
B) not a real number
C) 6
D) 6- 6
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
6
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
Evaluate f(x)=x25f ( x ) = \sqrt { x - 25 } for f(1)f ( 1 )

A) 24- \sqrt { 24 }
B) not a real number
C) 24
D) 4- 4
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
7
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate f(x)=2x+5 for f(2)\text { Evaluate } f ( x ) = - \sqrt { 2 x + 5 } \text { for } f ( 2 )

A) -1.73
B) 3
C) not a real number
D) -3
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
8
Find the square root if it is a real number, or state that the expression is not a real number.
144+25\sqrt { 144 + 25 }

A) 119\sqrt { 119 }
B) 13
C) 169
D) 17
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
9
Find the square root if it is a real number, or state that the expression is not a real number.
49256\sqrt { \frac { 49 } { 256 } }

A) 12\frac { 1 } { 2 }
B) 717\frac { 7 } { 17 }
C) 316\frac { 3 } { 16 }
D) 716\frac { 7 } { 16 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
10
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
Evaluate g(x)=x5g ( x ) = \sqrt { x - 5 } for g(30)g ( 30 )

A) 5
B) not a real number
C) 3.243.24
D) 5.48 g5.48 \mathrm {~g}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
11
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=x2f ( x ) = \sqrt { x - 2 }

A) domain of f:[2,)\mathrm { f: } [ 2 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]
B) domain of f:[2,)f : [ - 2 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]
C) domain of f:(,2]f : ( - , - 2 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]
D) domain of f:(,2]f : ( * , 2 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x - 2 } </strong> A) domain of  \mathrm { f: } [ 2 , \infty )    B) domain of  f : [ - 2 , \infty )    C) domain of  f : ( - , - 2 ]    D) domain of  f : ( * , 2 ]
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
12
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate t(x)=x+6 for t(2)\text { Evaluate } t ( x ) = - \sqrt { x + 6 } \text { for } t ( - 2 )

A) -1.41
B) 2
C) -2
D) not a real number
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
13
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate f(x)=x+34 for f(2)\text { Evaluate } f ( x ) = \sqrt { - x + 34 } \text { for } f ( - 2 )

A) 6
B) 2.45
C) not a real number
D) 5.66
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
14
Find the square root if it is a real number, or state that the expression is not a real number.
305\sqrt { 30 - 5 }

A) 25
B) 30+5\sqrt { 30 } + \sqrt { 5 }
C) 5
D) not a real number
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
15
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
z(x)=(x+7)2z ( x ) = \sqrt { ( x + 7 ) ^ { 2 } } for z(3)z ( - 3 )

A) 16
B) 4
C) not a real number
D) 58
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
16
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
Evaluate m(x)=x2m ( x ) = - \sqrt { x - 2 } for m(27)m ( 27 )

A) m(5)m ( - 5 )
B) 5
C) not a real number
D) 5- 5
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
17
Find the function value indicated for the function. If necessary, round to two decimal places. If the function value is not a real number and does not exist, state so.
 Evaluate c(x)=x+6 for c(2)\text { Evaluate } c ( x ) = \sqrt { x + 6 } \text { for } c ( - 2 )

A) 2
B) not a real number
C) -2
D) 1.41
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
18
Find the square root if it is a real number, or state that the expression is not a real number.
- 0.49

A) not a real number
B) 0.07
C) -0.7
D) -0.07
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
19
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=x+3f ( x ) = \sqrt { x + 3 }

A) domain of f:[3,)f : [ - 3 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]
B) domain of f:[3,)f : [ 3 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]
C) domain of f:(,3]\mathrm { f } : ( \infty , - 3 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]
D) domain of f:(,3]\mathrm { f } : ( \infty , 3 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { x + 3 } </strong> A) domain of  f : [ - 3 , \infty )    B) domain of  f : [ 3 , \infty )    C) domain of  \mathrm { f } : ( \infty , - 3 ]    D) domain of  \mathrm { f } : ( \infty , 3 ]
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
20
Find the square root if it is a real number, or state that the expression is not a real number.
181\sqrt { \frac { 1 } { 81 } }

A) 9
B) 19\frac { 1 } { 9 }
C) 16561\frac { 1 } { 6561 }
D) 81
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
21
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=9x36f ( x ) = \sqrt { 9 x - 36 }

A) domain of f:(,4]f : ( * , 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]
B) domain of f:[4,)\mathrm { f } : [ - 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]
C) domain of f:[4,)f : [ 4 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]
D) domain of f:(x,4]f : ( x , - 4 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 9 x - 36 }  </strong> A) domain of  f : ( * , 4 ]    B) domain of  \mathrm { f } : [ - 4 , \infty )    C) domain of  f : [ 4 , \infty )    D) domain of  f : ( x , - 4 ]
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
22
Find the indicated function value for the function.
Evaluate m(x)=2x23m ( x ) = - \sqrt [ 3 ] { 2 x - 2 } for m(5)m ( 5 )

A) 23\sqrt [ 3 ] { 2 }
B) 2
C) 3
D) 2- 2
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
23
Find the cube root.
7293- \sqrt [ 3 ] { 729 }

A) 9
B) 81
C) 729- 729
D) 9- 9
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
24
Solve the problem.
The formula v=2.5r\mathrm { v } = \sqrt { 2.5 \mathrm { r } } models the safe maximum speed, v\mathrm { v } , in miles per hour, at which a car can travel on a curved road with radius of curvature, rr , in feet. A highway crew measures the radius of curvature at an exit ramp as 360 feet. What is the maximum safe speed?

A) 30 mph
B) 36 mph
C) 27 mph
D) 35 mph
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
25
Find the cube root.
83\sqrt [ 3 ] { - 8 }

A) -2
B) 4
C) ±2
D) not a real number
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
26
Simplify the expression.
(x5)2\sqrt { ( x - 5 ) ^ { 2 } }

A) x5| x - 5 |
B) 5x- 5 \sqrt { x }
C) x5x - 5
D) x210x+25x ^ { 2 } - 10 x + 25
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
27
Simplify the expression.
x214x+49\sqrt { x ^ { 2 } - 14 x + 49 }
B) x7x - 7
C) (x7)(x+7)| ( x - 7 ) ( x + 7 ) |
D) x7| x - 7 |
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
28
Simplify the expression.
(5)2\sqrt { ( - 5 ) ^ { 2 } }
B) 5- \sqrt { 5 }
C) 5
D) 25

A) 5- 5
B) 5- \sqrt { 5 }
C) 5
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
29
Find the indicated function value for the function.
 Evaluate f(x)=x+73 for f(118)\text { Evaluate } \mathrm { f } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 7 } \text { for } \mathrm { f } ( 118 )

A) 5
B) 5, -5
C) 12
D) 125
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
30
Simplify the expression.
49x8- \sqrt { 49 x ^ { 8 } }

A) 7x4\left| 7 x ^ { 4 } \right|
B) 49x4- \left| 49 x ^ { 4 } \right|
C) 7x8- 7 x ^ { 8 }
D) 7x4- \left| 7 x ^ { 4 } \right|
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
31
Find the cube root.
1253\sqrt [ 3 ] { 125 }

A) 11
B) 5
C) 25
D) ±5
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
32
Find the indicated function value for the function.
 Evaluate f(x)=x273 for f(0)\text { Evaluate } f ( x ) = \sqrt [ 3 ] { x - 27 } \text { for } f ( 0 )

A) 3
B) not a real number
C) -3
D) 0
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
33
Simplify the expression.
x216x+64- \sqrt { x ^ { 2 } - 16 x + 64 }

A) x8- | x - 8 |
B) x+8- x + 8
C) x8| x - 8 |
D) x8- x - 8
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
34
Simplify the expression.
52\sqrt { 5 ^ { 2 } }

A) 10\sqrt { 10 }
B) 52\frac { 5 } { 2 }
C) 25
D) 5
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
35
Find the cube root.
1643\sqrt [ 3 ] { \frac { 1 } { 64 } }

A) 14\frac { 1 } { 4 }
B) 4
C) 143\frac { 1 } { \sqrt [ 3 ] { 4 } }
D) 116\frac { 1 } { 16 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
36
Find the indicated function value for the function.
 Evaluate f(x)=x+33 for f(11)\text { Evaluate } f ( x ) = \sqrt [ 3 ] { x + 3 } \text { for } f ( - 11 )

A) 2
B) -8
C) -2
D) not a real number
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
37
Solve the problem.
The formula v=20 L\mathrm { v } = \sqrt { 20 \mathrm {~L} } can be used to estimate the speed of a car, v\mathrm { v } , in miles per hour, based on the length, L, in feet, of its skid marks upon sudden braking on a dry asphalt road. If a car is involved in an accident and its skid marks measure 45 feet, at what estimated speed was the car traveling when it applied its brakes just prior to the accident?

A) 25 mph
B) 40 mph
C) 30 mph
D) 35 mph
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
38
Solve the problem.
The average height of a boy in the United States, from birth through 60 months, can be modeled by y = 2.9x + 20.1 where y is the average height, in inches, of boys who are x months of age. What would be the expected difference in height between a child 25 months of age and a child 16 months of age?

A) 43.1 in.
B) 14.5 in.
C) 4.9 in.
D) 2.9 in.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
39
Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
f(x)=648xf ( x ) = \sqrt { 64 - 8 x }

A) domain of f:[8,)f : [ 8 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]
B) domain of f:[8,)\mathrm { f } : [ - 8 , \infty )
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]
C) domain of f:(,8]f : ( \infty , - 8 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]
D) domain of f:(,8]\mathrm { f } : ( \infty , 8 ]
 <strong>Find the domain of the square root function. Then use the domain to choose the correct graph of the function.  f ( x ) = \sqrt { 64 - 8 x } </strong> A) domain of  f : [ 8 , \infty )    B) domain of  \mathrm { f } : [ - 8 , \infty )    C) domain of  f : ( \infty , - 8 ]    D) domain of  \mathrm { f } : ( \infty , 8 ]
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
40
Simplify the expression.
4x8\sqrt { 4 x ^ { 8 } }

A) 2x82 x ^ { 8 }
B) 4x44 x ^ { 4 }
C) 2x| 2 x |
D) 2x42 x ^ { 4 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
41
Simplify the expression. Include absolute value bars where necessary.
64x33\sqrt [ 3 ] { - 64 x ^ { 3 } }

A) 4x4 x
B) 4x- | - 4 | x
C) 4x| - 4 | x
D) 4x- 4 x
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
42
Find the indicated root, or state that the expression is not a real number.
814\sqrt [ 4 ] { 81 }

A) 9
B) 12
C) 3
D) 3- 3
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
43
Find the indicated root, or state that the expression is not a real number.
273\sqrt [ 3 ] { - 27 }

A) 3- 3
B) 3
C) not a real number
D) 33- \sqrt [ 3 ] { 3 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
44
Simplify the expression. Include absolute value bars where necessary.
8(x3)33\sqrt [ 3 ] { - 8 ( x - 3 ) ^ { 3 } }
B) 2x6- 2 x - 6
C) 8x3- 8 x - 3
D) 2x+6| - 2 x + 6 |
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
45
Simplify the expression. Include absolute value bars where necessary.
(4)44\sqrt [ 4 ] { ( - 4 ) ^ { 4 } }
B) 256| - 256 |
C) 4- | - 4 |
D) 4

A) 4- 4
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
46
Find the indicated root, or state that the expression is not a real number.
164- \sqrt [ 4 ] { 16 }

A) not a real number
B) 2- 2
C) 4- 4
D) 2
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
47
Find the indicated function value for the function.
Evaluate g(x)=2x703g ( x ) = - \sqrt [ 3 ] { - 2 x - 70 } for g(3)g ( - 3 )

A) not a real number
B) 4- 4
C) 43\sqrt [ 3 ] { 4 }
D) 4
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
48
Find the indicated root, or state that the expression is not a real number.
16\sqrt [ 6 ] { - 1 }

A) 1
B) 1- 1
C) not a real number
D) 0
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
49
Simplify the expression. Include absolute value bars where necessary.
(2)55\sqrt [ 5 ] { ( - 2 ) ^ { 5 } }

A) 2- 2
B) 2| - 2 |
C) 2
D) (2)5( - 2 ) ^ { 5 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
50
Find the indicated root, or state that the expression is not a real number.
643\sqrt [ 3 ] { 64 }

A) 43\sqrt [ 3 ] { 4 }
B) 12
C) 4
D) 4- 4
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
51
Simplify the expression. Include absolute value bars where necessary.
(x+2)66\sqrt [ 6 ] { ( x + 2 ) ^ { 6 } }

A) x+2| x + 2 |
B) x+2| x | + 2
C) ±x+2\pm x + 2
D) x+2x + 2
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
52
Find the indicated root, or state that the expression is not a real number.
15\sqrt [ 5 ] { - 1 }

A) 15- \frac { 1 } { 5 }
B) not a real number
C) 1
D) 1- 1
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
53
Find the indicated function value for the function.
Evaluate f(x)=64x13f ( x ) = - \sqrt [ 3 ] { 64 x - 1 } for f(0)f ( 0 )

A) not a real number
B) 1
C) 1- 1
D) 3- 3
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
54
Find the indicated root, or state that the expression is not a real number.
2564- \sqrt [ 4 ] { - 256 }

A) not a real number
B) 4- 4
C) 16- 16
D) 4
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
55
Simplify the expression. Include absolute value bars where necessary.
x88\sqrt [ 8 ] { x ^ { 8 } }

A) x- x
B) xx
C) x| x |
D) x- | x |
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
56
Simplify the expression. Include absolute value bars where necessary.
(x+81)44\sqrt [ 4 ] { ( x + 81 ) ^ { 4 } }

A) x+3| x + 3 |
B) x+3x + 3
C) x+81x + 81
D) x+81| x + 81 |
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
57
Simplify the expression. Include absolute value bars where necessary.
g77\sqrt [ 7 ] { g ^ { 7 } }

A) g\mathrm { g }
B) g- g
C) g7\sqrt [ 7 ] { \mathrm { g } }
D) g7g ^ { 7 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
58
Find the indicated root, or state that the expression is not a real number.
2564\sqrt [ 4 ] { - 256 }

A) not a real number
B) -16
C) -4
D) 4
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
59
Find the indicated root, or state that the expression is not a real number.
1253- \sqrt [ 3 ] { - 125 }

A) not a real number
B) 5
C) 5- 5
D) 125
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
60
Find the indicated root, or state that the expression is not a real number.
83- \sqrt [ 3 ] { 8 }

A) 2- 2
B) 2
C) 23- \sqrt [ 3 ] { 2 }
D) not a real number
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
61
Rewrite the expression with a rational exponent.
6\sqrt { 6 }

A) 162\frac { 1 } { 6 ^ { 2 } }
B) 61/26 ^ { 1 / 2 }
C) 626 ^ { 2 }
D) 126\frac { 1 } { 2 } \cdot 6
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
62
Use radical notation to rewrite the expression. Simplify, if possible.
(2xy4)1/5\left( 2 x y ^ { 4 } \right) ^ { 1 / 5 }

A) 2xy45\sqrt [ 5 ] { 2 x y ^ { 4 } }
B) 12xy4\frac { 1 } { 2 x y ^ { 4 } }
C) y2x5y \sqrt [ 5 ] { 2 x }
D) 12xy45\frac { 1 } { \sqrt [ 5 ] { 2 x y ^ { 4 } } }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
63
Use radical notation to rewrite the expression. Simplify, if possible.
161/416 ^ { 1 / 4 }

A) 4
B) 12\frac { 1 } { 2 }
C) 2
D) 24- \sqrt [ 4 ] { 2 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
64
Rewrite the expression with a rational exponent.
9x6y5\sqrt [ 5 ] { 9 x ^ { 6 } y }

A) 15(9x6y)\frac { 1 } { 5 } \cdot \left( 9 x ^ { 6 } y \right)
B) (9x6y)1/5\left( 9 x ^ { 6 } y \right) ^ { 1 / 5 }
C) (9x6y)5\left( 9 x ^ { 6 } y \right) ^ { 5 }
D) 1(9x6y)5\frac { 1 } { \left( 9 x ^ { 6 } y \right) ^ { 5 } }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
65
Use radical notation to rewrite the expression. Simplify, if possible.
(xy)1/5( x y ) ^ { 1 / 5 }

A) xy5\sqrt [ 5 ] { x y }
B) xy55\frac { \sqrt [ 5 ] { x y } } { 5 }
C) 1xy5\frac { 1 } { \sqrt [ 5 ] { x y } }
D) x5y5\sqrt { \mathrm { x } ^ { 5 } \mathrm { y } ^ { 5 } }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
66
Use radical notation to rewrite the expression. Simplify, if possible.
(xy)8/9( x y ) ^ { 8 / 9 }

A) xy89\sqrt [ 9 ] { \mathrm { xy } ^ { 8 } }
B) (xy)89\sqrt [ 9 ] { ( x y ) ^ { 8 } }
C) (xy)89\frac { ( x y ) ^ { 8 } } { 9 }
D) (xy)98\sqrt [ 8 ] { ( x y ) ^ { 9 } }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
67
Rewrite the expression with a rational exponent.
453\sqrt [ 3 ] { 45 }

A) 1345\frac { 1 } { 3 } \cdot 45
B) 45345 ^ { 3 }
C) 1453\frac { 1 } { 45 ^ { 3 } }
D) 451/345 ^ { 1 / 3 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
68
Use radical notation to rewrite the expression. Simplify, if possible.
(64)4/3( - 64 ) ^ { 4 / 3 }

A) not a real number
В) 256
C) 4096
D) 256- 256
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
69
Use radical notation to rewrite the expression. Simplify, if possible.
1254/3125 ^ { 4 / 3 }

A) 78,125
B) 3125
C) 15,625
D) 625
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
70
Use radical notation to rewrite the expression. Simplify, if possible.
1441/2144 ^ { 1 / 2 }

A) 72
B) 12
C) 6
D) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
71
Use radical notation to rewrite the expression. Simplify, if possible.
(125)2/3( 125 ) ^ { 2 / 3 }

A) 5
В) 2503\frac { 250 } { 3 }
C) 10
D) 25
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
72
Use radical notation to rewrite the expression. Simplify, if possible.
324/532 ^ { 4 / 5 }

A) 512
B) 16
C) 128
D) 256
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
73
Use radical notation to rewrite the expression. Simplify, if possible.
6255/4625 ^ { 5 / 4 }

A) 390,625
В) 78,125
C) 3125
D) 1,953,1251,953,125
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
74
Use radical notation to rewrite the expression. Simplify, if possible.
161/4- 16 ^ { 1 / 4 }

A) 24- \sqrt [ 4 ] { 2 }
B) 12- \frac { 1 } { 2 }
C) 2- 2
D) 2
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
75
Rewrite the expression with a rational exponent.
84\sqrt [ 4 ] { 8 }

A) 848 ^ { 4 }
B) 184\frac { 1 } { 8 ^ { 4 } }
C) 148\frac { 1 } { 4 } \cdot 8
D) 81/48 ^ { 1 / 4 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
76
Use radical notation to rewrite the expression. Simplify, if possible.
(125)2/3( - 125 ) ^ { 2 / 3 }

A) 25
B) 15- \frac { 1 } { 5 }
C) 5- 5
D) 25- 25
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
77
Use radical notation to rewrite the expression. Simplify, if possible.
(27)1/3( - 27 ) ^ { 1 / 3 }

A) 393- 3 \sqrt [ 3 ] { 9 }
B) 3
C) 3- 3
D) 13- \frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
78
Rewrite the expression with a rational exponent.
xy27\sqrt [ 7 ] { x y ^ { 2 } }

A) (xy2)7\left( x y ^ { 2 } \right) ^ { 7 }
B) (xy2)1/7\left( x y ^ { 2 } \right) ^ { 1 / 7 }
C) 1(xy2)7\frac { 1 } { \left( x y ^ { 2 } \right) ^ { 7 } }
D) x1/7y2x ^ { 1 / 7 } y ^ { 2 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
79
Use radical notation to rewrite the expression. Simplify, if possible.
163/4+642/316 ^ { 3 / 4 } + 64 ^ { 2 / 3 }

A) 11313113 \frac { 1 } { 3 }
B) 24
C) 25
D) 542354 \frac { 2 } { 3 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
80
Rewrite the expression with a rational exponent.
5p3\sqrt [ 3 ] { 5 p }

A) (5p)3( 5 p ) ^ { 3 }
B) 1(5p)3\frac { 1 } { ( 5 p ) ^ { 3 } }
C) 51/3p5 ^ { 1 / 3 } \mathrm { p }
D) (5p)1/3( 5 p ) ^ { 1 / 3 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 98 flashcards in this deck.