Deck 1: A Review of Basic Algebra

Full screen (f)
exit full mode
Question
Simplify the expression. x4x2x3x\frac { x ^ { 4 } x ^ { 2 } } { x ^ { 3 } x } Write the answer without using negative exponents.Assume that the variable is restricted to those numbers for which the expression is defined. a. x4x ^ { 4 }
b. x3x ^ { 3 }
C. x2\quad x ^ { 2 }
d. x10x ^ { 10 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Factor the expression completely. 4z2+28z+494 z ^ { 2 } + 28 z + 49
a. (2z+7)2\quad ( 2 z + 7 ) ^ { 2 }
b. 7(2z+7)\quad 7 ( 2 z + 7 )
c. (2z+7)(2z7)\quad ( 2 z + 7 ) ( 2 z - 7 )
d. (2z7)2\quad ( 2 z - 7 ) ^ { 2 }
Question
Simplify the expression. 1x7\frac { 1 } { x ^ { - 7 } } Write the answer without using negative exponents.Assume that the variable is restricted to those numbers for which the expression is defined. a. x7x ^ { 7 }
b. 1x8\frac { 1 } { x ^ { 8 } }
c. x8x ^ { 8 }
d. 1x7\frac { 1 } { x ^ { 7 } }
Question
Perform division and write the answer without using negative exponents. 12x6y4z93x9y6z0\frac { - 12 x ^ { 6 } y ^ { 4 } z ^ { 9 } } { 3 x ^ { 9 } y ^ { 6 } z ^ { 0 } }
a. 4z9x3y6\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 6 } }
b. 4z4x3y2\frac { - 4 z ^ { 4 } } { x ^ { 3 } y ^ { 2 } }
c. 4z9x3y2\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
d. 4z9x3y2\frac { - 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
Question
We can often multiply and divide radicals with different indexes.For example: 353=276256=(27)(25)6=6756\sqrt { 3 } \sqrt [ 3 ] { 5 } = \sqrt [ 6 ] { 27 } \sqrt [ 6 ] { 25 } = \sqrt [ 6 ] { ( 27 ) ( 25 ) } = \sqrt [ 6 ] { 675 } Use this idea to write the following expression as a single radical. 246\frac { \sqrt [ 4 ] { 2 } } { \sqrt { 6 } }
a. 7246\frac { \sqrt [ 4 ] { 72 } } { 6 }
b. 7256\frac { \sqrt [ 5 ] { 72 } } { 6 }
c. 7248\frac { \sqrt [ 4 ] { 72 } } { 8 }
d. 7242\frac { \sqrt [ 4 ] { 72 } } { 2 }
Question
Simplify the expression. (x5)4(x3)3\left( x ^ { 5 } \right) ^ { 4 } \left( x ^ { 3 } \right) ^ { 3 }
a. x15x ^ { 15 }
b. x29x ^ { 29 }
c. x6\quad x ^ { 6 }
Question
Perform the operations and simplify. 2a1335b\frac { 2 a } { 13 } \cdot \frac { 3 } { 5 b } Assume that no denominators are 0. a. 32\frac { 3 } { 2 }
b. 13ab5\frac { 13 a } { b 5 }
c. 6a65b\frac { 6 a } { 65 b }
d. 23\frac { 2 } { 3 }
Question
Simplify the radical expression. 86\sqrt [ 6 ] { 8 }
a. 218\sqrt [ 18 ] { 2 }
b. 2002\sqrt [ 2 ] { 200 }
c. 26\quad \sqrt [ 6 ] { 2 }
d. 22\quad \sqrt [ 2 ] { 2 }
e. 82\sqrt [ 2 ] { 8 }
Question
Simplify the expression. (82z4y)1(5y3z3)4(5yz3)1\frac { \left( 8 ^ { - 2 } z ^ { - 4 } y \right) ^ { - 1 } } { \left( 5 y ^ { 3 } z ^ { - 3 } \right) ^ { 4 } \left( 5 y z ^ { - 3 } \right) ^ { - 1 } } Write the answer without using negative exponents.Assume that all variables are restricted to those numbers for which the expression is defined. a. 8z12125y13\frac{8 z^{12}}{125 y^{13}}
b. 64z12125y13\frac{64 z^{12}}{125 y^{13}}
c. 125y1264z13\frac{125 y^{12}}{64 z^{13}}
d. 64z13125y12\quad \frac { 64 z ^ { 13 } } { 125 y ^ { 12 } }
Question
Select the correct representation of the inequality in interval notation. x9x \leq 9
a. [9,)[ 9 , \infty )
b. [,9][ - \infty , 9 ]
c. (9,)\quad ( 9 , \infty )
d. (,9]\quad ( - \infty , 9 ]
e. (,9)\quad ( - \infty , 9 )
Question
Simplify the expression. 163/2- 16 ^ { 3 / 2 }
a. 192- 192
b. 67
c. 64- 64
d. 66- 66
e. 128-128
f. 24- 24
Question
Perform the division and write the answer without using negative exponents. 160x5y796x2y5+32xy4x5y4\frac { 160 x ^ { 5 } y ^ { 7 } - 96 x ^ { 2 } y ^ { 5 } + 32 x y } { 4 x ^ { 5 } y ^ { 4 } }
a. 24y340yx3+32x4y324 y ^ { 3 } - \frac { 40 y } { x ^ { 3 } } + \frac { 32 } { x ^ { 4 } y ^ { 3 } }
b. 40y340yx4+32x4y3\quad 40 y ^ { 3 } - \frac { 40 y } { x ^ { 4 } } + \frac { 32 } { x ^ { 4 } y ^ { 3 } }
c. 24y324yx3+32x4y9\quad 24 y ^ { 3 } - \frac { 24 y } { x ^ { 3 } } + \frac { 32 } { x ^ { 4 } y ^ { 9 } }
d. 40y324yx3+8x4y3\quad 40 y ^ { 3 } - \frac { 24 y } { x ^ { 3 } } + \frac { 8 } { x ^ { 4 } y ^ { 3 } }
Question
Simplify the expression. (14x)0( - 14 x ) ^ { 0 }
Write the answer without using exponents.
a. 14- 14
b. 1- 1
c. 1
d. 14
Question
Multiply the expression as you would multiply polynomials. (x17/2+y7/2)2\left( x ^ { 17 / 2 } + y ^ { 7 / 2 } \right) ^ { 2 }
a. x172x17y7+y7\quad x ^ { 17 } - 2 x ^ { 17 } y ^ { 7 } + y ^ { 7 }
b. x17+x17y7+y7\quad x ^ { 17 } + x ^ { 17 } y ^ { 7 } + y ^ { 7 }
c. x17+y7\quad x ^ { 17 } + y ^ { 7 }
d. x17+2x17/2y7/2+y7\quad x ^ { 17 } + 2 x ^ { 17 / 2 } y ^ { 7 / 2 } + y ^ { 7 }
Question
Simplify the expression.Assume that all variables represent positive numbers, so that no absolute value symbols are needed. 2xy54+y512xy42xy54\sqrt [ 4 ] { 2 x y ^ { 5 } } + y \sqrt [ 4 ] { 512 x y } - \sqrt [ 4 ] { 2 x y ^ { 5 } }
a. 8y3xy\quad 8 y \sqrt { 3 x y }
b. 12y2xy\quad 12 y \sqrt { 2 x y }
c. 4y4xy\quad 4 y \sqrt { 4 x y }
d. 4y2xy\quad 4 y \sqrt { 2 x y }
Question
Rationalize the denominator and simplify. 223\frac { 2 } { \sqrt [ 3 ] { 2 } }
a. 1043\sqrt [ 3 ] { 104 }
b. 73\sqrt [ 3 ] { 7 }
c. 54\sqrt [ 4 ] { 5 }
d. 43\quad \sqrt [ 3 ] { 4 }
e. 46\sqrt [ 6 ] { 4 }
Question
Give the degree of the polynomial. 791\sqrt { 791 }
a. 1/21 / 2
b. 0
c. This is not a polynomial
d. No defined degree
Question
Rationalize the numerator and simplify. 520\frac { \sqrt { 5 } } { 20 }
a. 143\quad \frac { 1 } { 4 \sqrt { 3 } }
b. 145\quad \frac { 1 } { 4 \sqrt { 5 } }
c. 183\quad \frac { 1 } { 8 \sqrt { 3 } }
d. 149\frac { 1 } { 4 \sqrt { 9 } }
e. 155\frac { 1 } { 5 \sqrt { 5 } }
Question
Simplify the expression. (7x5y3z428x6y11z9)3\left( \frac { 7 x ^ { - 5 } y ^ { 3 } z ^ { - 4 } } { 28 x ^ { 6 } y ^ { 11 } z ^ { - 9 } } \right) ^ { 3 } Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined. a. z54x11y8\frac { z ^ { 5 } } { 4 x ^ { 11 } y ^ { 8 } }
b.
z1564x24y33\frac { z ^ { 15 } } { 64 x ^ { 24 } y ^ { 33 } }
c. z1564x33y24\frac { z ^ { 15 } } { 64 x ^ { 33 } y ^ { 24 } }
d. z1564x33y24\frac { z ^ { 15 } } { 64 x ^ { - 33 } y ^ { - 24 } }
e. z54x33y24\frac { z ^ { 5 } } { 4 x ^ { 33 } y ^ { 24 } }
Question
Perform the operation and simplify. 3a2(a+1)+9a(a26)a2(a+6)- 3 a ^ { 2 } ( a + 1 ) + 9 a \left( a ^ { 2 } - 6 \right) - a ^ { 2 } ( a + 6 )
a. 5a39a254a\quad 5 a ^ { 3 } - 9 a ^ { 2 } - 54 a
b. 5a39a254\quad 5 a ^ { 3 } - 9 a ^ { 2 } - 54
c. 5a2+9a454\quad 5 a ^ { 2 } + 9 a ^ { 4 } - 54
d. 0
Question
Simplify the expression. 1x7\frac { 1 } { x ^ { - 7 } }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. x7x ^ { 7 }
b. 1x7\quad \frac { 1 } { x ^ { 7 } }
c. x8x ^ { 8 }
d. 1x8\frac { 1 } { x ^ { 8 } }
Question
Simplify the expression. x6x4x3x\frac { x ^ { 6 } x ^ { 4 } } { x ^ { 3 } x }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
 a. x8 b. x7 c. x14 d. x6\begin{array} { l l } \text { a. } & x ^ { 8 } \\ \text { b. } & x ^ { 7 } \\ \text { c. } & x ^ { 14 } \\ \text { d. } & x ^ { 6 } \end{array}
Question
How many prime numbers are there between -6 and 14 on the number line? a. 19
b. 13
c. 0\quad 0
d. 14
e. 6
f. 5
Question
Simplify the expression. (x3)3(x3)2\left( x ^ { 3 } \right) ^ { 3 } \left( x ^ { 3 } \right) ^ { 2 }
a. x11x ^ { 11 }
b. x1x ^ { - 1 }
c. x10x ^ { 10 }
d. x15x ^ { 15 }
Question
Simplify the expression. (8x4y5z832x4y12z13)3\left( \frac { 8 x ^ { - 4 } y ^ { 5 } z ^ { - 8 } } { 32 x ^ { 4 } y ^ { 12 } z ^ { - 13 } } \right) ^ { 3 }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. z54x8y7\quad \frac { z ^ { 5 } } { 4 x ^ { 8 } y ^ { 7 } }
b. z1564x24y21\quad \frac { z ^ { 15 } } { 64 x ^ { 24 } y ^ { 21 } }
c. z1564x21y24\quad \frac { z ^ { 15 } } { 64 x ^ { 21 } y ^ { 24 } }
d. z1564x24y21\frac { z ^ { 15 } } { 64 x ^ { - 24 } y ^ { - 21 } }
e. z54x24y21\frac { z ^ { 5 } } { 4 x ^ { 24 } y ^ { 21 } }
Question
Simplify the expression. 254/2- 25 ^ { 4 / 2 }
a. 1,250- 1,250
b. 628
c. 1,875- 1,875
d. 625- 625
e. 50\quad - 50
f. 627- 627
Question
Simplify the complex fraction. 4x2y48x3z3y2\frac { \frac { 4 x ^ { 2 } } { y ^ { 4 } } } { \frac { 8 x ^ { 3 } z ^ { 3 } } { y ^ { 2 } } } Assume that the denominators are not 0. a. 12x1y2z3\quad \frac { 1 } { 2 } x ^ { - 1 } y ^ { - 2 } z ^ { - 3 }
b. 12x2y3z3\quad \frac { 1 } { 2 } x ^ { 2 } y ^ { 3 } z ^ { 3 }
c. 12x2y2z3\quad \frac { 1 } { 2 } x ^ { 2 } y ^ { - 2 } z ^ { - 3 }
d. 12x1y4z3\frac { 1 } { 2 } x ^ { - 1 } y ^ { 4 } z ^ { - 3 }
Question
We can often multiply and divide radicals with different indexes.For example: 353=276256=(27)(25)6=6756\sqrt { 3 } \sqrt [ 3 ] { 5 } = \sqrt [ 6 ] { 27 } \sqrt [ 6 ] { 25 } = \sqrt [ 6 ] { ( 27 ) ( 25 ) } = \sqrt [ 6 ] { 675 }
Use this idea to write the following expression as a single radical.
465\frac { \sqrt [ 6 ] { 4 } } { \sqrt { 5 } }
a. 50069\quad \frac { \sqrt [ 6 ] { 500 } } { 9 }
b. 50065\frac { \sqrt [ 6 ] { 500 } } { 5 }
c. 50064\frac { \sqrt [ 6 ] { 500 } } { 4 }
d. 50075\frac { \sqrt [ 7 ] { 500 } } { 5 }
Question
Simplify the expression. (82z5y)1(5y5z1)3(5yz1)2\frac { \left( 8 ^ { - 2 } z ^ { - 5 } y \right) ^ { - 1 } } { \left( 5 y ^ { 5 } z ^ { - 1 } \right) ^ { 3 } \left( 5 y z ^ { - 1 } \right) ^ { - 2 } }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. 64z65y14\quad \frac { 64 z ^ { 6 } } { 5 y ^ { 14 } }
b. 5y1464z6\frac { 5 y ^ { 14 } } { 64 z ^ { 6 } }
c. 64z145y6\quad \frac { 64 z ^ { 14 } } { 5 y ^ { 6 } }
d. 8z55y15\frac { 8 z ^ { 5 } } { 5 y ^ { 15 } }
Question
Simplify each complex fraction. x+16xx+5+6x\frac { x + 1 - \frac { 6 } { x } } { x + 5 + \frac { 6 } { x } }
Assume that no denominators are 0 .
a. x+3x3\frac { x + 3 } { x - 3 }
b. x2x+2\frac { x - 2 } { x + 2 }
c. x+2x2\frac { x + 2 } { x - 2 }
d. x3x+3\frac { x - 3 } { x + 3 }
Question
Simplify the fraction. xy+6x+9y+54x3+729\frac { x y + 6 x + 9 y + 54 } { x ^ { 3 } + 729 } Assume that denominator is not 0 .
a. y6x29x81\frac { y - 6 } { x ^ { 2 } - 9 x - 81 }
b. y+9x29x+81\frac { y + 9 } { x ^ { 2 } - 9 x + 81 }
c. y+6x29x+81\quad \frac { y + 6 } { x ^ { 2 } - 9 x + 81 }
d. y6x29x+81\frac { y - 6 } { x ^ { 2 } - 9 x + 81 }
Question
Simplify the expression.Assume that all variables represent positive numbers, so that no absolute value symbols are needed. 2xy54+y512xy42xy54\sqrt [ 4 ] { 2 x y ^ { 5 } } + y \sqrt [ 4 ] { 512 x y } - \sqrt [ 4 ] { 2 x y ^ { 5 } }
a. 4y4xy\quad 4 y \sqrt { 4 x y }
b. 4y2xy\quad 4 y \sqrt { 2 x y }
c. 12y2xy\quad 12 y \sqrt { 2 x y }
d. 8y3xy\quad 8 y \sqrt { 3 x y }
Question
Rationalize the numerator and simplify. 525\frac { \sqrt { 5 } } { 25 }
a. 1102\quad \frac { 1 } { 10 \sqrt { 2 } }
b. 155\quad \frac { 1 } { 5 \sqrt { 5 } }
c. 152\quad \frac { 1 } { 5 \sqrt { 2 } }
d. 165\quad \frac { 1 } { 6 \sqrt { 5 } }
e. 1510\frac { 1 } { 5 \sqrt { 10 } }
Question
Select the correct representation of the inequality in interval notation. x3x \leq 3
a. (,3)\quad ( - \infty , 3 )
b. (,3]\quad ( - \infty , 3 ]
c. [3,)[ 3 , \infty )
d. [,3]\quad [ - \infty , 3 ]
e. (3,)\quad ( 3 , \infty )
Question
Perform division and write the answer without using negative exponents. 190x6y4z919x9y6z0\frac { - 190 x ^ { 6 } y ^ { 4 } z ^ { 9 } } { 19 x ^ { 9 } y ^ { 6 } z ^ { 0 } }
a. 10z9x3y6\frac { 10 z ^ { 9 } } { x ^ { 3 } y ^ { 6 } }
b. 10z9x3y2\quad \frac { 10 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
c. 10z4x3y2\frac { - 10 z ^ { 4 } } { x ^ { 3 } y ^ { 2 } }
d. 10z9x3y2\frac { - 10 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
Question
Simplify the expression. (13x)0( - 13 x ) ^ { 0 }
Write the answer without using exponents.
a. 1
b. 13
c. 13- 13
d. 1- 1
Question
Simplify the radical expression. 44\sqrt [ 4 ] { 4 }
a. 42\sqrt [ 2 ] { 4 }
b. 22\sqrt [ 2 ] { 2 }
c. 2002\sqrt [ 2 ] { 200 }
d. 24\sqrt [ 4 ] { 2 }
e. 28\sqrt [ 8 ] { 2 }
Question
Perform the division and write the answer without using negative exponents. 100x5y760x2y5+20xy10x5y4\frac { 100 x ^ { 5 } y ^ { 7 } - 60 x ^ { 2 } y ^ { 5 } + 20 x y } { 10 x ^ { 5 } y ^ { 4 } }
a. 6y36yx3+20x4y9\quad 6 y ^ { 3 } - \frac { 6 y } { x ^ { 3 } } + \frac { 20 } { x ^ { 4 } y ^ { 9 } }
b. 10y310yx4+20x4y3\quad 10 y ^ { 3 } - \frac { 10 y } { x ^ { 4 } } + \frac { 20 } { x ^ { 4 } y ^ { 3 } }
c. 10y36yx3+2x4y310 y ^ { 3 } - \frac { 6 y } { x ^ { 3 } } + \frac { 2 } { x ^ { 4 } y ^ { 3 } }
d. 6y310yx3+20x4y36 y ^ { 3 } - \frac { 10 y } { x ^ { 3 } } + \frac { 20 } { x ^ { 4 } y ^ { 3 } }
Question
Rationalize the denominator and simplify. 444\frac { 4 } { \sqrt [ 4 ] { 4 } }
a. 1644\sqrt [ 4 ] { 164 }
b. 655\sqrt [ 5 ] { 65 }
c. 674\sqrt [ 4 ] { 67 }
d. 644\quad \sqrt [ 4 ] { 64 }
e. 648\sqrt [ 8 ] { 64 }
Question
Perform the operations and simplify. 1x4+3x+43x4x216\frac { 1 } { x - 4 } + \frac { 3 } { x + 4 } - \frac { 3 x - 4 } { x ^ { 2 } - 16 }
Assume that no denominators are 0 .
a. 4x+4\frac { 4 } { x + 4 }
b. 1x+16\frac { 1 } { x + 16 }
c. 1x+4\frac { 1 } { x + 4 }
d. 1x4\frac { 1 } { x - 4 }
Question
Simplify the expression. (5x5y5z720x6y10z12)3\left( \frac { 5 x ^ { - 5 } y ^ { 5 } z ^ { - 7 } } { 20 x ^ { 6 } y ^ { 10 } z ^ { - 12 } } \right) ^ { 3 } Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined. a. z54x33y15\frac { z ^ { 5 } } { 4 x ^ { 33 } y ^ { 15 } }
b.
z1564x33y15\frac { z ^ { 15 } } { 64 x ^ { 33 } y ^ { 15 } }
c. z1564x15y33\quad \frac { z ^ { 15 } } { 64 x ^ { 15 } y ^ { 33 } }
d. z54x11y5\frac { z ^ { 5 } } { 4 x ^ { 11 } y ^ { 5 } }
e. z1564x33y15\frac { z ^ { 15 } } { 64 x ^ { - 33 } y ^ { - 15 } }
Question
Perform the operations and simplify. 1x4+3x+43x4x216\frac { 1 } { x - 4 } + \frac { 3 } { x + 4 } - \frac { 3 x - 4 } { x ^ { 2 } - 16 }
Assume that no denominators are 0 .
a. 1x+16\frac { 1 } { x + 16 }
b. 1x+4\frac { 1 } { x + 4 }
c. 1x4\frac { 1 } { x - 4 }
d. 4x+4\frac { 4 } { x + 4 }
Question
Simplify the complex fraction. 3x5y26x2z4y4\frac { \frac { 3 x ^ { 5 } } { y ^ { 2 } } } { \frac { 6 x ^ { 2 } z ^ { 4 } } { y ^ { 4 } } }
Assume that the denominators are not 0 .
a. 12x3y2z4\quad \frac { 1 } { 2 } x ^ { 3 } y ^ { 2 } z ^ { - 4 }
b. 12x4y2z4\frac { 1 } { 2 } x ^ { 4 } y ^ { 2 } z ^ { 4 }
c. 12x5y2z4\quad \frac { 1 } { 2 } x ^ { 5 } y ^ { 2 } z ^ { - 4 }
d. 12x3y2z4\quad \frac { 1 } { 2 } x ^ { 3 } y ^ { 2 } z ^ { - 4 }
Question
Factor the expression completely. 36z2+84z+4936 z ^ { 2 } + 84 z + 49
a. (6z+7)2\quad ( 6 z + 7 ) ^ { 2 }
b. (6z7)2\quad ( 6 z - 7 ) ^ { 2 }
c. (6z+7)(6z7)\quad ( 6 z + 7 ) ( 6 z - 7 )
d. 7(6z+7)\quad 7 ( 6 z + 7 )
Question
Perform the operations and simplify. 23a2112b\frac { 23 a } { 2 } \cdot \frac { 11 } { 2 b }
Assume that no denominators are 0 .
a. 1123\quad \frac { 11 } { 23 }
b. 253a4b\frac { 253 a } { 4 b }
c. 2311\frac { 23 } { 11 }
d. 2ab2\frac { 2 a } { b 2 }
Question
Simplify the expression. (82z5y)2(5y2z5)5(5yz5)1\frac { \left( 8 ^ { - 2 } z ^ { - 5 } y \right) ^ { - 2 } } { \left( 5 y ^ { 2 } z ^ { - 5 } \right) ^ { 5 } \left( 5 y z ^ { - 5 } \right) ^ { - 1 } }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. 512z29625y12\quad \frac { 512 z ^ { 29 } } { 625 y ^ { 12 } }
b. 625y114096z30\quad \frac { 625 y ^ { 11 } } { 4096 z ^ { 30 } }
c. 4096z30625y11\quad \frac { 4096 z ^ { 30 } } { 625 y ^ { 11 } }
d. 4096z11625y30\frac { 4096 z ^ { 11 } } { 625 y ^ { 30 } }
Question
Simplify the expression. 1x8\frac { 1 } { x ^ { - 8 } }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. 1x9\frac { 1 } { x ^ { 9 } }
b. x8x ^ { 8 }
c. x9x ^ { 9 }
d. 1x8\frac { 1 } { x ^ { 8 } }
Question
Perform the operation and simplify. 3a2(a+1)+6a(a24)a2(a+10)- 3 a ^ { 2 } ( a + 1 ) + 6 a \left( a ^ { 2 } - 4 \right) - a ^ { 2 } ( a + 10 )
a. 0
b. 2a313a224\quad 2 a ^ { 3 } - 13 a ^ { 2 } - 24
c. 2a313a224a\quad 2 a ^ { 3 } - 13 a ^ { 2 } - 24 a
d. 2a2+13a424\quad 2 a ^ { 2 } + 13 a ^ { 4 } - 24
Question
Simplify each complex fraction. x+16xx+5+6x\frac { x + 1 - \frac { 6 } { x } } { x + 5 + \frac { 6 } { x } }
Assume that no denominators are 0 .
a. x2x+2\frac { x - 2 } { x + 2 }
b. x+2x2\frac { x + 2 } { x - 2 }
c. x3x+3\frac { x - 3 } { x + 3 }
d. x+3x3\frac { x + 3 } { x - 3 }
Question
Simplify the radical expression. 494\sqrt [ 4 ] { 49 }
a. 78\sqrt [ 8 ] { 7 }
b. 7002\sqrt [ 2 ] { 700 }
c. 492\sqrt [ 2 ] { 49 }
d. 74\sqrt [ 4 ] { 7 }
e. 72\sqrt [ 2 ] { 7 }
Question
Give the degree of the polynomial. 576\sqrt { 576 }
a. 0
b. No defined degree
c. 1/21 / 2
d. This is not a polynomial
Question
Simplify the fraction. xy+6x+4y+24x3+64\frac { x y + 6 x + 4 y + 24 } { x ^ { 3 } + 64 }
Assume that denominator is not 0 .
a. y6x24x16\frac { y - 6 } { x ^ { 2 } - 4 x - 16 }
b. y+6x24x+16\frac { y + 6 } { x ^ { 2 } - 4 x + 16 }
c. y6x24x+16\frac { y - 6 } { x ^ { 2 } - 4 x + 16 }
d. y+4x24x+16\frac { y + 4 } { x ^ { 2 } - 4 x + 16 }
Question
Simplify the expression. x7x4x4x\frac { x ^ { 7 } x ^ { 4 } } { x ^ { 4 } x }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
 a. x16 b. x6 c. x7 d. x8\begin{array} { l l } \text { a. } & x ^ { 16 } \\ \text { b. } & x ^ { 6 } \\ \text { c. } & x ^ { 7 } \\ \text { d. } & x ^ { 8 } \end{array}
Question
How many prime numbers are there between -5 and 20 on the number line? a. 0
b. 4
c. 19
d. 24
e. 20
f. 8
Question
We can often multiply and divide radicals with different indexes.For example: 353=276256=(27)(25)6=6756\sqrt { 3 } \sqrt [ 3 ] { 5 } = \sqrt [ 6 ] { 27 } \sqrt [ 6 ] { 25 } = \sqrt [ 6 ] { ( 27 ) ( 25 ) } = \sqrt [ 6 ] { 675 } Use this idea to write the following expression as a single radical. 467\frac { \sqrt [ 6 ] { 4 } } { \sqrt { 7 } }
a.
b. 137277\frac { \sqrt [ 7 ] { 1372 } } { 7 }
c. 137264\frac { \sqrt [ 6 ] { 1372 } } { 4 }
d. 137267\quad \frac { \sqrt [ 6 ] { 1372 } } { 7 }
Question
Simplify the expression. (4x)0( - 4 x ) ^ { 0 }
Write the answer without using exponents.
a. 1
b. 4
 c. 4 d. 1\begin{array} { l l } \text { c. } & - 4 \\ \text { d. } & - 1 \end{array}
Question
Rationalize the numerator and simplify. 28\frac { \sqrt { 2 } } { 8 }
a. 185\quad \frac { 1 } { 8 \sqrt { 5 } }
b. 142\frac { 1 } { 4 \sqrt { 2 } }
c. 146\frac { 1 } { 4 \sqrt { 6 } }
d. 152\quad \frac { 1 } { 5 \sqrt { 2 } }
e. 145\frac { 1 } { 4 \sqrt { 5 } }
Question
Multiply the expression as you would multiply polynomials. (x7/2+y9/2)2\left( x ^ { 7 / 2 } + y ^ { 9 / 2 } \right) ^ { 2 }
a. x7+2x7/2y9/2+y9\quad x ^ { 7 } + 2 x ^ { 7 / 2 } y ^ { 9 / 2 } + y ^ { 9 }
b. x72x7y9+y9\quad x ^ { 7 } - 2 x ^ { 7 } y ^ { 9 } + y ^ { 9 }
c. x7+x7y9+y9\quad x ^ { 7 } + x ^ { 7 } y ^ { 9 } + y ^ { 9 }
d. x7+y9\quad x ^ { 7 } + y ^ { 9 }
Question
Simplify the expression. (x6)4(x2)2\left( x ^ { 6 } \right) ^ { 4 } \left( x ^ { 2 } \right) ^ { 2 }
a. x8x ^ { - 8 }
b. x6x ^ { 6 }
c. x14x ^ { 14 }
d. x28x ^ { 28 }
Question
Select the correct representation of the inequality in interval notation. x7x \leq 7
a. [,7]\quad [ - \infty , 7 ]
b. (7,)\quad ( 7 , \infty )
c. [7,)[ 7 , \infty )
d. (,7)\quad ( - \infty , 7 )
e. (,7]\quad ( - \infty , 7 ]
Question
Simplify the expression. 84/3- 8 ^ { 4 / 3 }
a. 10.6667- 10.6667
b. 19
c. 32- 32
d. 48- 48
e. 18- 18
f. 16- 16
Question
Perform the operations and simplify. 1x6+3x+63x6x236\frac { 1 } { x - 6 } + \frac { 3 } { x + 6 } - \frac { 3 x - 6 } { x ^ { 2 } - 36 }
Assume that no denominators are 0 .
a. 1x6\frac { 1 } { x - 6 }
b. 1x+36\frac { 1 } { x + 36 }
c. 1x+6\frac { 1 } { x + 6 }
d. 6x+6\frac { 6 } { x + 6 }
Question
Give the degree of the polynomial. 127\sqrt { 127 }
a. 1/21 / 2
b. No defined degree
c. This is not a polynomial
d. 0
Question
Identify the correct union of intervals for the inequality. x16x \leq - 16 or x>5x > 5
a. (,16](5,)\quad ( - \infty , - 16 ] \cup ( 5 , \infty )
b. (,16)[5,)\quad ( - \infty , - 16 ) \cup [ 5 , \infty )
c. (,16)(5,)\quad ( - \infty , - 16 ) \cup ( 5 , \infty )
d. (,16](5,]\quad ( - \infty , - 16 ] \cup ( 5 , \infty ]
e. (,16][5,)\quad ( - \infty , - 16 ] \cup [ 5 , \infty )
Question
How many natural numbers are there between -16.5 and 6.5 on the number line? a. 0\quad 0
b. 7
c. 12
d. 6
e. 23
Question
Simplify each complex fraction. x+263xx+16+63x\frac { x + 2 - \frac { 63 } { x } } { x + 16 + \frac { 63 } { x } } Assume that no denominators are 0 .
a. x+9x9\frac { x + 9 } { x - 9 }
b. x7x+7\frac { x - 7 } { x + 7 }
c. x+7x7\frac { x + 7 } { x - 7 }
d. x9x+9\frac { x - 9 } { x + 9 }
Question
Perform the operations and simplify. 5a327b\frac { 5 a } { 3 } \cdot \frac { 2 } { 7 b }
Assume that no denominators are 0 .
a. 3ab7\frac { 3 a } { b 7 }
b. 52\frac { 5 } { 2 }
c. 25\frac { 2 } { 5 }
d. 10a21b\frac { 10 a } { 21 b }
Question
Rationalize the denominator and simplify. 335\frac { 3 } { \sqrt [ 5 ] { 3 } }
a. 826\sqrt [ 6 ] { 82 }
b. 1815\sqrt [ 5 ] { 181 }
c. 845\quad \sqrt [ 5 ] { 84 }
d. 8110\sqrt [ 10 ] { 81 }
e. 815\sqrt [ 5 ] { 81 }
Question
Write the expression without using absolute value symbols. x+4x11| x + 4 | - | x - 11 | \quad for x<8\quad x < - 8
x+4x11=ــــــــــــ| x + 4 | - | x - 11 | =ــــــــــــ for x<8x < - 8
a. 15
b. 2x152 x - 15
c. 7
d. 152x15 - 2 x
e. 15- 15
Question
Perform division and write the answer without using negative exponents. 56x6y4z914x9y6z0\frac { - 56 x ^ { 6 } y ^ { 4 } z ^ { 9 } } { 14 x ^ { 9 } y ^ { 6 } z ^ { 0 } }
a. 4z4x3y2\frac { - 4 z ^ { 4 } } { x ^ { 3 } y ^ { 2 } }
b. 4z9x3y2\frac { - 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
c. 4z9x3y6\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 6 } }
d. 4z9x3y2\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
Question
Simplify the complex fraction. 2x2y34x4z3y5\frac { \frac { 2 x ^ { 2 } } { y ^ { 3 } } } { \frac { 4 x ^ { 4 } z ^ { 3 } } { y ^ { 5 } } } Assume that the denominators are not 0. a. 12x2y2z3\quad \frac { 1 } { 2 } x ^ { 2 } y ^ { 2 } z ^ { - 3 }
b. 12x2y3z3\quad \frac { 1 } { 2 } x ^ { - 2 } y ^ { 3 } z ^ { - 3 }
c. 12x2y2z3\quad \frac { 1 } { 2 } x ^ { - 2 } y ^ { 2 } z ^ { - 3 }
d. 12x5y4z3\frac { 1 } { 2 } x ^ { 5 } y ^ { 4 } z ^ { 3 }
Question
Simplify the expression.Assume that all variables represent positive numbers, so that no absolute value symbols are needed. 2xy54+y512xy42xy54\sqrt [ 4 ] { 2 x y ^ { 5 } } + y \sqrt [ 4 ] { 512 x y } - \sqrt [ 4 ] { 2 x y ^ { 5 } }
a. 12y2xy\quad 12 y \sqrt { 2 x y }
b. 8y3xy\quad 8 y \sqrt { 3 x y }
c. 4y2xy\quad 4 y \sqrt { 2 x y }
d. 4y4xy\quad 4 y \sqrt { 4 x y }
Question
Perform the operation and simplify. 3a2(a+1)+7a(a24)a2(a+9)- 3 a ^ { 2 } ( a + 1 ) + 7 a \left( a ^ { 2 } - 4 \right) - a ^ { 2 } ( a + 9 )
a. 3a2+12a428\quad 3 a ^ { 2 } + 12 a ^ { 4 } - 28
b. 3a312a228\quad 3 a ^ { 3 } - 12 a ^ { 2 } - 28
c. 0
d. 3a312a228a\quad 3 a ^ { 3 } - 12 a ^ { 2 } - 28 a
Question
Factor the expression completely. 9z2+42z+499 z ^ { 2 } + 42 z + 49
a. (3z7)2\quad ( 3 z - 7 ) ^ { 2 }
b. (3z+7)(3z7)\quad ( 3 z + 7 ) ( 3 z - 7 )
c. 7(3z+7)\quad 7 ( 3 z + 7 )
d. (3z+7)2\quad ( 3 z + 7 ) ^ { 2 }
Question
Simplify the fraction. xy+6x+8y+48x3+512\frac { x y + 6 x + 8 y + 48 } { x ^ { 3 } + 512 }
Assume that denominator is not 0 .
a. y6x28x+64\frac { y - 6 } { x ^ { 2 } - 8 x + 64 }
b. y+8x28x+64\frac { y + 8 } { x ^ { 2 } - 8 x + 64 }
c. y6x28x64\frac { y - 6 } { x ^ { 2 } - 8 x - 64 }
d. y+6x28x+64\frac { y + 6 } { x ^ { 2 } - 8 x + 64 }
Question
Simplify the expression. (a5b3)4\left( \frac { a ^ { - 5 } } { b ^ { - 3 } } \right) ^ { - 4 }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. a12b20\quad \frac { a ^ { 12 } } { b ^ { 20 } }
b. a20b12\quad \frac { a ^ { 20 } } { b ^ { 12 } }
c. b12a20\quad \frac { b ^ { 12 } } { a ^ { 20 } }
d. b20a12\quad \frac { b ^ { 20 } } { a ^ { 12 } }
Question
Simplify the expression. (r5r1r3r3)2\left( \frac { r ^ { 5 } r ^ { - 1 } } { r ^ { 3 } r ^ { - 3 } } \right) ^ { 2 }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. r2r ^ { 2 }
b. r8\quad r ^ { 8 }
c. r0\quad r ^ { 0 }
d. r12\quad r ^ { 12 }
Question
Multiply the expression as you would multiply polynomials. (x11/2+y15/2)2\left( x ^ { 11 / 2 } + y ^ { 15 / 2 } \right) ^ { 2 }
a. x11+2x11/2y15/2+y15\quad x ^ { 11 } + 2 x ^ { 11 / 2 } y ^ { 15 / 2 } + y ^ { 15 }
b. x11+x11y15+y15\quad x ^ { 11 } + x ^ { 11 } y ^ { 15 } + y ^ { 15 }
c. x112x11y15+y15\quad x ^ { 11 } - 2 x ^ { 11 } y ^ { 15 } + y ^ { 15 }
d. x11+y15\quad x ^ { 11 } + y ^ { 15 }
Question
Calculate the volume of a box that has dimensions of 6,000 by 8,600 by 4,800 millimeters. a. 2.4768×1010 mm3\quad 2.4768 \times 10 ^ { 10 } \mathrm {~mm} ^ { 3 }
b. 2.4768×1011 mm3\quad 2.4768 \times 10 ^ { 11 } \mathrm {~mm} ^ { 3 }
c. 1.9975×1010 mm3\quad 1.9975 \times 10 ^ { 10 } \mathrm {~mm} ^ { 3 }
d. 1.9975×1011 mm3\quad 1.9975 \times 10 ^ { 11 } \mathrm {~mm} ^ { 3 }
Question
Perform the division and write the answer without using negative exponents. 400x5y7240x2y5+80xy16x5y4\frac { 400 x ^ { 5 } y ^ { 7 } - 240 x ^ { 2 } y ^ { 5 } + 80 x y } { 16 x ^ { 5 } y ^ { 4 } }
a. 25y315yx3+5x4y325 y ^ { 3 } - \frac { 15 y } { x ^ { 3 } } + \frac { 5 } { x ^ { 4 } y ^ { 3 } }
b. 15y315yx3+80x4y9\quad 15 y ^ { 3 } - \frac { 15 y } { x ^ { 3 } } + \frac { 80 } { x ^ { 4 } y ^ { 9 } }
c. 15y325yx3+80x4y315 y ^ { 3 } - \frac { 25 y } { x ^ { 3 } } + \frac { 80 } { x ^ { 4 } y ^ { 3 } }
d. 25y325yx4+80x4y3\quad 25 y ^ { 3 } - \frac { 25 y } { x ^ { 4 } } + \frac { 80 } { x ^ { 4 } y ^ { 3 } }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/149
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: A Review of Basic Algebra
1
Simplify the expression. x4x2x3x\frac { x ^ { 4 } x ^ { 2 } } { x ^ { 3 } x } Write the answer without using negative exponents.Assume that the variable is restricted to those numbers for which the expression is defined. a. x4x ^ { 4 }
b. x3x ^ { 3 }
C. x2\quad x ^ { 2 }
d. x10x ^ { 10 }
C
2
Factor the expression completely. 4z2+28z+494 z ^ { 2 } + 28 z + 49
a. (2z+7)2\quad ( 2 z + 7 ) ^ { 2 }
b. 7(2z+7)\quad 7 ( 2 z + 7 )
c. (2z+7)(2z7)\quad ( 2 z + 7 ) ( 2 z - 7 )
d. (2z7)2\quad ( 2 z - 7 ) ^ { 2 }
A
3
Simplify the expression. 1x7\frac { 1 } { x ^ { - 7 } } Write the answer without using negative exponents.Assume that the variable is restricted to those numbers for which the expression is defined. a. x7x ^ { 7 }
b. 1x8\frac { 1 } { x ^ { 8 } }
c. x8x ^ { 8 }
d. 1x7\frac { 1 } { x ^ { 7 } }
A
4
Perform division and write the answer without using negative exponents. 12x6y4z93x9y6z0\frac { - 12 x ^ { 6 } y ^ { 4 } z ^ { 9 } } { 3 x ^ { 9 } y ^ { 6 } z ^ { 0 } }
a. 4z9x3y6\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 6 } }
b. 4z4x3y2\frac { - 4 z ^ { 4 } } { x ^ { 3 } y ^ { 2 } }
c. 4z9x3y2\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
d. 4z9x3y2\frac { - 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
5
We can often multiply and divide radicals with different indexes.For example: 353=276256=(27)(25)6=6756\sqrt { 3 } \sqrt [ 3 ] { 5 } = \sqrt [ 6 ] { 27 } \sqrt [ 6 ] { 25 } = \sqrt [ 6 ] { ( 27 ) ( 25 ) } = \sqrt [ 6 ] { 675 } Use this idea to write the following expression as a single radical. 246\frac { \sqrt [ 4 ] { 2 } } { \sqrt { 6 } }
a. 7246\frac { \sqrt [ 4 ] { 72 } } { 6 }
b. 7256\frac { \sqrt [ 5 ] { 72 } } { 6 }
c. 7248\frac { \sqrt [ 4 ] { 72 } } { 8 }
d. 7242\frac { \sqrt [ 4 ] { 72 } } { 2 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
6
Simplify the expression. (x5)4(x3)3\left( x ^ { 5 } \right) ^ { 4 } \left( x ^ { 3 } \right) ^ { 3 }
a. x15x ^ { 15 }
b. x29x ^ { 29 }
c. x6\quad x ^ { 6 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
7
Perform the operations and simplify. 2a1335b\frac { 2 a } { 13 } \cdot \frac { 3 } { 5 b } Assume that no denominators are 0. a. 32\frac { 3 } { 2 }
b. 13ab5\frac { 13 a } { b 5 }
c. 6a65b\frac { 6 a } { 65 b }
d. 23\frac { 2 } { 3 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
8
Simplify the radical expression. 86\sqrt [ 6 ] { 8 }
a. 218\sqrt [ 18 ] { 2 }
b. 2002\sqrt [ 2 ] { 200 }
c. 26\quad \sqrt [ 6 ] { 2 }
d. 22\quad \sqrt [ 2 ] { 2 }
e. 82\sqrt [ 2 ] { 8 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
9
Simplify the expression. (82z4y)1(5y3z3)4(5yz3)1\frac { \left( 8 ^ { - 2 } z ^ { - 4 } y \right) ^ { - 1 } } { \left( 5 y ^ { 3 } z ^ { - 3 } \right) ^ { 4 } \left( 5 y z ^ { - 3 } \right) ^ { - 1 } } Write the answer without using negative exponents.Assume that all variables are restricted to those numbers for which the expression is defined. a. 8z12125y13\frac{8 z^{12}}{125 y^{13}}
b. 64z12125y13\frac{64 z^{12}}{125 y^{13}}
c. 125y1264z13\frac{125 y^{12}}{64 z^{13}}
d. 64z13125y12\quad \frac { 64 z ^ { 13 } } { 125 y ^ { 12 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
10
Select the correct representation of the inequality in interval notation. x9x \leq 9
a. [9,)[ 9 , \infty )
b. [,9][ - \infty , 9 ]
c. (9,)\quad ( 9 , \infty )
d. (,9]\quad ( - \infty , 9 ]
e. (,9)\quad ( - \infty , 9 )
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
11
Simplify the expression. 163/2- 16 ^ { 3 / 2 }
a. 192- 192
b. 67
c. 64- 64
d. 66- 66
e. 128-128
f. 24- 24
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
12
Perform the division and write the answer without using negative exponents. 160x5y796x2y5+32xy4x5y4\frac { 160 x ^ { 5 } y ^ { 7 } - 96 x ^ { 2 } y ^ { 5 } + 32 x y } { 4 x ^ { 5 } y ^ { 4 } }
a. 24y340yx3+32x4y324 y ^ { 3 } - \frac { 40 y } { x ^ { 3 } } + \frac { 32 } { x ^ { 4 } y ^ { 3 } }
b. 40y340yx4+32x4y3\quad 40 y ^ { 3 } - \frac { 40 y } { x ^ { 4 } } + \frac { 32 } { x ^ { 4 } y ^ { 3 } }
c. 24y324yx3+32x4y9\quad 24 y ^ { 3 } - \frac { 24 y } { x ^ { 3 } } + \frac { 32 } { x ^ { 4 } y ^ { 9 } }
d. 40y324yx3+8x4y3\quad 40 y ^ { 3 } - \frac { 24 y } { x ^ { 3 } } + \frac { 8 } { x ^ { 4 } y ^ { 3 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
13
Simplify the expression. (14x)0( - 14 x ) ^ { 0 }
Write the answer without using exponents.
a. 14- 14
b. 1- 1
c. 1
d. 14
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
14
Multiply the expression as you would multiply polynomials. (x17/2+y7/2)2\left( x ^ { 17 / 2 } + y ^ { 7 / 2 } \right) ^ { 2 }
a. x172x17y7+y7\quad x ^ { 17 } - 2 x ^ { 17 } y ^ { 7 } + y ^ { 7 }
b. x17+x17y7+y7\quad x ^ { 17 } + x ^ { 17 } y ^ { 7 } + y ^ { 7 }
c. x17+y7\quad x ^ { 17 } + y ^ { 7 }
d. x17+2x17/2y7/2+y7\quad x ^ { 17 } + 2 x ^ { 17 / 2 } y ^ { 7 / 2 } + y ^ { 7 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
15
Simplify the expression.Assume that all variables represent positive numbers, so that no absolute value symbols are needed. 2xy54+y512xy42xy54\sqrt [ 4 ] { 2 x y ^ { 5 } } + y \sqrt [ 4 ] { 512 x y } - \sqrt [ 4 ] { 2 x y ^ { 5 } }
a. 8y3xy\quad 8 y \sqrt { 3 x y }
b. 12y2xy\quad 12 y \sqrt { 2 x y }
c. 4y4xy\quad 4 y \sqrt { 4 x y }
d. 4y2xy\quad 4 y \sqrt { 2 x y }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
16
Rationalize the denominator and simplify. 223\frac { 2 } { \sqrt [ 3 ] { 2 } }
a. 1043\sqrt [ 3 ] { 104 }
b. 73\sqrt [ 3 ] { 7 }
c. 54\sqrt [ 4 ] { 5 }
d. 43\quad \sqrt [ 3 ] { 4 }
e. 46\sqrt [ 6 ] { 4 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
17
Give the degree of the polynomial. 791\sqrt { 791 }
a. 1/21 / 2
b. 0
c. This is not a polynomial
d. No defined degree
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
18
Rationalize the numerator and simplify. 520\frac { \sqrt { 5 } } { 20 }
a. 143\quad \frac { 1 } { 4 \sqrt { 3 } }
b. 145\quad \frac { 1 } { 4 \sqrt { 5 } }
c. 183\quad \frac { 1 } { 8 \sqrt { 3 } }
d. 149\frac { 1 } { 4 \sqrt { 9 } }
e. 155\frac { 1 } { 5 \sqrt { 5 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
19
Simplify the expression. (7x5y3z428x6y11z9)3\left( \frac { 7 x ^ { - 5 } y ^ { 3 } z ^ { - 4 } } { 28 x ^ { 6 } y ^ { 11 } z ^ { - 9 } } \right) ^ { 3 } Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined. a. z54x11y8\frac { z ^ { 5 } } { 4 x ^ { 11 } y ^ { 8 } }
b.
z1564x24y33\frac { z ^ { 15 } } { 64 x ^ { 24 } y ^ { 33 } }
c. z1564x33y24\frac { z ^ { 15 } } { 64 x ^ { 33 } y ^ { 24 } }
d. z1564x33y24\frac { z ^ { 15 } } { 64 x ^ { - 33 } y ^ { - 24 } }
e. z54x33y24\frac { z ^ { 5 } } { 4 x ^ { 33 } y ^ { 24 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
20
Perform the operation and simplify. 3a2(a+1)+9a(a26)a2(a+6)- 3 a ^ { 2 } ( a + 1 ) + 9 a \left( a ^ { 2 } - 6 \right) - a ^ { 2 } ( a + 6 )
a. 5a39a254a\quad 5 a ^ { 3 } - 9 a ^ { 2 } - 54 a
b. 5a39a254\quad 5 a ^ { 3 } - 9 a ^ { 2 } - 54
c. 5a2+9a454\quad 5 a ^ { 2 } + 9 a ^ { 4 } - 54
d. 0
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
21
Simplify the expression. 1x7\frac { 1 } { x ^ { - 7 } }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. x7x ^ { 7 }
b. 1x7\quad \frac { 1 } { x ^ { 7 } }
c. x8x ^ { 8 }
d. 1x8\frac { 1 } { x ^ { 8 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
22
Simplify the expression. x6x4x3x\frac { x ^ { 6 } x ^ { 4 } } { x ^ { 3 } x }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
 a. x8 b. x7 c. x14 d. x6\begin{array} { l l } \text { a. } & x ^ { 8 } \\ \text { b. } & x ^ { 7 } \\ \text { c. } & x ^ { 14 } \\ \text { d. } & x ^ { 6 } \end{array}
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
23
How many prime numbers are there between -6 and 14 on the number line? a. 19
b. 13
c. 0\quad 0
d. 14
e. 6
f. 5
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
24
Simplify the expression. (x3)3(x3)2\left( x ^ { 3 } \right) ^ { 3 } \left( x ^ { 3 } \right) ^ { 2 }
a. x11x ^ { 11 }
b. x1x ^ { - 1 }
c. x10x ^ { 10 }
d. x15x ^ { 15 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
25
Simplify the expression. (8x4y5z832x4y12z13)3\left( \frac { 8 x ^ { - 4 } y ^ { 5 } z ^ { - 8 } } { 32 x ^ { 4 } y ^ { 12 } z ^ { - 13 } } \right) ^ { 3 }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. z54x8y7\quad \frac { z ^ { 5 } } { 4 x ^ { 8 } y ^ { 7 } }
b. z1564x24y21\quad \frac { z ^ { 15 } } { 64 x ^ { 24 } y ^ { 21 } }
c. z1564x21y24\quad \frac { z ^ { 15 } } { 64 x ^ { 21 } y ^ { 24 } }
d. z1564x24y21\frac { z ^ { 15 } } { 64 x ^ { - 24 } y ^ { - 21 } }
e. z54x24y21\frac { z ^ { 5 } } { 4 x ^ { 24 } y ^ { 21 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
26
Simplify the expression. 254/2- 25 ^ { 4 / 2 }
a. 1,250- 1,250
b. 628
c. 1,875- 1,875
d. 625- 625
e. 50\quad - 50
f. 627- 627
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
27
Simplify the complex fraction. 4x2y48x3z3y2\frac { \frac { 4 x ^ { 2 } } { y ^ { 4 } } } { \frac { 8 x ^ { 3 } z ^ { 3 } } { y ^ { 2 } } } Assume that the denominators are not 0. a. 12x1y2z3\quad \frac { 1 } { 2 } x ^ { - 1 } y ^ { - 2 } z ^ { - 3 }
b. 12x2y3z3\quad \frac { 1 } { 2 } x ^ { 2 } y ^ { 3 } z ^ { 3 }
c. 12x2y2z3\quad \frac { 1 } { 2 } x ^ { 2 } y ^ { - 2 } z ^ { - 3 }
d. 12x1y4z3\frac { 1 } { 2 } x ^ { - 1 } y ^ { 4 } z ^ { - 3 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
28
We can often multiply and divide radicals with different indexes.For example: 353=276256=(27)(25)6=6756\sqrt { 3 } \sqrt [ 3 ] { 5 } = \sqrt [ 6 ] { 27 } \sqrt [ 6 ] { 25 } = \sqrt [ 6 ] { ( 27 ) ( 25 ) } = \sqrt [ 6 ] { 675 }
Use this idea to write the following expression as a single radical.
465\frac { \sqrt [ 6 ] { 4 } } { \sqrt { 5 } }
a. 50069\quad \frac { \sqrt [ 6 ] { 500 } } { 9 }
b. 50065\frac { \sqrt [ 6 ] { 500 } } { 5 }
c. 50064\frac { \sqrt [ 6 ] { 500 } } { 4 }
d. 50075\frac { \sqrt [ 7 ] { 500 } } { 5 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
29
Simplify the expression. (82z5y)1(5y5z1)3(5yz1)2\frac { \left( 8 ^ { - 2 } z ^ { - 5 } y \right) ^ { - 1 } } { \left( 5 y ^ { 5 } z ^ { - 1 } \right) ^ { 3 } \left( 5 y z ^ { - 1 } \right) ^ { - 2 } }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. 64z65y14\quad \frac { 64 z ^ { 6 } } { 5 y ^ { 14 } }
b. 5y1464z6\frac { 5 y ^ { 14 } } { 64 z ^ { 6 } }
c. 64z145y6\quad \frac { 64 z ^ { 14 } } { 5 y ^ { 6 } }
d. 8z55y15\frac { 8 z ^ { 5 } } { 5 y ^ { 15 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
30
Simplify each complex fraction. x+16xx+5+6x\frac { x + 1 - \frac { 6 } { x } } { x + 5 + \frac { 6 } { x } }
Assume that no denominators are 0 .
a. x+3x3\frac { x + 3 } { x - 3 }
b. x2x+2\frac { x - 2 } { x + 2 }
c. x+2x2\frac { x + 2 } { x - 2 }
d. x3x+3\frac { x - 3 } { x + 3 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
31
Simplify the fraction. xy+6x+9y+54x3+729\frac { x y + 6 x + 9 y + 54 } { x ^ { 3 } + 729 } Assume that denominator is not 0 .
a. y6x29x81\frac { y - 6 } { x ^ { 2 } - 9 x - 81 }
b. y+9x29x+81\frac { y + 9 } { x ^ { 2 } - 9 x + 81 }
c. y+6x29x+81\quad \frac { y + 6 } { x ^ { 2 } - 9 x + 81 }
d. y6x29x+81\frac { y - 6 } { x ^ { 2 } - 9 x + 81 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
32
Simplify the expression.Assume that all variables represent positive numbers, so that no absolute value symbols are needed. 2xy54+y512xy42xy54\sqrt [ 4 ] { 2 x y ^ { 5 } } + y \sqrt [ 4 ] { 512 x y } - \sqrt [ 4 ] { 2 x y ^ { 5 } }
a. 4y4xy\quad 4 y \sqrt { 4 x y }
b. 4y2xy\quad 4 y \sqrt { 2 x y }
c. 12y2xy\quad 12 y \sqrt { 2 x y }
d. 8y3xy\quad 8 y \sqrt { 3 x y }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
33
Rationalize the numerator and simplify. 525\frac { \sqrt { 5 } } { 25 }
a. 1102\quad \frac { 1 } { 10 \sqrt { 2 } }
b. 155\quad \frac { 1 } { 5 \sqrt { 5 } }
c. 152\quad \frac { 1 } { 5 \sqrt { 2 } }
d. 165\quad \frac { 1 } { 6 \sqrt { 5 } }
e. 1510\frac { 1 } { 5 \sqrt { 10 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
34
Select the correct representation of the inequality in interval notation. x3x \leq 3
a. (,3)\quad ( - \infty , 3 )
b. (,3]\quad ( - \infty , 3 ]
c. [3,)[ 3 , \infty )
d. [,3]\quad [ - \infty , 3 ]
e. (3,)\quad ( 3 , \infty )
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
35
Perform division and write the answer without using negative exponents. 190x6y4z919x9y6z0\frac { - 190 x ^ { 6 } y ^ { 4 } z ^ { 9 } } { 19 x ^ { 9 } y ^ { 6 } z ^ { 0 } }
a. 10z9x3y6\frac { 10 z ^ { 9 } } { x ^ { 3 } y ^ { 6 } }
b. 10z9x3y2\quad \frac { 10 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
c. 10z4x3y2\frac { - 10 z ^ { 4 } } { x ^ { 3 } y ^ { 2 } }
d. 10z9x3y2\frac { - 10 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
36
Simplify the expression. (13x)0( - 13 x ) ^ { 0 }
Write the answer without using exponents.
a. 1
b. 13
c. 13- 13
d. 1- 1
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
37
Simplify the radical expression. 44\sqrt [ 4 ] { 4 }
a. 42\sqrt [ 2 ] { 4 }
b. 22\sqrt [ 2 ] { 2 }
c. 2002\sqrt [ 2 ] { 200 }
d. 24\sqrt [ 4 ] { 2 }
e. 28\sqrt [ 8 ] { 2 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
38
Perform the division and write the answer without using negative exponents. 100x5y760x2y5+20xy10x5y4\frac { 100 x ^ { 5 } y ^ { 7 } - 60 x ^ { 2 } y ^ { 5 } + 20 x y } { 10 x ^ { 5 } y ^ { 4 } }
a. 6y36yx3+20x4y9\quad 6 y ^ { 3 } - \frac { 6 y } { x ^ { 3 } } + \frac { 20 } { x ^ { 4 } y ^ { 9 } }
b. 10y310yx4+20x4y3\quad 10 y ^ { 3 } - \frac { 10 y } { x ^ { 4 } } + \frac { 20 } { x ^ { 4 } y ^ { 3 } }
c. 10y36yx3+2x4y310 y ^ { 3 } - \frac { 6 y } { x ^ { 3 } } + \frac { 2 } { x ^ { 4 } y ^ { 3 } }
d. 6y310yx3+20x4y36 y ^ { 3 } - \frac { 10 y } { x ^ { 3 } } + \frac { 20 } { x ^ { 4 } y ^ { 3 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
39
Rationalize the denominator and simplify. 444\frac { 4 } { \sqrt [ 4 ] { 4 } }
a. 1644\sqrt [ 4 ] { 164 }
b. 655\sqrt [ 5 ] { 65 }
c. 674\sqrt [ 4 ] { 67 }
d. 644\quad \sqrt [ 4 ] { 64 }
e. 648\sqrt [ 8 ] { 64 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
40
Perform the operations and simplify. 1x4+3x+43x4x216\frac { 1 } { x - 4 } + \frac { 3 } { x + 4 } - \frac { 3 x - 4 } { x ^ { 2 } - 16 }
Assume that no denominators are 0 .
a. 4x+4\frac { 4 } { x + 4 }
b. 1x+16\frac { 1 } { x + 16 }
c. 1x+4\frac { 1 } { x + 4 }
d. 1x4\frac { 1 } { x - 4 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
41
Simplify the expression. (5x5y5z720x6y10z12)3\left( \frac { 5 x ^ { - 5 } y ^ { 5 } z ^ { - 7 } } { 20 x ^ { 6 } y ^ { 10 } z ^ { - 12 } } \right) ^ { 3 } Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined. a. z54x33y15\frac { z ^ { 5 } } { 4 x ^ { 33 } y ^ { 15 } }
b.
z1564x33y15\frac { z ^ { 15 } } { 64 x ^ { 33 } y ^ { 15 } }
c. z1564x15y33\quad \frac { z ^ { 15 } } { 64 x ^ { 15 } y ^ { 33 } }
d. z54x11y5\frac { z ^ { 5 } } { 4 x ^ { 11 } y ^ { 5 } }
e. z1564x33y15\frac { z ^ { 15 } } { 64 x ^ { - 33 } y ^ { - 15 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
42
Perform the operations and simplify. 1x4+3x+43x4x216\frac { 1 } { x - 4 } + \frac { 3 } { x + 4 } - \frac { 3 x - 4 } { x ^ { 2 } - 16 }
Assume that no denominators are 0 .
a. 1x+16\frac { 1 } { x + 16 }
b. 1x+4\frac { 1 } { x + 4 }
c. 1x4\frac { 1 } { x - 4 }
d. 4x+4\frac { 4 } { x + 4 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
43
Simplify the complex fraction. 3x5y26x2z4y4\frac { \frac { 3 x ^ { 5 } } { y ^ { 2 } } } { \frac { 6 x ^ { 2 } z ^ { 4 } } { y ^ { 4 } } }
Assume that the denominators are not 0 .
a. 12x3y2z4\quad \frac { 1 } { 2 } x ^ { 3 } y ^ { 2 } z ^ { - 4 }
b. 12x4y2z4\frac { 1 } { 2 } x ^ { 4 } y ^ { 2 } z ^ { 4 }
c. 12x5y2z4\quad \frac { 1 } { 2 } x ^ { 5 } y ^ { 2 } z ^ { - 4 }
d. 12x3y2z4\quad \frac { 1 } { 2 } x ^ { 3 } y ^ { 2 } z ^ { - 4 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
44
Factor the expression completely. 36z2+84z+4936 z ^ { 2 } + 84 z + 49
a. (6z+7)2\quad ( 6 z + 7 ) ^ { 2 }
b. (6z7)2\quad ( 6 z - 7 ) ^ { 2 }
c. (6z+7)(6z7)\quad ( 6 z + 7 ) ( 6 z - 7 )
d. 7(6z+7)\quad 7 ( 6 z + 7 )
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
45
Perform the operations and simplify. 23a2112b\frac { 23 a } { 2 } \cdot \frac { 11 } { 2 b }
Assume that no denominators are 0 .
a. 1123\quad \frac { 11 } { 23 }
b. 253a4b\frac { 253 a } { 4 b }
c. 2311\frac { 23 } { 11 }
d. 2ab2\frac { 2 a } { b 2 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
46
Simplify the expression. (82z5y)2(5y2z5)5(5yz5)1\frac { \left( 8 ^ { - 2 } z ^ { - 5 } y \right) ^ { - 2 } } { \left( 5 y ^ { 2 } z ^ { - 5 } \right) ^ { 5 } \left( 5 y z ^ { - 5 } \right) ^ { - 1 } }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. 512z29625y12\quad \frac { 512 z ^ { 29 } } { 625 y ^ { 12 } }
b. 625y114096z30\quad \frac { 625 y ^ { 11 } } { 4096 z ^ { 30 } }
c. 4096z30625y11\quad \frac { 4096 z ^ { 30 } } { 625 y ^ { 11 } }
d. 4096z11625y30\frac { 4096 z ^ { 11 } } { 625 y ^ { 30 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
47
Simplify the expression. 1x8\frac { 1 } { x ^ { - 8 } }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. 1x9\frac { 1 } { x ^ { 9 } }
b. x8x ^ { 8 }
c. x9x ^ { 9 }
d. 1x8\frac { 1 } { x ^ { 8 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
48
Perform the operation and simplify. 3a2(a+1)+6a(a24)a2(a+10)- 3 a ^ { 2 } ( a + 1 ) + 6 a \left( a ^ { 2 } - 4 \right) - a ^ { 2 } ( a + 10 )
a. 0
b. 2a313a224\quad 2 a ^ { 3 } - 13 a ^ { 2 } - 24
c. 2a313a224a\quad 2 a ^ { 3 } - 13 a ^ { 2 } - 24 a
d. 2a2+13a424\quad 2 a ^ { 2 } + 13 a ^ { 4 } - 24
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
49
Simplify each complex fraction. x+16xx+5+6x\frac { x + 1 - \frac { 6 } { x } } { x + 5 + \frac { 6 } { x } }
Assume that no denominators are 0 .
a. x2x+2\frac { x - 2 } { x + 2 }
b. x+2x2\frac { x + 2 } { x - 2 }
c. x3x+3\frac { x - 3 } { x + 3 }
d. x+3x3\frac { x + 3 } { x - 3 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
50
Simplify the radical expression. 494\sqrt [ 4 ] { 49 }
a. 78\sqrt [ 8 ] { 7 }
b. 7002\sqrt [ 2 ] { 700 }
c. 492\sqrt [ 2 ] { 49 }
d. 74\sqrt [ 4 ] { 7 }
e. 72\sqrt [ 2 ] { 7 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
51
Give the degree of the polynomial. 576\sqrt { 576 }
a. 0
b. No defined degree
c. 1/21 / 2
d. This is not a polynomial
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
52
Simplify the fraction. xy+6x+4y+24x3+64\frac { x y + 6 x + 4 y + 24 } { x ^ { 3 } + 64 }
Assume that denominator is not 0 .
a. y6x24x16\frac { y - 6 } { x ^ { 2 } - 4 x - 16 }
b. y+6x24x+16\frac { y + 6 } { x ^ { 2 } - 4 x + 16 }
c. y6x24x+16\frac { y - 6 } { x ^ { 2 } - 4 x + 16 }
d. y+4x24x+16\frac { y + 4 } { x ^ { 2 } - 4 x + 16 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
53
Simplify the expression. x7x4x4x\frac { x ^ { 7 } x ^ { 4 } } { x ^ { 4 } x }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
 a. x16 b. x6 c. x7 d. x8\begin{array} { l l } \text { a. } & x ^ { 16 } \\ \text { b. } & x ^ { 6 } \\ \text { c. } & x ^ { 7 } \\ \text { d. } & x ^ { 8 } \end{array}
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
54
How many prime numbers are there between -5 and 20 on the number line? a. 0
b. 4
c. 19
d. 24
e. 20
f. 8
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
55
We can often multiply and divide radicals with different indexes.For example: 353=276256=(27)(25)6=6756\sqrt { 3 } \sqrt [ 3 ] { 5 } = \sqrt [ 6 ] { 27 } \sqrt [ 6 ] { 25 } = \sqrt [ 6 ] { ( 27 ) ( 25 ) } = \sqrt [ 6 ] { 675 } Use this idea to write the following expression as a single radical. 467\frac { \sqrt [ 6 ] { 4 } } { \sqrt { 7 } }
a.
b. 137277\frac { \sqrt [ 7 ] { 1372 } } { 7 }
c. 137264\frac { \sqrt [ 6 ] { 1372 } } { 4 }
d. 137267\quad \frac { \sqrt [ 6 ] { 1372 } } { 7 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
56
Simplify the expression. (4x)0( - 4 x ) ^ { 0 }
Write the answer without using exponents.
a. 1
b. 4
 c. 4 d. 1\begin{array} { l l } \text { c. } & - 4 \\ \text { d. } & - 1 \end{array}
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
57
Rationalize the numerator and simplify. 28\frac { \sqrt { 2 } } { 8 }
a. 185\quad \frac { 1 } { 8 \sqrt { 5 } }
b. 142\frac { 1 } { 4 \sqrt { 2 } }
c. 146\frac { 1 } { 4 \sqrt { 6 } }
d. 152\quad \frac { 1 } { 5 \sqrt { 2 } }
e. 145\frac { 1 } { 4 \sqrt { 5 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
58
Multiply the expression as you would multiply polynomials. (x7/2+y9/2)2\left( x ^ { 7 / 2 } + y ^ { 9 / 2 } \right) ^ { 2 }
a. x7+2x7/2y9/2+y9\quad x ^ { 7 } + 2 x ^ { 7 / 2 } y ^ { 9 / 2 } + y ^ { 9 }
b. x72x7y9+y9\quad x ^ { 7 } - 2 x ^ { 7 } y ^ { 9 } + y ^ { 9 }
c. x7+x7y9+y9\quad x ^ { 7 } + x ^ { 7 } y ^ { 9 } + y ^ { 9 }
d. x7+y9\quad x ^ { 7 } + y ^ { 9 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
59
Simplify the expression. (x6)4(x2)2\left( x ^ { 6 } \right) ^ { 4 } \left( x ^ { 2 } \right) ^ { 2 }
a. x8x ^ { - 8 }
b. x6x ^ { 6 }
c. x14x ^ { 14 }
d. x28x ^ { 28 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
60
Select the correct representation of the inequality in interval notation. x7x \leq 7
a. [,7]\quad [ - \infty , 7 ]
b. (7,)\quad ( 7 , \infty )
c. [7,)[ 7 , \infty )
d. (,7)\quad ( - \infty , 7 )
e. (,7]\quad ( - \infty , 7 ]
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
61
Simplify the expression. 84/3- 8 ^ { 4 / 3 }
a. 10.6667- 10.6667
b. 19
c. 32- 32
d. 48- 48
e. 18- 18
f. 16- 16
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
62
Perform the operations and simplify. 1x6+3x+63x6x236\frac { 1 } { x - 6 } + \frac { 3 } { x + 6 } - \frac { 3 x - 6 } { x ^ { 2 } - 36 }
Assume that no denominators are 0 .
a. 1x6\frac { 1 } { x - 6 }
b. 1x+36\frac { 1 } { x + 36 }
c. 1x+6\frac { 1 } { x + 6 }
d. 6x+6\frac { 6 } { x + 6 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
63
Give the degree of the polynomial. 127\sqrt { 127 }
a. 1/21 / 2
b. No defined degree
c. This is not a polynomial
d. 0
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
64
Identify the correct union of intervals for the inequality. x16x \leq - 16 or x>5x > 5
a. (,16](5,)\quad ( - \infty , - 16 ] \cup ( 5 , \infty )
b. (,16)[5,)\quad ( - \infty , - 16 ) \cup [ 5 , \infty )
c. (,16)(5,)\quad ( - \infty , - 16 ) \cup ( 5 , \infty )
d. (,16](5,]\quad ( - \infty , - 16 ] \cup ( 5 , \infty ]
e. (,16][5,)\quad ( - \infty , - 16 ] \cup [ 5 , \infty )
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
65
How many natural numbers are there between -16.5 and 6.5 on the number line? a. 0\quad 0
b. 7
c. 12
d. 6
e. 23
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
66
Simplify each complex fraction. x+263xx+16+63x\frac { x + 2 - \frac { 63 } { x } } { x + 16 + \frac { 63 } { x } } Assume that no denominators are 0 .
a. x+9x9\frac { x + 9 } { x - 9 }
b. x7x+7\frac { x - 7 } { x + 7 }
c. x+7x7\frac { x + 7 } { x - 7 }
d. x9x+9\frac { x - 9 } { x + 9 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
67
Perform the operations and simplify. 5a327b\frac { 5 a } { 3 } \cdot \frac { 2 } { 7 b }
Assume that no denominators are 0 .
a. 3ab7\frac { 3 a } { b 7 }
b. 52\frac { 5 } { 2 }
c. 25\frac { 2 } { 5 }
d. 10a21b\frac { 10 a } { 21 b }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
68
Rationalize the denominator and simplify. 335\frac { 3 } { \sqrt [ 5 ] { 3 } }
a. 826\sqrt [ 6 ] { 82 }
b. 1815\sqrt [ 5 ] { 181 }
c. 845\quad \sqrt [ 5 ] { 84 }
d. 8110\sqrt [ 10 ] { 81 }
e. 815\sqrt [ 5 ] { 81 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
69
Write the expression without using absolute value symbols. x+4x11| x + 4 | - | x - 11 | \quad for x<8\quad x < - 8
x+4x11=ــــــــــــ| x + 4 | - | x - 11 | =ــــــــــــ for x<8x < - 8
a. 15
b. 2x152 x - 15
c. 7
d. 152x15 - 2 x
e. 15- 15
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
70
Perform division and write the answer without using negative exponents. 56x6y4z914x9y6z0\frac { - 56 x ^ { 6 } y ^ { 4 } z ^ { 9 } } { 14 x ^ { 9 } y ^ { 6 } z ^ { 0 } }
a. 4z4x3y2\frac { - 4 z ^ { 4 } } { x ^ { 3 } y ^ { 2 } }
b. 4z9x3y2\frac { - 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
c. 4z9x3y6\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 6 } }
d. 4z9x3y2\frac { 4 z ^ { 9 } } { x ^ { 3 } y ^ { 2 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
71
Simplify the complex fraction. 2x2y34x4z3y5\frac { \frac { 2 x ^ { 2 } } { y ^ { 3 } } } { \frac { 4 x ^ { 4 } z ^ { 3 } } { y ^ { 5 } } } Assume that the denominators are not 0. a. 12x2y2z3\quad \frac { 1 } { 2 } x ^ { 2 } y ^ { 2 } z ^ { - 3 }
b. 12x2y3z3\quad \frac { 1 } { 2 } x ^ { - 2 } y ^ { 3 } z ^ { - 3 }
c. 12x2y2z3\quad \frac { 1 } { 2 } x ^ { - 2 } y ^ { 2 } z ^ { - 3 }
d. 12x5y4z3\frac { 1 } { 2 } x ^ { 5 } y ^ { 4 } z ^ { 3 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
72
Simplify the expression.Assume that all variables represent positive numbers, so that no absolute value symbols are needed. 2xy54+y512xy42xy54\sqrt [ 4 ] { 2 x y ^ { 5 } } + y \sqrt [ 4 ] { 512 x y } - \sqrt [ 4 ] { 2 x y ^ { 5 } }
a. 12y2xy\quad 12 y \sqrt { 2 x y }
b. 8y3xy\quad 8 y \sqrt { 3 x y }
c. 4y2xy\quad 4 y \sqrt { 2 x y }
d. 4y4xy\quad 4 y \sqrt { 4 x y }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
73
Perform the operation and simplify. 3a2(a+1)+7a(a24)a2(a+9)- 3 a ^ { 2 } ( a + 1 ) + 7 a \left( a ^ { 2 } - 4 \right) - a ^ { 2 } ( a + 9 )
a. 3a2+12a428\quad 3 a ^ { 2 } + 12 a ^ { 4 } - 28
b. 3a312a228\quad 3 a ^ { 3 } - 12 a ^ { 2 } - 28
c. 0
d. 3a312a228a\quad 3 a ^ { 3 } - 12 a ^ { 2 } - 28 a
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
74
Factor the expression completely. 9z2+42z+499 z ^ { 2 } + 42 z + 49
a. (3z7)2\quad ( 3 z - 7 ) ^ { 2 }
b. (3z+7)(3z7)\quad ( 3 z + 7 ) ( 3 z - 7 )
c. 7(3z+7)\quad 7 ( 3 z + 7 )
d. (3z+7)2\quad ( 3 z + 7 ) ^ { 2 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
75
Simplify the fraction. xy+6x+8y+48x3+512\frac { x y + 6 x + 8 y + 48 } { x ^ { 3 } + 512 }
Assume that denominator is not 0 .
a. y6x28x+64\frac { y - 6 } { x ^ { 2 } - 8 x + 64 }
b. y+8x28x+64\frac { y + 8 } { x ^ { 2 } - 8 x + 64 }
c. y6x28x64\frac { y - 6 } { x ^ { 2 } - 8 x - 64 }
d. y+6x28x+64\frac { y + 6 } { x ^ { 2 } - 8 x + 64 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
76
Simplify the expression. (a5b3)4\left( \frac { a ^ { - 5 } } { b ^ { - 3 } } \right) ^ { - 4 }
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. a12b20\quad \frac { a ^ { 12 } } { b ^ { 20 } }
b. a20b12\quad \frac { a ^ { 20 } } { b ^ { 12 } }
c. b12a20\quad \frac { b ^ { 12 } } { a ^ { 20 } }
d. b20a12\quad \frac { b ^ { 20 } } { a ^ { 12 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
77
Simplify the expression. (r5r1r3r3)2\left( \frac { r ^ { 5 } r ^ { - 1 } } { r ^ { 3 } r ^ { - 3 } } \right) ^ { 2 }
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. r2r ^ { 2 }
b. r8\quad r ^ { 8 }
c. r0\quad r ^ { 0 }
d. r12\quad r ^ { 12 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
78
Multiply the expression as you would multiply polynomials. (x11/2+y15/2)2\left( x ^ { 11 / 2 } + y ^ { 15 / 2 } \right) ^ { 2 }
a. x11+2x11/2y15/2+y15\quad x ^ { 11 } + 2 x ^ { 11 / 2 } y ^ { 15 / 2 } + y ^ { 15 }
b. x11+x11y15+y15\quad x ^ { 11 } + x ^ { 11 } y ^ { 15 } + y ^ { 15 }
c. x112x11y15+y15\quad x ^ { 11 } - 2 x ^ { 11 } y ^ { 15 } + y ^ { 15 }
d. x11+y15\quad x ^ { 11 } + y ^ { 15 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
79
Calculate the volume of a box that has dimensions of 6,000 by 8,600 by 4,800 millimeters. a. 2.4768×1010 mm3\quad 2.4768 \times 10 ^ { 10 } \mathrm {~mm} ^ { 3 }
b. 2.4768×1011 mm3\quad 2.4768 \times 10 ^ { 11 } \mathrm {~mm} ^ { 3 }
c. 1.9975×1010 mm3\quad 1.9975 \times 10 ^ { 10 } \mathrm {~mm} ^ { 3 }
d. 1.9975×1011 mm3\quad 1.9975 \times 10 ^ { 11 } \mathrm {~mm} ^ { 3 }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
80
Perform the division and write the answer without using negative exponents. 400x5y7240x2y5+80xy16x5y4\frac { 400 x ^ { 5 } y ^ { 7 } - 240 x ^ { 2 } y ^ { 5 } + 80 x y } { 16 x ^ { 5 } y ^ { 4 } }
a. 25y315yx3+5x4y325 y ^ { 3 } - \frac { 15 y } { x ^ { 3 } } + \frac { 5 } { x ^ { 4 } y ^ { 3 } }
b. 15y315yx3+80x4y9\quad 15 y ^ { 3 } - \frac { 15 y } { x ^ { 3 } } + \frac { 80 } { x ^ { 4 } y ^ { 9 } }
c. 15y325yx3+80x4y315 y ^ { 3 } - \frac { 25 y } { x ^ { 3 } } + \frac { 80 } { x ^ { 4 } y ^ { 3 } }
d. 25y325yx4+80x4y3\quad 25 y ^ { 3 } - \frac { 25 y } { x ^ { 4 } } + \frac { 80 } { x ^ { 4 } y ^ { 3 } }
Unlock Deck
Unlock for access to all 149 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 149 flashcards in this deck.