Deck 14: Computational Fluid Dynamics

Full screen (f)
exit full mode
Question
Wind blowing over the cables of a bridge sheds alternating vortices resulting in oscillating forces acting on the cables. Which of the major parameters listed in Eq. 6.2.17 are the primary
Parameters which would be used in the description of this situation?
(A) Re and St
(B) Fr and St
(C) St and M
(D) Re and M
Use Space or
up arrow
down arrow
to flip the card.
Question
It is supposed that the power needed to propel a large dirigible depends on the speed V,\text {It is supposed that the power needed to propel a large dirigible depends on the speed \(V\),} diameter, D, length L, viscosity μ, density ρ, and gravity g. The relationship between these\text {diameter, \(D\), length \(L\), viscosity \(\mu\), density \(\rho\), and gravity \(g\). The relationship between these} variables can be expressed as:\text {variables can be expressed as:}
(A) PρV2D5=f(Dl,vDV)\frac { P } { \rho V ^ { 2 } D ^ { 5 } } = f \left( \frac { D } { l } , \frac { v D } { V } \right)
(B) PρV2D5=f(lD,vVD)\frac { P } { \rho V ^ { 2 } D ^ { 5 } } = f \left( \frac { l } { D } , \frac { v } { V D } \right)
(C) PρV2D3=f(lD,vDV)\frac { P } { \rho V ^ { 2 } D ^ { 3 } } = f \left( \frac { l } { D } , \frac { v D } { V } \right)
(D) PρV3D2=f(lD,vVD)\frac { P } { \rho V ^ { 3 } D ^ { 2 } } = f \left( \frac { l } { D } , \frac { v } { V D } \right)
Question
The variables length l, gravity g, velocity V, and density ρ can be combined into the\text {The variables length \(l\), gravity \(g\), velocity \(V\), and density \(\rho\) can be combined into the} dimensionless term:\text {dimensionless term:}
(A) ρVl2/g\rho V l ^ { 2 } / g
(B) ρVl/g\rho \mathrm { Vl } / \mathrm { g }
(C) V2/lgV ^ { 2 } / l g
(D) Vl2/gV l ^ { 2 } / g
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/3
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Computational Fluid Dynamics
Wind blowing over the cables of a bridge sheds alternating vortices resulting in oscillating forces acting on the cables. Which of the major parameters listed in Eq. 6.2.17 are the primary
Parameters which would be used in the description of this situation?
(A) Re and St
(B) Fr and St
(C) St and M
(D) Re and M
WIND BLOWING OVER THE CABLES OF A BRIDGE SHEDS ALTERNATING VORTICES RESULTING IN OSCILLATING
forces acting on the cables. Which of the major parameters listed in Eq. 6.2.17 are the primary
parameters which would be used in the description of this situation?
(A) Re and St
The shedding of the vortices would involve a shedding frequency leading to the
Strouhal number. The force of the wind on a cable would depend on the Reynolds
number. The flow would not be compressible so the Mach number would not enter.
Gravity would also not enter the problem so the Froude number would not enter.
It is supposed that the power needed to propel a large dirigible depends on the speed V,\text {It is supposed that the power needed to propel a large dirigible depends on the speed \(V\),} diameter, D, length L, viscosity μ, density ρ, and gravity g. The relationship between these\text {diameter, \(D\), length \(L\), viscosity \(\mu\), density \(\rho\), and gravity \(g\). The relationship between these} variables can be expressed as:\text {variables can be expressed as:}
(A) PρV2D5=f(Dl,vDV)\frac { P } { \rho V ^ { 2 } D ^ { 5 } } = f \left( \frac { D } { l } , \frac { v D } { V } \right)
(B) PρV2D5=f(lD,vVD)\frac { P } { \rho V ^ { 2 } D ^ { 5 } } = f \left( \frac { l } { D } , \frac { v } { V D } \right)
(C) PρV2D3=f(lD,vDV)\frac { P } { \rho V ^ { 2 } D ^ { 3 } } = f \left( \frac { l } { D } , \frac { v D } { V } \right)
(D) PρV3D2=f(lD,vVD)\frac { P } { \rho V ^ { 3 } D ^ { 2 } } = f \left( \frac { l } { D } , \frac { v } { V D } \right)
D
PρV3D2=f(lD,vVL)\frac { P } { \rho V ^ { 3 } D ^ { 2 } } = f \left( \frac { l } { D } , \frac { v } { V L } \right)
The dimensions on the variables are\text {The dimensions on the variables are}
[P]=ML2T3,[V]=LT,[D]=L,[l]=L,[v]=L2T,[ρ]=ML3[ P ] = \frac { M L ^ { 2 } } { T ^ { 3 } } , \quad [ V ] = \frac { L } { T } , \quad [ D ] = L , \quad [ l ] = L , \quad [ v ] = \frac { L ^ { 2 } } { T } , \quad [ \rho ] = \frac { M } { L ^ { 3 } }
First, select the repeating variables, equal in number to the number of dimensions and\text {First, select the repeating variables, equal in number to the number of dimensions and} containing all dimensions in the problem. Let’s select V,D, and ρ. Create the π-terms\text {containing all dimensions in the problem. Let's select \(V , D\), and \(\rho\). Create the \(\pi\)-terms} by combining with each of the remaining variables, one at a time (cancel dimensions\text {by combining with each of the remaining variables, one at a time (cancel dimensions} as in Problem 1):\text {as in Problem 1):}
π1=PρV3D2,π2=lD,π3=vVL\pi _ { 1 } = \frac { P } { \rho V ^ { 3 } D ^ { 2 } } , \quad \pi _ { 2 } = \frac { l } { D } , \quad \pi _ { 3 } = \frac { v } { V L }
The π-terms are then related by\text {The \(\pi\)-terms are then related by}
PρV3D2=f(lD,vVL)\frac { P } { \rho V ^ { 3 } D ^ { 2 } } = f \left( \frac { l } { D } , \frac { v } { V L } \right)
The variables length l, gravity g, velocity V, and density ρ can be combined into the\text {The variables length \(l\), gravity \(g\), velocity \(V\), and density \(\rho\) can be combined into the} dimensionless term:\text {dimensionless term:}
(A) ρVl2/g\rho V l ^ { 2 } / g
(B) ρVl/g\rho \mathrm { Vl } / \mathrm { g }
(C) V2/lgV ^ { 2 } / l g
(D) Vl2/gV l ^ { 2 } / g
C
V2/lgV ^ { 2 } / l g
The dimensions on each of the variables are\text {The dimensions on each of the variables are}
[l]=L,[g]=LT2,[V]=LT,[ρ]=ML3[ l ] = L , \quad [ g ] = \frac { L } { T ^ { 2 } } , \quad [ V ] = \frac { L } { T } , \quad [ \rho ] = \frac { M } { L ^ { 3 } }
The density ρ is the only variable with M so it cannot enter the term since M is not \text {The density \(\rho\) is the only variable with \(M\) so it cannot enter the term since \(M\) is not }able to be canceled out. Time T can be canceled by forming the ratio V2/g. That ratio\text {able to be canceled out. Time \(T\) can be canceled by forming the ratio \(V ^ { 2 } / g\). That ratio} leaves L in the numerator. If l is placed in the denominator, the term, called a π-term,\text { leaves \(L\) in the numerator. If \(l\) is placed in the denominator, the term, called a \(\pi\)-term,} is dimensionless:\text { is dimensionless:}
π=V2lg\pi = \frac { V ^ { 2 } } { \lg }
locked card icon
Unlock Deck
Unlock for access to all 3 flashcards in this deck.