Deck 13: Measurements in Fluid Mechanics

Full screen (f)
exit full mode
Question
Air is flowing straight toward a building. What expression would provide p/x if x\text {Air is flowing straight toward a building. What expression would provide \(\partial p / \partial x\) if \(x\)} is measured perpendicular to the building? Neglect viscous and gravity effects and assume\text { is measured perpendicular to the building? Neglect viscous and gravity effects and assume} steady flow.\text {steady flow.}
(A) p/x=ρ(uu/xvv/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial v / \partial y )
(B) p/x=ρuu/x\partial p / \partial x = - \rho u \partial u / \partial x
(C) p/x=ρvu/x\partial p / \partial x = - \rho v \partial u / \partial x
(D) p/x=ρ(uu/xvu/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial u / \partial y )
Use Space or
up arrow
down arrow
to flip the card.
Question
Euler's equation integrated along a streamline results in Bernoulli's equation providing the flow is:

A) Incompressible, inviscid, steady, in an inertial reference frame
B) Constant density, steady, along a streamline, in an inertial reference frame
C) Incompressible, steady, along a streamline, in an inertial reference frame
D) Constant density, steady, along a streamline, inviscid, in an inertial reference frame
Question
 If the stress component σxx is given by σxx=p+2μu/x, the incompressible fluid is: \text { If the stress component } \sigma _ { x x } \text { is given by } \sigma _ { x x } = - p + 2 \mu \partial u / \partial x \text {, the incompressible fluid is: }

A) Linear and isotropic
B) Isotropic and homogeneous
C) Linear and homogeneous
D) Linear, isotropic, and homogeneous
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/3
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Measurements in Fluid Mechanics
Air is flowing straight toward a building. What expression would provide p/x if x\text {Air is flowing straight toward a building. What expression would provide \(\partial p / \partial x\) if \(x\)} is measured perpendicular to the building? Neglect viscous and gravity effects and assume\text { is measured perpendicular to the building? Neglect viscous and gravity effects and assume} steady flow.\text {steady flow.}
(A) p/x=ρ(uu/xvv/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial v / \partial y )
(B) p/x=ρuu/x\partial p / \partial x = - \rho u \partial u / \partial x
(C) p/x=ρvu/x\partial p / \partial x = - \rho v \partial u / \partial x
(D) p/x=ρ(uu/xvu/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial u / \partial y )
B
p/x=ρuu/x\partial p / \partial x = - \rho u \partial u / \partial x
The x-component N-S equation (5.3.14), ignoring the viscous and gravity terms for a\text {The \(x\)-component N-S equation (5.3.14), ignoring the viscous and gravity terms for a} steady flow, is\text { steady flow, is}
ρDuDt=px or ρ(uux+vuy)=px\rho \frac { D u } { D t } = - \frac { \partial p } { \partial x } \quad \text { or } \quad \rho \left( u \frac { \partial u } { \partial x } + v \frac { \partial u } { \partial y } \right) = - \frac { \partial p } { \partial x }
Along the line that passes through the stagnation point, the y-component of the velocity \text {Along the line that passes through the stagnation point, the \(y\)-component of the velocity }v is zero. The pressure gradient is then\text {\(v\) is zero. The pressure gradient is then}
px=ρuux\frac { \partial p } { \partial x } = - \rho u \frac { \partial u } { \partial x }
Euler's equation integrated along a streamline results in Bernoulli's equation providing the flow is:

A) Incompressible, inviscid, steady, in an inertial reference frame
B) Constant density, steady, along a streamline, in an inertial reference frame
C) Incompressible, steady, along a streamline, in an inertial reference frame
D) Constant density, steady, along a streamline, inviscid, in an inertial reference frame
Constant density, steady, along a streamline, inviscid, in an inertial reference frame
 If the stress component σxx is given by σxx=p+2μu/x, the incompressible fluid is: \text { If the stress component } \sigma _ { x x } \text { is given by } \sigma _ { x x } = - p + 2 \mu \partial u / \partial x \text {, the incompressible fluid is: }

A) Linear and isotropic
B) Isotropic and homogeneous
C) Linear and homogeneous
D) Linear, isotropic, and homogeneous
Linear and isotropic
locked card icon
Unlock Deck
Unlock for access to all 3 flashcards in this deck.