Deck 6: Analytic Trigonometry

Full screen (f)
exit full mode
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference.
10cos55cos2510 \cos 55 ^ { \circ } \cos 25 ^ { \circ }
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the sum-to-product formulas to rewrite the sum or difference as a product.
sin(7θ)+sin(5θ)\sin ( 7 \theta ) + \sin ( 5 \theta )
Question
Evaluate the following expression.
cot2t(4sec2t4)\cot ^ { 2 } t \left( 4 \sec ^ { 2 } t - 4 \right)
Question
Use the Quadratic Formula to solve the given equation on the interval [0,π2)\left[ 0 , \frac { \pi } { 2 } \right) ; then use a graphing utility to approximate the angle x. Round answers to three decimal places.
18tan2x13tanx+2=018 \tan ^ { 2 } x - 13 \tan x + 2 = 0
Question
Find the expression as the sine or cosine of an angle.
cos100cos50sin100sin50\cos 100 ^ { \circ } \cos 50 ^ { \circ } - \sin 100 ^ { \circ } \sin 50 ^ { \circ }
Question
Evaluate the following expression. ( xπnx \neq \pi n , where n is a whole number)
8csc(3x)sec(3x)\frac { 8 \csc ( - 3 x ) } { \sec ( - 3 x ) }
Question
Convert the expression.
tan(u2)\tan \left( \frac { u } { 2 } \right)
Question
Find the exact value of the given expression.
sin(π33π4)\sin \left( \frac { \pi } { 3 } - \frac { 3 \pi } { 4 } \right)
Question
Use the figure to find the exact value of the trigonometric function.
sin(2θ)\sin ( 2 \theta ) Use the figure to find the exact value of the trigonometric function. ​  \sin ( 2 \theta )  ​   ​  a = 1  ,  b = 8  ​<div style=padding-top: 35px>  a=1a = 1 , b=8b = 8
Question
Simplify the expression algebraically.
cos(2x+4y)cos(2x4y)\cos ( 2 x + 4 y ) \cos ( 2 x - 4 y )
Question
Find the exact value of sec[sin1(817)]\sec \left[ \sin ^ { - 1 } \left( \frac { 8 } { 17 } \right) \right] .
Question
Convert the expression.
cos(10α)\cos ( 10 \alpha )
Question
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π)[ 0,2 \pi ) .
sec2x5secx=0\sec ^ { 2 } x - 5 \sec x = 0
Question
Use the product-to-sum formulas to rewrite the product as a sum or difference.
sin(π5)cos(π10)\sin \left( \frac { \pi } { 5 } \right) \cos \left( \frac { \pi } { 10 } \right)
Question
Use the cofunction identities to evaluate the expression without using a calculator.
sin240+sin250\sin ^ { 2 } 40 ^ { \circ } + \sin ^ { 2 } 50 ^ { \circ }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/15
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: Analytic Trigonometry
1
Use the product-to-sum formulas to rewrite the product as a sum or difference.
10cos55cos2510 \cos 55 ^ { \circ } \cos 25 ^ { \circ }
5(cos30+cos80)5 \left( \cos 30 ^ { \circ } + \cos 80 ^ { \circ } \right)
2
Use the sum-to-product formulas to rewrite the sum or difference as a product.
sin(7θ)+sin(5θ)\sin ( 7 \theta ) + \sin ( 5 \theta )
2sin(6θ)cosθ2 \sin ( 6 \theta ) \cos \theta
3
Evaluate the following expression.
cot2t(4sec2t4)\cot ^ { 2 } t \left( 4 \sec ^ { 2 } t - 4 \right)
4
4
Use the Quadratic Formula to solve the given equation on the interval [0,π2)\left[ 0 , \frac { \pi } { 2 } \right) ; then use a graphing utility to approximate the angle x. Round answers to three decimal places.
18tan2x13tanx+2=018 \tan ^ { 2 } x - 13 \tan x + 2 = 0
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
5
Find the expression as the sine or cosine of an angle.
cos100cos50sin100sin50\cos 100 ^ { \circ } \cos 50 ^ { \circ } - \sin 100 ^ { \circ } \sin 50 ^ { \circ }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate the following expression. ( xπnx \neq \pi n , where n is a whole number)
8csc(3x)sec(3x)\frac { 8 \csc ( - 3 x ) } { \sec ( - 3 x ) }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
7
Convert the expression.
tan(u2)\tan \left( \frac { u } { 2 } \right)
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
8
Find the exact value of the given expression.
sin(π33π4)\sin \left( \frac { \pi } { 3 } - \frac { 3 \pi } { 4 } \right)
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
9
Use the figure to find the exact value of the trigonometric function.
sin(2θ)\sin ( 2 \theta ) Use the figure to find the exact value of the trigonometric function. ​  \sin ( 2 \theta )  ​   ​  a = 1  ,  b = 8  ​ a=1a = 1 , b=8b = 8
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
10
Simplify the expression algebraically.
cos(2x+4y)cos(2x4y)\cos ( 2 x + 4 y ) \cos ( 2 x - 4 y )
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
11
Find the exact value of sec[sin1(817)]\sec \left[ \sin ^ { - 1 } \left( \frac { 8 } { 17 } \right) \right] .
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
12
Convert the expression.
cos(10α)\cos ( 10 \alpha )
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
13
Use inverse functions where needed to find all solutions of the equation in the interval [0,2π)[ 0,2 \pi ) .
sec2x5secx=0\sec ^ { 2 } x - 5 \sec x = 0
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
14
Use the product-to-sum formulas to rewrite the product as a sum or difference.
sin(π5)cos(π10)\sin \left( \frac { \pi } { 5 } \right) \cos \left( \frac { \pi } { 10 } \right)
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
15
Use the cofunction identities to evaluate the expression without using a calculator.
sin240+sin250\sin ^ { 2 } 40 ^ { \circ } + \sin ^ { 2 } 50 ^ { \circ }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 15 flashcards in this deck.