Deck 7: Conic Sections

Full screen (f)
exit full mode
Question
Suppose that the terminal point determined by t is the point (513,1213)\left( \frac { 5 } { 13 } , \frac { 12 } { 13 } \right) on the unit circle. Find the terminal point determined by π+t\pi + t .
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the sign of costsint\cos t \sin t if the terminal point determined by t is in quadrant II.
Question
Find the exact value of  Sec (3π4)\text { Sec } \left( \frac { 3 \pi } { 4 } \right) and CSC(11π4)\operatorname { CSC } \left( - \frac { 11 \pi } { 4 } \right) .
Question
Find the period of the function y=3secxy = 3 \sec x and sketch its graph.
Question
Find the period of the function y=(cotx)/5y = ( \cot x ) / 5 and sketch its graph.
Question
Find period and graph the function. y=2tan(2xπ/4)y = 2 \tan ( 2 x - \pi / 4 )
Question
Find the reference number and the terminal point p(x,y)p( x , y ) determined by t=11π6t = \frac { 11 \pi } { 6 } .
Question
The point P(x,y)P ( x , y ) is on the unit circle in quadrant IV. If y=5/6y = - 5 / 6 find x.
Question
Find to two decimal places the approximate value of Find to two decimal places the approximate value of  <div style=padding-top: 35px>
Question
Use the fundamental identities to write the first expression in terms of the second. Use the fundamental identities to write the first expression in terms of the second.  <div style=padding-top: 35px>
Question
If the terminal point determined by t is (1215,515) \left(\frac{12}{15},-\frac{5}{15}\right) , find sint\sin t , cost\cos t and tant\tan t .
Question
Find the vertical asymptotes for the function y=3sec12xy = 3 \sec \frac { 1 } { 2 } x in the interval [0,4π][ 0,4 \pi ] .
Question
If 605t=3/5605 t = 3 / 5 and the terminal point for t is in quadrant IV, find tant+sect\tan t + \mathrm { sec } t .
Question
Find the reference number for Find the reference number for   .<div style=padding-top: 35px>
.
Question
Find tant\tan t given that sint=35\sin t = - \frac { 3 } { 5 } and cott<0\mathrm { cot } t < 0 .
Question
Find the amplitude, period and phase shift of Find the amplitude, period and phase shift of   .<div style=padding-top: 35px>
.
Question
Find the exact value of sit(9x2)\operatorname { sit } \left( \frac { 9 x } { 2 } \right) and Cos(9x2)\operatorname { Cos} \left( - \frac { 9 x } { 2 } \right) .
Question
Use a graphing device to find the maximum and minimum values of the function y=cosx12cos2xy = \cos x - \frac { 1 } { 2 } \cos 2 x .
Question
Show that the point (1/5,2/5)( 1 / \sqrt { 5 } , - 2 / \sqrt { 5 } ) is on the unit circle.
Question
Find the amplitude, period, and phase shift of the function. y=2cos(12xπ6)y = 2 \cos \left( \frac { 1 } { 2 } x - \frac { \pi } { 6 } \right)
Question
Suppose that the terminal point determined by t is the point (513,1213)\left( \frac { 5 } { 13 } , \frac { 12 } { 13 } \right) on the unit circle. Find the terminal point determined by 2πt2 \pi - t .
Question
The point The point   is on the unit circle in quadrant II. If   find y.<div style=padding-top: 35px>
is on the unit circle in quadrant II. If The point   is on the unit circle in quadrant II. If   find y.<div style=padding-top: 35px>
find y.
Question
The function y=2cos(t3)y = - 2 \cos \left( \frac { t } { 3 } \right) models the displacement of an object moving in simple harmonic motion, where y is measured in inches and t in seconds. Find the amplitude, period, and frequency of motion and sketch a graph of the function over one complete period.
Question
Find the period of the function Find the period of the function   and sketch its graph.<div style=padding-top: 35px>
and sketch its graph.
Question
Show that the point (223,13)\left( - \frac { 2 \sqrt { 2 } } { 3 } , - \frac { 1 } { 3 } \right) is on the unit circle.
Question
If the terminal point determined by t is (1213,513)\left( \frac { 12 } { 13} , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\cos t and tant\tan t .
Question
Find the exact value of the expression, if it is defined. Find the exact value of the expression, if it is defined.  <div style=padding-top: 35px>
Question
Find the exact value of Find the exact value of   and   .<div style=padding-top: 35px>
and Find the exact value of   and   .<div style=padding-top: 35px>
.
Question
Determine whether the function is even, odd, or neither. Determine whether the function is even, odd, or neither.  <div style=padding-top: 35px>
Question
Find the reference number for Find the reference number for   .<div style=padding-top: 35px>
.
Question
Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 in, frequency  <div style=padding-top: 35px>
.amplitude 10 in, frequency Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 in, frequency  <div style=padding-top: 35px>
Question
Find sect\operatorname { sect } given that sint=35\sin t = - \frac { 3 } { 5 } and tant>0\tan t > 0 .
Question
If cost=35\cos t = \frac { 3 } { 5 } and the terminal point for t is in quadrant IV, find tant+sect\tan t + \mathrm { sec } t .
Question
Find to two decimal places the value of Find to two decimal places the value of   using a calculator.<div style=padding-top: 35px>
using a calculator.
Question
Find the reference number and the terminal point p(x,y)p( x , y ) determined by t=19π6t = \frac { 19 \pi } { 6 } .
Question
Express tant\tan t in terms of sint\sin t , if the terminal point determined by t is in quadrant III.
Question
Find the exact value of sin(19π6)\sin \left( \frac { 19 \pi } { 6 } \right) and cos(5π6)\mathrm { cos } \left( - \frac { 5 \pi } { 6 } \right) .
Question
Find period and graph the function. y=2tan(xπ/4)y = 2 \tan ( x - \pi / 4 )
Question
Determine whether the function is even, odd, or neither. Determine whether the function is even, odd, or neither.  <div style=padding-top: 35px>
Question
If the terminal point determined by t is (1213,513)\left( \frac { 12 } { 13 } , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\cos t And tant\tan t

A) sin(t)=1213\sin ( t ) = \frac { 12 } { 13 } , cos(t)=513\cos \left( t ^ { \prime } \right) = \frac { 5 } { 13 } , tan(t)=512\tan ( t ) = \frac { 5 } { 12 }

B) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos (t)=\frac{12}{13} , tan(t)=512\tan ( t ) = - \frac { 5 } { 12 }

C) sin(t)=513\sin ( t ) = \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = - \frac { 12 } { 13 } , tan(t)=1312\tan ( t ) = - \frac { 13 } { 12 }

D) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos=1213\cos = \frac { 12 } { 13 } , tan(t)=125\tan ( t ) = - \frac { 12 } { 5 }

E) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos=1213\cos = \frac { 12 } { 13 } ,  tant t=125\text { tant } t = \frac { 12 } { 5 }
Question
Find tant\tan t given that sint=35\sin t = \frac { 3 } { 5 } and cott<0\mathrm { cot } t < 0

A) tant=34\tan t = - \frac { 3 } { 4 }

B) tant=35\tan t = - \frac { 3 } { 5 }

C) tant=1\tan t = - 1

D) tant=34\tan t = \frac { 3 } { 4 }

E) tant=32\tan t = - \frac { \sqrt { 3 } } { 2 }
Question
Suppose that the terminal point determined by t is the point (35,45)\left( \frac { 3 } { 5 } , - \frac { 4 } { 5 } \right) on the unit circle. Find the terminal point determined by π+t\pi + t

A) (33,45)\left( \frac { 3 } { 3 } , - \frac { 4 } { 5 } \right)

B) (35,45)\left( - \frac { 3 } { 5 } , \frac { 4 } { 5 } \right)

C) (34,43)\left( \frac { 3 } { 4 } , - \frac { 4 } { 3 } \right)

D) (1,1)( - 1,1 )

E) (45,35)\left( - \frac { 4 } { 5 } , \frac { 3 } { 5 } \right)
Question
If cost=35\cos t = \frac { 3 } { 5 } and the terminal point for t is in quadrant IV, find Cott+CSCt\mathrm { Cot } t + \mathrm { CSC } t

A) 12- \frac { 1 } { 2 }

B) 2- 2

C) 22

D) 12\frac { 1 } { 2 }

E) 54- \frac { 5 } { 4 }
Question
Find the vertical asymptotes for the function y=tan2xy = \tan 2 x in the interval (π2,π2}\left( - \frac { \pi } { 2 } , \frac { \pi} { 2 } \right\} .
Question
Find the exact value of  Sec (3π4)\text { Sec } \left( \frac { 3 \pi } { 4 } \right) and CSC(11π4)\operatorname { CSC} \left( - \frac { 11 \pi } { 4 } \right)

A) 22\frac { - \sqrt { 2 } } { 2 } , 2- \sqrt { 2 }

B) 2- \sqrt { 2 } , 12\frac { - 1 } { 2 }

C) 23\frac { - \sqrt { 2 } } { 3 } , 23- \frac { \sqrt { 2 } } { 3 }

D) 2- \sqrt { 2 } , 2- \sqrt { 2 }

E) 1- 1 , 1- 1
Question
Find the exact value of each expression, if it is defined
a) sin1(2)\sin ^ { - 1 } ( - 2 )

b) cos1(3)\cos ^ { - 1 } ( - \sqrt { 3 } ) c) tan1(1)\tan ^ { - 1 } ( - 1 )
Question
Find the reference number for t=26π5t = - \frac { 26 \pi } { 5 }

A) π5- \frac { \pi } { 5 }

B) 26π5\frac { 26 \pi } { 5 }

C) 13π5- \frac { 13 \pi } { 5 }

D) 5π5 \pi

E) π5\frac { \pi } { 5 }
Question
Find a function that models simple harmonic motion having the given properties. Assume that the displacement is maximum at time t=0t = 0 .amplitude 2.5 m2.5 \mathrm {~m} , frequency 750 Hz750 \mathrm {~Hz}
Question
Find the exact value of sin(5π2)\sin \left( \frac { 5 \pi } { 2 } \right) and cos(5π2)\text {cos} \left( - \frac { 5 \pi } { 2 } \right)

A) sin(5π2)=52\sin \left( \frac { 5 \pi } { 2 } \right) = \frac { 5 } { 2 } , cos(5π2)=32\mathrm { cos } \left( - \frac { 5 \pi } { 2 } \right) = \frac { 3 } { 2 }

B) sin(5π2)=1\sin \left( \frac { 5 \pi } { 2 } \right) = - 1 , cos(5π2)=0\cos \left( - \frac { 5 \pi } { 2 } \right) = 0

C) sin(5π2)=0\sin \left( \frac { 5 \pi } { 2 } \right) = 0 , cos(5π2)=1\cos \left( - \frac { 5 \pi } { 2 } \right) = - 1

D) sin(5π2)=1\sin \left( \frac { 5 \pi } { 2 } \right) = 1 , cos(5π2)=0\cos \left( - \frac { 5 \pi } { 2 } \right) = 0

E) sin(5π2)=1\sin \left( \frac { 5 \pi } { 2 } \right) = - 1 , cos(5π2)=1cos \left( - \frac { 5 \pi } { 2 } \right) = 1
Question
Use a graphing device to find the maximum and minimum values of the function Use a graphing device to find the maximum and minimum values of the function   .<div style=padding-top: 35px>
.
Question
Find the sign of costsint\cos t \sin t and  sect \text { sect } If the terminal point determined by tIs in quadrant II

A) +,+ , -
B) ,+- , +
C) ,- , -
D) +,++ , +
E) +, undefined + \text {, undefined }
Question
The point <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is on the unit circle in quadrant III. If <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Find y

A) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the amplitude, period, and phase shift of the function. Find the amplitude, period, and phase shift of the function.    <div style=padding-top: 35px> Find the amplitude, period, and phase shift of the function.    <div style=padding-top: 35px>
Question
Suppose that point P(55,255)P \left( \frac { \sqrt { 5 } } { 5 } , - \frac { 2 \sqrt { 5 } } { 5 } \right) is on the unit circle. Find sint\sin t and cost\cos t

A) sint=255,cost=55\sin t = - \frac { 2 \sqrt { 5 } } { 5 } , \quad \cos t = \frac { \sqrt { 5 } } { 5 }
B) sint=55,cost=55\sin t = - \frac { \sqrt { 5 } } { 5 } , \quad \cos t = \frac { \sqrt { 5 } } { 5 }
C) sint=55,cost=255\sin t = \frac { \sqrt { 5 } } { 5 } , \quad \cos t = - \frac { 2 \sqrt { 5 } } { 5 }
D) sint=25,cost=55\sin t = 2 \sqrt { 5 } , \cos t = \frac { \sqrt { 5 } } { 5 }
E) none of these
Question
Find to three decimal places the value of <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none <div style=padding-top: 35px>

A) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none <div style=padding-top: 35px>
B) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none <div style=padding-top: 35px>
C) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none <div style=padding-top: 35px>
D) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none <div style=padding-top: 35px>
E) none
Question
Use the fundamental identities to write the first expression in terms of the second. tan2tsect,cost\tan ^ { 2 } t \sec t , \cos t

A) 1cos2tcos3t\frac { 1 - \cos ^ { 2 } t } { \cos ^ { 3 } t }

B) 1cost\frac { 1 } { \cos t }

C) 1+cos2t1cost\frac { 1 + \cos ^ { 2 } t } { \sqrt { 1 - \cos t } }

D) cos2t1cos3t\frac { \cos ^ { 2 } t - 1 } { \cos ^ { 3 } t }

E) 1cos2t\frac { 1 } { \cos ^ { 2 } t }
Question
Find the reference number and the terminal point p(x,y)p ( x , y ) determined by t=11π6t = - \frac { 11 \pi } { 6 }

A) π6- \frac { \pi } { 6 } , P(x,y)=(52,12)P ( x , y ) = \left( \frac { - \sqrt { 5 } } { 2 } , - \frac { 1 } { 2 } \right)

B) π\pi , P(x,y)=(1,0)P ( x , y ) = ( - 1,0 )

C) π6\frac { \pi } { 6 } , D(x,y)=(32,12)D ( x , y ) = \left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right)

D) π3\frac { \pi } { 3 } , p(x,y)=(12,52)p ( x , y ) = \left( \frac { 1 } { 2 } , \frac { \sqrt { 5 } } { 2 } \right)

E) 11π6\frac { 11 \pi } { 6 } , p(x,y)=(52,12)p ( x , y ) = \left( - \frac { - \sqrt {5 } } { 2 } , - \frac { 1 } { 2 } \right)
Question
Find the period of the function y=15cotxy = \frac { 1 } { 5 } \cot x

A) π5\frac { \pi } { 5 }
B) 5π5 \pi
C) π\pi
D) 2π5\frac { 2 \pi } { 5 }
E) 5π2\frac { 5 \pi } { 2 }
Question
Suppose that point P(223,13)P \left( - \frac { 2 \sqrt { 2 } } { 3 } , - \frac { 1 } { 3 } \right) is on the unit circle. Find sint\sin t and cost\cos t

A) sint=22,cost=3\sin t = - 2 \sqrt { 2 } , \quad \cos t = 3
B) sint=23,cost=3\sin t = - 2 \sqrt { 3 } , \cos t = 3
C) sint=233,cost=13\sin t = - \frac { 2 \sqrt { 3 } } { 3 } , \cos t = - \frac { 1 } { 3 }
D) sint=13,cost=223\sin t = - \frac { 1 } { 3 } , \quad \cos t = - \frac { 2 - \sqrt { 2 } } { 3 }
E) none of these
Question
Graph the function. <strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>

A)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
B)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
C)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
E) none
D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)         <div style=padding-top: 35px>
Question
Suppose that the terminal point determined by <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is the point <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
On the unit circle. Find the terminal point determined by <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the exact value of <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px> and <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>

A) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
B) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
C) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
D) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
E) none of these
Question
Sketch the graph of the function. y=2cos(4xπ2)y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right)

A) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none <div style=padding-top: 35px>
B) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none <div style=padding-top: 35px>
C) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none <div style=padding-top: 35px>
D) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none <div style=padding-top: 35px>
E) none
Question
Use a graphing device to find the maximum and minimum values of the function y=cosx12cos2xy = \cos x - \frac { 1 } { 2 } \cos 2 x

A)maximum value: 43\frac { 4 } { 3 }
, minimum value: 00

B)maximum value: 34\frac { 3 } { 4 }
, minimum value: 1- 1

C)maximum value: 34\frac { 3 } { 4 }
, minimum value: 32- \frac { 3 } { 2 }

D)maximum value: 34\frac { 3 } { 4 }
, minimum value: 43- \frac { 4 } { 3 }

E) none of these
Question
Find the period of the function y=3secxy = 3 \sec x

A) 2π2 \pi
B) π\pi
C) 3π3 \pi
D) π3\frac { \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
Question
Find the exact value of sec(5π2)\sec \left( - \frac { 5 \pi } { 2 } \right) and csc(7π2)\csc \left( - \frac { 7 \pi } { 2 } \right)

A) sec(5π2)=0,csc(7π2)=1\sec \left( - \frac { 5 \pi } { 2 } \right) = 0 , \csc \left( - \frac { 7 \pi } { 2 } \right) = 1

B) sec(5π2)=0,csc(7π2)=1\sec \left( - \frac { 5 \pi } { 2 } \right) = 0 , \csc \left( - \frac { 7 \pi } { 2 } \right) = - 1

C) sec(5π2)=1,csc(7π2)= undefined \sec \left( - \frac { 5 \pi } { 2 } \right) = 1 , \csc \left( - \frac { 7 \pi } { 2 } \right) = \text { undefined }

D) sec(5π2)= undefined, csc(7π2)=1\sec \left( - \frac { 5 \pi } { 2 } \right) = \text { undefined, } \csc \left( - \frac { 7 \pi } { 2 } \right) = 1

E) none of these
Question
Find the approximate value of <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> using a calculator

A) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use the fundamental identities to write the first expression in terms of the second. tan2tsect,cost\tan ^ { 2 } t \sec t , \cos t

A) 1cos2tcos3t\frac { 1 - \cos ^ { 2 } t } { \cos ^ { 3 } t }

B) 1cost\frac { 1 } { \cos t }

C) 1+cos2t1cost\frac { 1 + \cos ^ { 2 } t } { \sqrt { 1 - \cos t } }

D) cos2t1cos3t\frac { \cos ^ { 2 } t - 1 } { \cos ^ { 3 } t }

E) 1cos3t\frac { 1 } { \cos ^ { 3 } t }
Question
The function y=2cos(t3)y = - 2 \cos \left( \frac { t } { 3 } \right) models the displacement of an object moving in simple harmonic motion, where y is measured in inches and t in seconds. Find frequency of motion

A) 13π\frac { 1 } { 3 \pi }

B) 16π\frac { 1 } { 6 \pi }

C) 6π6 \pi
D) 3π3 \pi
E) 2π2 \pi
Question
Find the reference number for t=π6t = - \frac { \pi } { 6 }

A) tˉ=11π6\bar { t } = \frac { 11 \pi } { 6 }
B) tˉ=5π6\bar { t }= - \frac { 5 \pi } { 6 }
C) tˉ=π6\bar { t }= \frac { \pi } { 6 }
D) tˉ=π12\bar { t } = \frac { \pi } { 12 }
E) tˉ=π6\bar { t }= - \frac { \pi } { 6 }
Question
Determine whether the function is even, odd, or neither. <strong>Determine whether the function is even, odd, or neither.  </strong> A)even B)odd C)neither <div style=padding-top: 35px>

A)even
B)odd
C)neither
Question
Find the reference number for t=22π3t = - \frac { 22 \pi } { 3 }

A) tˉ=π6\bar { t } = \frac { \pi } { 6 }
B) tˉ=7π6\bar { t } = - \frac { 7 \pi } { 6 }
C) tˉ=π3\bar { t } = \frac { \pi } { 3 }
D) tˉ=π3\bar { t } = - \frac { \pi } { 3 }
E) tˉ=7π\bar { t } = 7 \pi
Question
If the terminal point determined by tt is (1213,513)\left( \frac { 12 } { 13 } , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\cos t And tant\tan t

A) sin(t)=1213\sin ( t ) = \frac { 12 } { 13 } , cos(t)=513\cos ( t ) = \frac { 5 } { 13 } , tan(t)=512\tan ( t ) = \frac { 5 } { 12 }

B) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = \frac { 12 } { 13 } , tan(t)=512\tan ( t ) = - \frac { 5 } { 12 }

C) sin(t)=513\sin ( t ) = \frac { 5 } { 13 } , cos(t)=12Γ3\cos ( t ) = - \frac { 12 } { \Gamma 3 } , tan(t)=1312\tan ( t ) = - \frac { 13 } { 12 }

D) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = \frac { 12 } { 13 } , tan(t)=125\tan ( t ) = - \frac { 12 } { 5 }

E) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = \frac { 12 } { 13 } , tant=125\tan t = \frac { 12 } { 5 }
Question
Find the vertical asymptotes for the function <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> in the interval <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the exact value of the expression, if it is defined. <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
The point P(x,y)P ( x , y ) is on the unit circle in quadrant IV. If y=5/6y = - 5 / 6 Find x

A) x=11,6x = \sqrt { 11 } , 6
B) x=11/6x = - \sqrt { 11 } / 6
C) x=11/6x = 11 / 6
D) x=11/6x = - 11 / 6
E)none of these
Question
Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> .amplitude 10 m, frequency <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Determine whether the function is even, odd, or neither. <strong>Determine whether the function is even, odd, or neither.  </strong> A)even B)odd C)neither <div style=padding-top: 35px>

A)even
B)odd
C)neither
Question
The point P(x,y)P ( x , y ) is on the unit circle in quadrant IV. If x=11/6x = \sqrt { 11 } / 6
find y.
Question
Which function has y-axis symmetry?

A) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry <div style=padding-top: 35px>
B) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry <div style=padding-top: 35px>
C) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry <div style=padding-top: 35px>
D) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry <div style=padding-top: 35px>
E) all have y-axis symmetry
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/141
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Conic Sections
1
Suppose that the terminal point determined by t is the point (513,1213)\left( \frac { 5 } { 13 } , \frac { 12 } { 13 } \right) on the unit circle. Find the terminal point determined by π+t\pi + t .
(515,1213)\left( - \frac { 5 } { 15 } , - \frac { 12 } { 13 } \right)
2
Find the sign of costsint\cos t \sin t if the terminal point determined by t is in quadrant II.
negative
3
Find the exact value of  Sec (3π4)\text { Sec } \left( \frac { 3 \pi } { 4 } \right) and CSC(11π4)\operatorname { CSC } \left( - \frac { 11 \pi } { 4 } \right) .
2- \sqrt { 2 } , 2- \sqrt { 2 }
4
Find the period of the function y=3secxy = 3 \sec x and sketch its graph.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
5
Find the period of the function y=(cotx)/5y = ( \cot x ) / 5 and sketch its graph.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
6
Find period and graph the function. y=2tan(2xπ/4)y = 2 \tan ( 2 x - \pi / 4 )
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
7
Find the reference number and the terminal point p(x,y)p( x , y ) determined by t=11π6t = \frac { 11 \pi } { 6 } .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
8
The point P(x,y)P ( x , y ) is on the unit circle in quadrant IV. If y=5/6y = - 5 / 6 find x.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
9
Find to two decimal places the approximate value of Find to two decimal places the approximate value of
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
10
Use the fundamental identities to write the first expression in terms of the second. Use the fundamental identities to write the first expression in terms of the second.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
11
If the terminal point determined by t is (1215,515) \left(\frac{12}{15},-\frac{5}{15}\right) , find sint\sin t , cost\cos t and tant\tan t .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
12
Find the vertical asymptotes for the function y=3sec12xy = 3 \sec \frac { 1 } { 2 } x in the interval [0,4π][ 0,4 \pi ] .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
13
If 605t=3/5605 t = 3 / 5 and the terminal point for t is in quadrant IV, find tant+sect\tan t + \mathrm { sec } t .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
14
Find the reference number for Find the reference number for   .
.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
15
Find tant\tan t given that sint=35\sin t = - \frac { 3 } { 5 } and cott<0\mathrm { cot } t < 0 .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
16
Find the amplitude, period and phase shift of Find the amplitude, period and phase shift of   .
.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
17
Find the exact value of sit(9x2)\operatorname { sit } \left( \frac { 9 x } { 2 } \right) and Cos(9x2)\operatorname { Cos} \left( - \frac { 9 x } { 2 } \right) .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
18
Use a graphing device to find the maximum and minimum values of the function y=cosx12cos2xy = \cos x - \frac { 1 } { 2 } \cos 2 x .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
19
Show that the point (1/5,2/5)( 1 / \sqrt { 5 } , - 2 / \sqrt { 5 } ) is on the unit circle.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
20
Find the amplitude, period, and phase shift of the function. y=2cos(12xπ6)y = 2 \cos \left( \frac { 1 } { 2 } x - \frac { \pi } { 6 } \right)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
21
Suppose that the terminal point determined by t is the point (513,1213)\left( \frac { 5 } { 13 } , \frac { 12 } { 13 } \right) on the unit circle. Find the terminal point determined by 2πt2 \pi - t .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
24
The point The point   is on the unit circle in quadrant II. If   find y.
is on the unit circle in quadrant II. If The point   is on the unit circle in quadrant II. If   find y.
find y.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
25
The function y=2cos(t3)y = - 2 \cos \left( \frac { t } { 3 } \right) models the displacement of an object moving in simple harmonic motion, where y is measured in inches and t in seconds. Find the amplitude, period, and frequency of motion and sketch a graph of the function over one complete period.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
26
Find the period of the function Find the period of the function   and sketch its graph.
and sketch its graph.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
27
Show that the point (223,13)\left( - \frac { 2 \sqrt { 2 } } { 3 } , - \frac { 1 } { 3 } \right) is on the unit circle.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
28
If the terminal point determined by t is (1213,513)\left( \frac { 12 } { 13} , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\cos t and tant\tan t .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
29
Find the exact value of the expression, if it is defined. Find the exact value of the expression, if it is defined.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
30
Find the exact value of Find the exact value of   and   .
and Find the exact value of   and   .
.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
31
Determine whether the function is even, odd, or neither. Determine whether the function is even, odd, or neither.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
32
Find the reference number for Find the reference number for   .
.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
33
Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 in, frequency
.amplitude 10 in, frequency Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 in, frequency
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
34
Find sect\operatorname { sect } given that sint=35\sin t = - \frac { 3 } { 5 } and tant>0\tan t > 0 .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
35
If cost=35\cos t = \frac { 3 } { 5 } and the terminal point for t is in quadrant IV, find tant+sect\tan t + \mathrm { sec } t .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
36
Find to two decimal places the value of Find to two decimal places the value of   using a calculator.
using a calculator.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
37
Find the reference number and the terminal point p(x,y)p( x , y ) determined by t=19π6t = \frac { 19 \pi } { 6 } .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
38
Express tant\tan t in terms of sint\sin t , if the terminal point determined by t is in quadrant III.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
39
Find the exact value of sin(19π6)\sin \left( \frac { 19 \pi } { 6 } \right) and cos(5π6)\mathrm { cos } \left( - \frac { 5 \pi } { 6 } \right) .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
40
Find period and graph the function. y=2tan(xπ/4)y = 2 \tan ( x - \pi / 4 )
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
41
Determine whether the function is even, odd, or neither. Determine whether the function is even, odd, or neither.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
42
If the terminal point determined by t is (1213,513)\left( \frac { 12 } { 13 } , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\cos t And tant\tan t

A) sin(t)=1213\sin ( t ) = \frac { 12 } { 13 } , cos(t)=513\cos \left( t ^ { \prime } \right) = \frac { 5 } { 13 } , tan(t)=512\tan ( t ) = \frac { 5 } { 12 }

B) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos (t)=\frac{12}{13} , tan(t)=512\tan ( t ) = - \frac { 5 } { 12 }

C) sin(t)=513\sin ( t ) = \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = - \frac { 12 } { 13 } , tan(t)=1312\tan ( t ) = - \frac { 13 } { 12 }

D) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos=1213\cos = \frac { 12 } { 13 } , tan(t)=125\tan ( t ) = - \frac { 12 } { 5 }

E) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos=1213\cos = \frac { 12 } { 13 } ,  tant t=125\text { tant } t = \frac { 12 } { 5 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
43
Find tant\tan t given that sint=35\sin t = \frac { 3 } { 5 } and cott<0\mathrm { cot } t < 0

A) tant=34\tan t = - \frac { 3 } { 4 }

B) tant=35\tan t = - \frac { 3 } { 5 }

C) tant=1\tan t = - 1

D) tant=34\tan t = \frac { 3 } { 4 }

E) tant=32\tan t = - \frac { \sqrt { 3 } } { 2 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
44
Suppose that the terminal point determined by t is the point (35,45)\left( \frac { 3 } { 5 } , - \frac { 4 } { 5 } \right) on the unit circle. Find the terminal point determined by π+t\pi + t

A) (33,45)\left( \frac { 3 } { 3 } , - \frac { 4 } { 5 } \right)

B) (35,45)\left( - \frac { 3 } { 5 } , \frac { 4 } { 5 } \right)

C) (34,43)\left( \frac { 3 } { 4 } , - \frac { 4 } { 3 } \right)

D) (1,1)( - 1,1 )

E) (45,35)\left( - \frac { 4 } { 5 } , \frac { 3 } { 5 } \right)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
45
If cost=35\cos t = \frac { 3 } { 5 } and the terminal point for t is in quadrant IV, find Cott+CSCt\mathrm { Cot } t + \mathrm { CSC } t

A) 12- \frac { 1 } { 2 }

B) 2- 2

C) 22

D) 12\frac { 1 } { 2 }

E) 54- \frac { 5 } { 4 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
46
Find the vertical asymptotes for the function y=tan2xy = \tan 2 x in the interval (π2,π2}\left( - \frac { \pi } { 2 } , \frac { \pi} { 2 } \right\} .
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
47
Find the exact value of  Sec (3π4)\text { Sec } \left( \frac { 3 \pi } { 4 } \right) and CSC(11π4)\operatorname { CSC} \left( - \frac { 11 \pi } { 4 } \right)

A) 22\frac { - \sqrt { 2 } } { 2 } , 2- \sqrt { 2 }

B) 2- \sqrt { 2 } , 12\frac { - 1 } { 2 }

C) 23\frac { - \sqrt { 2 } } { 3 } , 23- \frac { \sqrt { 2 } } { 3 }

D) 2- \sqrt { 2 } , 2- \sqrt { 2 }

E) 1- 1 , 1- 1
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
48
Find the exact value of each expression, if it is defined
a) sin1(2)\sin ^ { - 1 } ( - 2 )

b) cos1(3)\cos ^ { - 1 } ( - \sqrt { 3 } ) c) tan1(1)\tan ^ { - 1 } ( - 1 )
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
49
Find the reference number for t=26π5t = - \frac { 26 \pi } { 5 }

A) π5- \frac { \pi } { 5 }

B) 26π5\frac { 26 \pi } { 5 }

C) 13π5- \frac { 13 \pi } { 5 }

D) 5π5 \pi

E) π5\frac { \pi } { 5 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
50
Find a function that models simple harmonic motion having the given properties. Assume that the displacement is maximum at time t=0t = 0 .amplitude 2.5 m2.5 \mathrm {~m} , frequency 750 Hz750 \mathrm {~Hz}
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
51
Find the exact value of sin(5π2)\sin \left( \frac { 5 \pi } { 2 } \right) and cos(5π2)\text {cos} \left( - \frac { 5 \pi } { 2 } \right)

A) sin(5π2)=52\sin \left( \frac { 5 \pi } { 2 } \right) = \frac { 5 } { 2 } , cos(5π2)=32\mathrm { cos } \left( - \frac { 5 \pi } { 2 } \right) = \frac { 3 } { 2 }

B) sin(5π2)=1\sin \left( \frac { 5 \pi } { 2 } \right) = - 1 , cos(5π2)=0\cos \left( - \frac { 5 \pi } { 2 } \right) = 0

C) sin(5π2)=0\sin \left( \frac { 5 \pi } { 2 } \right) = 0 , cos(5π2)=1\cos \left( - \frac { 5 \pi } { 2 } \right) = - 1

D) sin(5π2)=1\sin \left( \frac { 5 \pi } { 2 } \right) = 1 , cos(5π2)=0\cos \left( - \frac { 5 \pi } { 2 } \right) = 0

E) sin(5π2)=1\sin \left( \frac { 5 \pi } { 2 } \right) = - 1 , cos(5π2)=1cos \left( - \frac { 5 \pi } { 2 } \right) = 1
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
53
Use a graphing device to find the maximum and minimum values of the function Use a graphing device to find the maximum and minimum values of the function   .
.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
54
Find the sign of costsint\cos t \sin t and  sect \text { sect } If the terminal point determined by tIs in quadrant II

A) +,+ , -
B) ,+- , +
C) ,- , -
D) +,++ , +
E) +, undefined + \text {, undefined }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
55
The point <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)   is on the unit circle in quadrant III. If <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)
Find y

A) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)
B) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)
C) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)
D) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)
E) <strong>The point   is on the unit circle in quadrant III. If   Find y</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
56
Find the amplitude, period, and phase shift of the function. Find the amplitude, period, and phase shift of the function.    Find the amplitude, period, and phase shift of the function.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
57
Suppose that point P(55,255)P \left( \frac { \sqrt { 5 } } { 5 } , - \frac { 2 \sqrt { 5 } } { 5 } \right) is on the unit circle. Find sint\sin t and cost\cos t

A) sint=255,cost=55\sin t = - \frac { 2 \sqrt { 5 } } { 5 } , \quad \cos t = \frac { \sqrt { 5 } } { 5 }
B) sint=55,cost=55\sin t = - \frac { \sqrt { 5 } } { 5 } , \quad \cos t = \frac { \sqrt { 5 } } { 5 }
C) sint=55,cost=255\sin t = \frac { \sqrt { 5 } } { 5 } , \quad \cos t = - \frac { 2 \sqrt { 5 } } { 5 }
D) sint=25,cost=55\sin t = 2 \sqrt { 5 } , \cos t = \frac { \sqrt { 5 } } { 5 }
E) none of these
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
58
Find to three decimal places the value of <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none

A) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none
B) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none
C) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none
D) <strong>Find to three decimal places the value of  </strong> A)   B)   C)   D)   E) none
E) none
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
59
Use the fundamental identities to write the first expression in terms of the second. tan2tsect,cost\tan ^ { 2 } t \sec t , \cos t

A) 1cos2tcos3t\frac { 1 - \cos ^ { 2 } t } { \cos ^ { 3 } t }

B) 1cost\frac { 1 } { \cos t }

C) 1+cos2t1cost\frac { 1 + \cos ^ { 2 } t } { \sqrt { 1 - \cos t } }

D) cos2t1cos3t\frac { \cos ^ { 2 } t - 1 } { \cos ^ { 3 } t }

E) 1cos2t\frac { 1 } { \cos ^ { 2 } t }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
60
Find the reference number and the terminal point p(x,y)p ( x , y ) determined by t=11π6t = - \frac { 11 \pi } { 6 }

A) π6- \frac { \pi } { 6 } , P(x,y)=(52,12)P ( x , y ) = \left( \frac { - \sqrt { 5 } } { 2 } , - \frac { 1 } { 2 } \right)

B) π\pi , P(x,y)=(1,0)P ( x , y ) = ( - 1,0 )

C) π6\frac { \pi } { 6 } , D(x,y)=(32,12)D ( x , y ) = \left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right)

D) π3\frac { \pi } { 3 } , p(x,y)=(12,52)p ( x , y ) = \left( \frac { 1 } { 2 } , \frac { \sqrt { 5 } } { 2 } \right)

E) 11π6\frac { 11 \pi } { 6 } , p(x,y)=(52,12)p ( x , y ) = \left( - \frac { - \sqrt {5 } } { 2 } , - \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
61
Find the period of the function y=15cotxy = \frac { 1 } { 5 } \cot x

A) π5\frac { \pi } { 5 }
B) 5π5 \pi
C) π\pi
D) 2π5\frac { 2 \pi } { 5 }
E) 5π2\frac { 5 \pi } { 2 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
62
Suppose that point P(223,13)P \left( - \frac { 2 \sqrt { 2 } } { 3 } , - \frac { 1 } { 3 } \right) is on the unit circle. Find sint\sin t and cost\cos t

A) sint=22,cost=3\sin t = - 2 \sqrt { 2 } , \quad \cos t = 3
B) sint=23,cost=3\sin t = - 2 \sqrt { 3 } , \cos t = 3
C) sint=233,cost=13\sin t = - \frac { 2 \sqrt { 3 } } { 3 } , \cos t = - \frac { 1 } { 3 }
D) sint=13,cost=223\sin t = - \frac { 1 } { 3 } , \quad \cos t = - \frac { 2 - \sqrt { 2 } } { 3 }
E) none of these
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
63
Graph the function. <strong>Graph the function.  </strong> A)           B)       C)       E) none D)

A)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
B)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
C)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
E) none
D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
<strong>Graph the function.  </strong> A)           B)       C)       E) none D)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
64
Suppose that the terminal point determined by <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)   is the point <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)
On the unit circle. Find the terminal point determined by <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)

A) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)
B) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)
C) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)
D) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)
E) <strong>Suppose that the terminal point determined by   is the point   On the unit circle. Find the terminal point determined by  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
65
Find the exact value of <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these and <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these

A) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these
B) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these
C) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these
D) <strong>Find the exact value of   and  </strong> A)   B)   C)   D)   E) none of these
E) none of these
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
66
Sketch the graph of the function. y=2cos(4xπ2)y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right)

A) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none
B) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none
C) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none
D) <strong>Sketch the graph of the function.  y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) </strong> A)  B)  C)  D)  E) none
E) none
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
67
Use a graphing device to find the maximum and minimum values of the function y=cosx12cos2xy = \cos x - \frac { 1 } { 2 } \cos 2 x

A)maximum value: 43\frac { 4 } { 3 }
, minimum value: 00

B)maximum value: 34\frac { 3 } { 4 }
, minimum value: 1- 1

C)maximum value: 34\frac { 3 } { 4 }
, minimum value: 32- \frac { 3 } { 2 }

D)maximum value: 34\frac { 3 } { 4 }
, minimum value: 43- \frac { 4 } { 3 }

E) none of these
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
68
Find the period of the function y=3secxy = 3 \sec x

A) 2π2 \pi
B) π\pi
C) 3π3 \pi
D) π3\frac { \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
69
Find the exact value of sec(5π2)\sec \left( - \frac { 5 \pi } { 2 } \right) and csc(7π2)\csc \left( - \frac { 7 \pi } { 2 } \right)

A) sec(5π2)=0,csc(7π2)=1\sec \left( - \frac { 5 \pi } { 2 } \right) = 0 , \csc \left( - \frac { 7 \pi } { 2 } \right) = 1

B) sec(5π2)=0,csc(7π2)=1\sec \left( - \frac { 5 \pi } { 2 } \right) = 0 , \csc \left( - \frac { 7 \pi } { 2 } \right) = - 1

C) sec(5π2)=1,csc(7π2)= undefined \sec \left( - \frac { 5 \pi } { 2 } \right) = 1 , \csc \left( - \frac { 7 \pi } { 2 } \right) = \text { undefined }

D) sec(5π2)= undefined, csc(7π2)=1\sec \left( - \frac { 5 \pi } { 2 } \right) = \text { undefined, } \csc \left( - \frac { 7 \pi } { 2 } \right) = 1

E) none of these
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
70
Find the approximate value of <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)   using a calculator

A) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)
B) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)
C) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)
D) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)
E) <strong>Find the approximate value of   using a calculator</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
71
Use the fundamental identities to write the first expression in terms of the second. tan2tsect,cost\tan ^ { 2 } t \sec t , \cos t

A) 1cos2tcos3t\frac { 1 - \cos ^ { 2 } t } { \cos ^ { 3 } t }

B) 1cost\frac { 1 } { \cos t }

C) 1+cos2t1cost\frac { 1 + \cos ^ { 2 } t } { \sqrt { 1 - \cos t } }

D) cos2t1cos3t\frac { \cos ^ { 2 } t - 1 } { \cos ^ { 3 } t }

E) 1cos3t\frac { 1 } { \cos ^ { 3 } t }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
72
The function y=2cos(t3)y = - 2 \cos \left( \frac { t } { 3 } \right) models the displacement of an object moving in simple harmonic motion, where y is measured in inches and t in seconds. Find frequency of motion

A) 13π\frac { 1 } { 3 \pi }

B) 16π\frac { 1 } { 6 \pi }

C) 6π6 \pi
D) 3π3 \pi
E) 2π2 \pi
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
73
Find the reference number for t=π6t = - \frac { \pi } { 6 }

A) tˉ=11π6\bar { t } = \frac { 11 \pi } { 6 }
B) tˉ=5π6\bar { t }= - \frac { 5 \pi } { 6 }
C) tˉ=π6\bar { t }= \frac { \pi } { 6 }
D) tˉ=π12\bar { t } = \frac { \pi } { 12 }
E) tˉ=π6\bar { t }= - \frac { \pi } { 6 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
74
Determine whether the function is even, odd, or neither. <strong>Determine whether the function is even, odd, or neither.  </strong> A)even B)odd C)neither

A)even
B)odd
C)neither
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
75
Find the reference number for t=22π3t = - \frac { 22 \pi } { 3 }

A) tˉ=π6\bar { t } = \frac { \pi } { 6 }
B) tˉ=7π6\bar { t } = - \frac { 7 \pi } { 6 }
C) tˉ=π3\bar { t } = \frac { \pi } { 3 }
D) tˉ=π3\bar { t } = - \frac { \pi } { 3 }
E) tˉ=7π\bar { t } = 7 \pi
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
76
If the terminal point determined by tt is (1213,513)\left( \frac { 12 } { 13 } , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\cos t And tant\tan t

A) sin(t)=1213\sin ( t ) = \frac { 12 } { 13 } , cos(t)=513\cos ( t ) = \frac { 5 } { 13 } , tan(t)=512\tan ( t ) = \frac { 5 } { 12 }

B) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = \frac { 12 } { 13 } , tan(t)=512\tan ( t ) = - \frac { 5 } { 12 }

C) sin(t)=513\sin ( t ) = \frac { 5 } { 13 } , cos(t)=12Γ3\cos ( t ) = - \frac { 12 } { \Gamma 3 } , tan(t)=1312\tan ( t ) = - \frac { 13 } { 12 }

D) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = \frac { 12 } { 13 } , tan(t)=125\tan ( t ) = - \frac { 12 } { 5 }

E) sin(t)=513\sin ( t ) = - \frac { 5 } { 13 } , cos(t)=1213\cos ( t ) = \frac { 12 } { 13 } , tant=125\tan t = \frac { 12 } { 5 }
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
77
Find the vertical asymptotes for the function <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)   in the interval <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)

A) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)
B) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)
C) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)
D) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)
E) <strong>Find the vertical asymptotes for the function   in the interval  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
78
Find the exact value of the expression, if it is defined. <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)

A) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)
B) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)
C) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)
D) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)
E) <strong>Find the exact value of the expression, if it is defined.  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
79
The point P(x,y)P ( x , y ) is on the unit circle in quadrant IV. If y=5/6y = - 5 / 6 Find x

A) x=11,6x = \sqrt { 11 } , 6
B) x=11/6x = - \sqrt { 11 } / 6
C) x=11/6x = 11 / 6
D) x=11/6x = - 11 / 6
E)none of these
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
80
Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)   .amplitude 10 m, frequency <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)

A) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)
B) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)
C) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)
D) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)
E) <strong>Find a function that models simple harmonic motion having the given properties. Assume that the displacement is zero at time   .amplitude 10 m, frequency  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
81
Determine whether the function is even, odd, or neither. <strong>Determine whether the function is even, odd, or neither.  </strong> A)even B)odd C)neither

A)even
B)odd
C)neither
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
82
The point P(x,y)P ( x , y ) is on the unit circle in quadrant IV. If x=11/6x = \sqrt { 11 } / 6
find y.
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
83
Which function has y-axis symmetry?

A) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry
B) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry
C) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry
D) <strong>Which function has y-axis symmetry?</strong> A)   B)   C)   D)   E) all have y-axis symmetry
E) all have y-axis symmetry
Unlock Deck
Unlock for access to all 141 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 141 flashcards in this deck.