Deck 1: Basic Concepts

Full screen (f)
exit full mode
Question
Determine whether the statement is true or false.

- {1,3,5,7,}\{ 1,3,5,7 , \ldots \} is the set of odd natural numbers.
Use Space or
up arrow
down arrow
to flip the card.
Question
Determine whether the statement is true or false.
Every irrational number is an integer.
Question
List the set in roster form.

- A={x2<x<1 and xI}A = \{ x \mid - 2 < x < 1 \text { and } x \in I \}

A) {1,12,0}\left\{ - 1 , - \frac { 1 } { 2 } , 0 \right\}
B) {2,1,0,1}\{ - 2 , - 1,0,1 \}
C) {1,0}\{ - 1,0 \}
D) {}\{ \}
Question
Determine whether the statement is true or false.
Some real numbers are integers.
Question
Determine whether the statement is true or false.
Every integer is an irrational number.
Question
Determine whether the statement is true or false.
The set of integers is an infinite set.
Question
Determine whether the statement is true or false.
The set of rational numbers is a finite set.
Question
Determine whether the statement is true or false.
Some rational numbers are integers.
Question
Insert eithernsert either < or >< \text { or } > to to make the statement true.

--53 _____ -70

A) >>
B) <<
Question
Insert eithernsert either < or >< \text { or } > to to make the statement true.

- 45 ___1- \frac { 4 } { 5 } ~\_\_\_ - 1

A) <<
B) >>
Question
Determine whether the statement is true or false.
Every whole number is a real number.
Question
Determine whether the statement is true or false.
The intersection of the set of rational numbers with the set of irrational numbers is the empty set.
Question
Determine whether the statement is true or false.
Every rational number is an integer.
Question
Insert eithernsert either < or >< \text { or } > to to make the statement true.

--6 _____ 3

A) >>
B) <<
Question
Insert eithernsert either < or >< \text { or } > to to make the statement true.

-6.2 _____ 6.3

A) >>
B) <<
Question
Determine whether the statement is true or false.
The union of the set of rational numbers with the set of irrational numbers is the empty set.
Question
Determine whether the statement is true or false.

- {,7,5,3,1,1,3,5,7,}\{ \ldots , - 7 , - 5 , - 3 , - 1,1,3,5,7 , \ldots \} is the set of odd natural numbers.
Question
Determine whether the statement is true or false.
Some rational numbers are irrational.
Question
Insert eithernsert either < or >< \text { or } > to to make the statement true.

- 49 ___37- \frac { 4 } { 9 } ~\_\_\_ - \frac { 3 } { 7 }

A) <<
B) >>
Question
List the set in roster form.

- S={xx is an even integer greater than 30 and less than or equal to 36}S = \{ x \mid x \text { is an even integer greater than } 30 \text { and less than or equal to } 36 \}

A){32, 34, 36}
B){31, 32, 33, 34, 35, 36}
C){30, 31, 32, 33, 34, 35, 36}
D){30, 32, 34, 36}
Question
Illustrate the set on a number line.

- {p4p3}\{ p \mid - 4 \leq p \leq - 3 \}

 <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find AR andAR for the sets A and B\mathbf { Find~ A \cup R ~and A \cap R~ for~ the~ sets~ A~ and~ B}

- A={3,2,1},B={0,1,2}A = \{ - 3 , - 2 , - 1 \} , B = \{ 0,1,2 \}

A) AB={}AB={3,2,1,0,2}\begin{array} { l } A \cup B = \{ \} \\A \cap B = \{ - 3 , - 2 , - 1,0,2 \}\end{array}
B) AB={3,2,1,0,2}AB={}\begin{array} { l } A \cup B = \{ - 3 , - 2 , - 1,0,2 \} \\A \cap B = \{ \}\end{array}
C) AB={}AB={3,2,1,0,1,2}\begin{array} { l } A \cup B = \{ \} \\A \cap B = \{ - 3 , - 2 , - 1,0,1,2 \}\end{array}
D) AB={3,2,1,0,1,2}AB={}\begin{array} { l } A \cup B = \{ - 3 , - 2 , - 1,0,1,2 \} \\A \cap B = \{ \}\end{array}
Question
Illustrate the set on a number line.

- {tt8}\{ \mathrm { t } \mid \mathrm { t } \geq 8 \}  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Illustrate the set on a number line.

- {yy<4}\{ \mathrm { y } \mid \mathrm { y } < - 4 \}

 <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Illustrate the set on a number line.

- {xx>4}\{ x \mid x > - 4 \}

 <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
The Little Town Dog Club offers a "Puppy Kindergarten" for puppies in their community. In order for a dog to
advance from this introductory class to the first level obedience class, it must consistently demonstrate
knowledge of each of 4 commands. The instructor has the following table in her record book. Solve the problem. The Little Town Dog Club offers a Puppy Kindergarten for puppies in their community. In order for a dog to advance from this introductory class to the first level obedience class, it must consistently demonstrate knowledge of each of 4 commands. The instructor has the following table in her record book.   Let A = the set of dogs who have demonstrated knowledge of Sit/Stay. Let B = the set of dogs who have demonstrated knowledge of Down/Stay. Let C = the set of dogs who have demonstrated knowledge of Heel. Let D = the set of dogs who have demonstrated knowledge of Come. Give each of the sets A, B, C, and D using roster notation. Determine the set A ∩ B ∩ C ∩ D. Which dogs are ready to advance to the next level?<div style=padding-top: 35px> Let A = the set of dogs who have demonstrated knowledge of Sit/Stay.
Let B = the set of dogs who have demonstrated knowledge of Down/Stay.
Let C = the set of dogs who have demonstrated knowledge of Heel.
Let D = the set of dogs who have demonstrated knowledge of Come.
Give each of the sets A, B, C, and D using roster notation. Determine the set A ∩ B ∩ C ∩ D. Which dogs are ready to
advance to the next level?
Question
Illustrate the set on a number line.

- {x5x0 and xI}\{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}

 <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
List the set in roster form.

- S={xx is a natural number less than 5}S = \{ x \mid x \text { is a natural number less than } 5 \}

A){1, 2, 3, 4, 5}
B){0, 1, 2, 3, 4, 5}
C){1, 2, 3, 4}
D){0, 1, 2, 3, 4}
Question
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  - </strong> A)  \{ x \mid x < 5 \}  B)  \{ x \mid x \geq 5 \}  C)  \{ x \mid x > 5 \}  D)  \{ x \mid x \leq 5 \}  <div style=padding-top: 35px>

A) {xx<5}\{ x \mid x < 5 \}
B) {xx5}\{ x \mid x \geq 5 \}
C) {xx>5}\{ x \mid x > 5 \}
D) {xx5}\{ x \mid x \leq 5 \}
Question
Illustrate the set on a number line.

- {qq<π and qN}\{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}

 <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find AR andAR for the sets A and B\mathbf { Find~ A \cup R ~and A \cap R~ for~ the~ sets~ A~ and~ B}

- A={1,2,3,4,5},\mathrm { A } = \{ 1,2,3,4,5 \}, B={2,4,6,8}B = \{ 2,4,6,8 \}

A) AB={2,4}AB={1,2,3,4,5,6,8}\begin{array} { l } A \cup B = \{ 2,4 \} \\A \cap B = \{ 1,2,3,4,5,6,8 \}\end{array}
B) AB={2,4}AB={1,2,3,4,5,6,7,8}\begin{array} { l } A \cup B = \{ 2,4 \} \\A \cap B = \{ 1,2,3,4,5,6,7,8 \}\end{array}
C) AB={1,2,3,4,5,6,8}AB={2,4}\begin{array} { l } \mathrm { A } \cup \mathrm { B } = \{ 1,2,3,4,5,6,8 \} \\\mathrm { A } \cap \mathrm { B } = \{ 2,4 \}\end{array}
D) AB={1,2,3,4,5,6,7,8}AB={2,4}\begin{array} { l } A \cup B = \{ 1,2,3,4,5,6,7,8 \} \\A \cap B = \{ 2,4 \}\end{array}
Question
Find AR andAR for the sets A and B\mathbf { Find~ A \cup R ~and A \cap R~ for~ the~ sets~ A~ and~ B}

-A = { {1,13,19,127,181,}\left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\} B = { {19,181,1729}\left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } , \frac { 1 } { 729 } \right\}

A) AB={19,181}AB={1,13,19,127,181,}\begin{array} { l } A \cup B = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } \right\} \\\\A \cap B = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\}\end{array}
B) AB={19,181,1729}AB={1,13,19,127,181,}\begin{array} { l } \mathrm { A } \cup \mathrm { B } = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } , \frac { 1 } { 729 } \right\} \\\\\mathrm { A } \cap \mathrm { B } = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\}\end{array}
C) AB={1,13,19,127,181,}AB={19,181,1729}\begin{array} { l } \mathrm { A } \cup \mathrm { B } = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\} \\\\\mathrm { A } \cap \mathrm { B } = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } , \frac { 1 } { 729 } \right\}\end{array}
D) AB={1,13,19,127,181,}AB={19,181}\begin{array} { l } A \cup B = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\} \\\\A \cap B = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } \right\}\end{array}
Question
List the set in roster form.

- S={xx is and integer between 3 and 4}S = \{ x \mid x \text { is and integer between } 3 \text { and } 4 \}

A){3}
B){3, 4}
C) {72}\left\{ \frac { 7 } { 2 } \right\}
D){ }
Question
List the set in roster form.

- S={xx is a whole number multiple of 4}S = \{ x \mid x \text { is a whole number multiple of } 4 \}

A){1, 4, 8, 12, 16, . . . }
B){0, 4, 8, 12, 16, . . . }
C){4, 8, 12, 16, 20, . . . }
D){8, 12, 16, 20, 24, . . . }
Question
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  -  A = -4.8</strong> A)  \{ x \mid x > - 4.8 \}  B)  \{ x \mid x \leq - 4.8 \}  C)  \{ x \mid x \geq - 4.8 \}  D)  \{ x \mid x < - 4.8 \}  <div style=padding-top: 35px>  A = -4.8

A) {xx>4.8}\{ x \mid x > - 4.8 \}
B) {xx4.8}\{ x \mid x \leq - 4.8 \}
C) {xx4.8}\{ x \mid x \geq - 4.8 \}
D) {xx<4.8}\{ x \mid x < - 4.8 \}
Question
Illustrate the set on a number line.

- {k2<k<6}\{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  - </strong> A)  \{ x \mid - 2 \leq x \leq 6 \}  B)  \{ x \mid - 2 < x \leq 6 \}  C)  \{ x \mid - 2 < x < 6 \}  D)  \{ x \mid - 2 \leq x < 6 \}  <div style=padding-top: 35px>

A) {x2x6}\{ x \mid - 2 \leq x \leq 6 \}
B) {x2<x6}\{ x \mid - 2 < x \leq 6 \}
C) {x2<x<6}\{ x \mid - 2 < x < 6 \}
D) {x2x<6}\{ x \mid - 2 \leq x < 6 \}
Question
List the set in roster form.

- S={xx is an integer greater than 5}S = \{ x \mid x \text { is an integer greater than } - 5 \}

A){0, 1, 2, 3, 4, 5, . . . }
B){-4, -3, -2, -1, 0, . . . }
C){1, 2, 3, 4, 5, . . . }
D){-5, -4, -3, -2, -1, 0, . . . }
Question
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  - </strong> A)  \{ x \mid x \geq - 6 \}  B)  \{ x \mid x > - 6 \}  C)  \{ x \mid x < - 6 \}  D)  \{ x \mid x \leq - 6 \}  <div style=padding-top: 35px>

A) {xx6}\{ x \mid x \geq - 6 \}
B) {xx>6}\{ x \mid x > - 6 \}
C) {xx<6}\{ x \mid x < - 6 \}
D) {xx6}\{ x \mid x \leq - 6 \}
Question
Solve the problem.

-The table shows the students who had a score of 80 or higher on the first two tests in a chemistry class. (Note: Every student in the class had a different first name.)  First  Test  Second  Test  Fred  Linda  Sue  Earl  Ken  Eloise  Eloise  Fred  Roger  Ken  Bill  Cal \begin{array} { c | c } \begin{array} { c c } \text { First } \\\text { Test }\end{array} & \begin{array} { c } \text { Second } \\\text { Test }\end{array} \\\hline \text { Fred } & \text { Linda } \\\text { Sue } & \text { Earl } \\\text { Ken } & \text { Eloise } \\\text { Eloise } & \text { Fred } \\\text { Roger } & \text { Ken } \\\text { Bill } & \\\text { Cal } &\end{array} Find the set of students who had a score of 80 or higher on the first or second tests.

A){Linda, Ken, Eloise, Roger }
B){Fred, Ken, Eloise}
C){Linda, Sue, Earl, Roger, Bill, Cal}
D){Fred, Linda, Sue, Earl, Ken, Eloise, Roger, Bill, Cal}
Question
Evaluate the absolute value expression.

- 4| - 4 |

A)-4
B)0
C)8
D)4
Question
Solve the problem.

-List the elements of S that are integers.

A){-5, 0, 3}
B){3}
C) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
D){0, 3}
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is Q a subset of I?

A)Yes
B)No
Question
Evaluate the absolute value expression.

- 1722\left| - \frac { 17 } { 22 } \right|

A)0
B) 1722\frac { 17 } { 22 }
C) 1711\frac { 17 } { 11 }
D) 1722- \frac { 17 } { 22 }
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is I a subset of Q?

A)Yes
B)No
Question
Evaluate the absolute value expression.

- 411\left|\frac { 4 } { 11 }\right|

A) 411\frac { 4 } { 11 }
B) 411- \frac { 4 } { 11 }
C)0
D) 811\frac { 8 } { 11 }
Question
Solve the problem.

-List the elements of S that are real numbers.

A){-5, 0, 3}
B) {5.27,5,0,13,47,107121,3,3,12}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , \sqrt { 3 } , 3 , \sqrt { 12 } \right\}
C) {3,12}\{ \sqrt { 3 } , \sqrt { 12 } \}
D) {5.27,5,0,13,47,107121,3}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is Q a subset of R?

A)Yes
B)No
Question
Solve the problem.

-From the Venn diagram, determine the set A. <strong>Solve the problem.  -From the Venn diagram, determine the set A.  </strong> A){5, 7} B){2, 3, 4, 5, 7} C){2, 3, 4} D){2, 3, 4, 5, 6, 7, 9} <div style=padding-top: 35px>

A){5, 7}
B){2, 3, 4, 5, 7}
C){2, 3, 4}
D){2, 3, 4, 5, 6, 7, 9}
Question
Solve the problem.

-List the elements of S that are rational numbers.

A) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
B){-5, 0, 3}
C) {5.27,5,0,13,47,107121,3,3,12}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , \sqrt { 3 } , 3 , \sqrt { 12 } \right\}
D) {5,13,47,107121,3}\left\{ - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
Question
Solve the problem.

-List the elements of S that are whole numbers.

A) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
B){-5, 0, 3}
C){0, 3}
D){3}
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is H a subset of R?

A)Yes
B)No
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is Q a subset of H?

A)Yes
B)No
Question
Evaluate the absolute value expression.

-| 23.5| - 23.5 |

A)47
B)23.5
C)-23.5
D)0
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is W a subset of N?

A)Yes
B)No
Question
Evaluate the absolute value expression.

- 4| 4 |

A)0
B)-4
C)4
D)8
Question
Solve the problem.

-List the elements of S that are irrational numbers.

A) {3,12}\{ \sqrt { 3 } , \sqrt { 12 } \}
B) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
C) {5.27,5,0,13,47,107121,3,3,12}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , \sqrt { 3 } , 3 , \sqrt { 12 } \right\}
D) {5.27,13,47,107121}\left\{ - 5.27 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } \right\}
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is W a subset of Q?

A)Yes
B)No
Question
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is N a subset of W?

A)Yes
B)No
Question
Solve the problem.

-List the elements of S that are natural numbers.

A){0, 3}
B){3}
C) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
D){-5, 0, 3}
Question
Evaluate the absolute value expression.

- 16- | 16 |

A)32
B)0
C)-16
D)16
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 21| - 21 | _________ 21- 21

A) <<
B)=
C) >>
Question
Evaluate the absolute value expression.

- 8.7- | - 8.7 |

A)0
B)-8.7
C)17.4
D)8.7
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 4- | - 4 | _________ 10|-10|

A) <<
B)=
C) >>
Question
List the values from smallest to largest.

- 7,15,9,22,17- 7 , - 15 , - | 9 | , - | 22 | , - | - 17 |

A) 22,9,17,15,7- | 22 | , - | 9 | , - | - 17 | , - 15 , - 7
B) 22,17,9,15,7- | 22 | , - | - 17 | , - | 9 | , - 15 , - 7
C) 22,15,17,9,7- | 22 | , - 15 , - | - 17 | , - | 9 | , - 7
D) 22,17,15,9,7- | 22 | , - | - 17 | , - 15 , - | 9 | , - 7
Question
Evaluate the absolute value expression.

- 0| 0 |

A)-1
B)1
C)0
D)undefined
Question
List the values from smallest to largest.

- 2.4,2.1,2.3,2.4,2.7,2.9- 2.4 , - | - 2.1 | , - 2.3 , | - 2.4 | , - | - 2.7 | , - | 2.9 |

A) 2.9,2.7,2.3,2.4,2.1,2.4- | 2.9 | , - | - 2.7 | , - 2.3 , - 2.4 , - | - 2.1 | , | - 2.4 |
B) 2.9,2.7,2.4,2.3,2.1,2.4- | 2.9 | , - | - 2.7 | , - 2.4 , - 2.3 , - | - 2.1 | , | - 2.4 |
C) 2.9,2.4,2.7,2.3,2.1,2.4- | 2.9 | , - 2.4 , - | - 2.7 | , - 2.3 , - | - 2.1 | , | - 2.4 |
D) 2.9,2.7,2.4,2.1,2.3,2.4- | 2.9 | , - | - 2.7 | , - 2.4 , - | - 2.1 | , - 2.3 , | - 2.4 |
Question
Evaluate the absolute value expression.

- 12- | - 12 |

A)0
B)-12
C)24
D)12
Question
Evaluate the absolute value expression.

- 617- \left| - \frac { 6 } { 17 } \right|

A)0
B) 1217\frac { 12 } { 17 }
C) 617- \frac { 6 } { 17 }
D) 617\frac { 6 } { 17 }
Question
List the values from smallest to largest.

- 25,12,25,12,78\left| - \frac { 2 } { 5 } \right| , - \left| \frac { 1 } { 2 } \right| , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right| , - \frac { 7 } { 8 }

A) 78,25,12,25,12- \frac { 7 } { 8 } , - \left| - \frac { 2 } { 5 } \right| , - \left| \frac { 1 } { 2 } \right| , \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right|
B) 78,12,25,12,25- \frac { 7 } { 8 } , - \left| \frac { 1 } { 2 } \right| , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right| , \left| - \frac { 2 } { 5 } \right|
C) 78,12,25,25,12- \frac { 7 } { 8 } , - \left| \frac { 1 } { 2 } \right| , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right|
D) 12,78,25,25,12- \left| \frac { 1 } { 2 } \right| , - \frac { 7 } { 8 } , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right|
Question
Evaluate.
3 + (-14)

A)-17
B)11
C)-11
D)17
Question
List the values from smallest to largest.

- π,π,5,5,2,2\pi , - \pi , | - 5 | , - | - 5 | , | - 2 | , - | - 2 |

A) 5,2,π,2,π,5- | - 5 | , - | - 2 | , - \pi , | - 2 | , \pi , | - 5 |
B) 5,π,2,π,2,5- | - 5 | , - \pi , - | - 2 | , \pi , | - 2 | , | - 5 |
C) 5,π,2,2,5,π- | - 5 | , - \pi , - | - 2 | , | - 2 | , | - 5 | , \pi
D) 5,π,2,2,π,5- | - 5 | , - \pi , - | - 2 | , | - 2 | , \pi , | - 5 |
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 17| - 17 | _______ 17- | 17 |

A) >>
B)=
C) <<
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 7| - 7 | _______ 1- 1

A) <<
B)=
C) >>
Question
List the values from smallest to largest.

- 4,1,5,8- 4 , | - 1 | , | 5 | , - | - 8 |

A) 4,8,1,5- 4 , - | - 8 | , | - 1 | , | 5 |
B) 8,4,5,1- | - 8 | , - 4 , | 5 | , | - 1 |
C) 8,4,1,5- | - 8 | , - 4 , | - 1 | , | 5 |
D) 8,1,4,5- | - 8 | , | - 1 | , - 4 , | 5 |
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 8| - 8 | _______ 5- | - 5 |

A) <<
B) >>
C)=
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 9___2- 9 \_\_\_ | - 2 |

A)=
B) <<
C) >>
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

-| 21| - 21 | _________ 21| 21 |

A)=
B) >>
C) <<
Question
Evaluate the absolute value expression.

- 57- \left| \frac { 5 } { 7 } \right|

A) 57- \frac { 5 } { 7 }
B) 107\frac { 10 } { 7 }
C) 57\frac { 5 } { 7 }
D)0
Question
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 10| - 10 | ________ 4| - 4 |

A)=
B) >>
C) <<
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/306
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Basic Concepts
1
Determine whether the statement is true or false.

- {1,3,5,7,}\{ 1,3,5,7 , \ldots \} is the set of odd natural numbers.
True
2
Determine whether the statement is true or false.
Every irrational number is an integer.
False
3
List the set in roster form.

- A={x2<x<1 and xI}A = \{ x \mid - 2 < x < 1 \text { and } x \in I \}

A) {1,12,0}\left\{ - 1 , - \frac { 1 } { 2 } , 0 \right\}
B) {2,1,0,1}\{ - 2 , - 1,0,1 \}
C) {1,0}\{ - 1,0 \}
D) {}\{ \}
{1,0}\{ - 1,0 \}
4
Determine whether the statement is true or false.
Some real numbers are integers.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
5
Determine whether the statement is true or false.
Every integer is an irrational number.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
6
Determine whether the statement is true or false.
The set of integers is an infinite set.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
7
Determine whether the statement is true or false.
The set of rational numbers is a finite set.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
8
Determine whether the statement is true or false.
Some rational numbers are integers.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
9
Insert eithernsert either < or >< \text { or } > to to make the statement true.

--53 _____ -70

A) >>
B) <<
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
10
Insert eithernsert either < or >< \text { or } > to to make the statement true.

- 45 ___1- \frac { 4 } { 5 } ~\_\_\_ - 1

A) <<
B) >>
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
11
Determine whether the statement is true or false.
Every whole number is a real number.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
12
Determine whether the statement is true or false.
The intersection of the set of rational numbers with the set of irrational numbers is the empty set.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
13
Determine whether the statement is true or false.
Every rational number is an integer.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
14
Insert eithernsert either < or >< \text { or } > to to make the statement true.

--6 _____ 3

A) >>
B) <<
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
15
Insert eithernsert either < or >< \text { or } > to to make the statement true.

-6.2 _____ 6.3

A) >>
B) <<
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
16
Determine whether the statement is true or false.
The union of the set of rational numbers with the set of irrational numbers is the empty set.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
17
Determine whether the statement is true or false.

- {,7,5,3,1,1,3,5,7,}\{ \ldots , - 7 , - 5 , - 3 , - 1,1,3,5,7 , \ldots \} is the set of odd natural numbers.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
18
Determine whether the statement is true or false.
Some rational numbers are irrational.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
19
Insert eithernsert either < or >< \text { or } > to to make the statement true.

- 49 ___37- \frac { 4 } { 9 } ~\_\_\_ - \frac { 3 } { 7 }

A) <<
B) >>
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
20
List the set in roster form.

- S={xx is an even integer greater than 30 and less than or equal to 36}S = \{ x \mid x \text { is an even integer greater than } 30 \text { and less than or equal to } 36 \}

A){32, 34, 36}
B){31, 32, 33, 34, 35, 36}
C){30, 31, 32, 33, 34, 35, 36}
D){30, 32, 34, 36}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
21
Illustrate the set on a number line.

- {p4p3}\{ p \mid - 4 \leq p \leq - 3 \}

 <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)

A)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)
B)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)
C)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)
D)  <strong>Illustrate the set on a number line.  - \{ p \mid - 4 \leq p \leq - 3 \}    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
22
Find AR andAR for the sets A and B\mathbf { Find~ A \cup R ~and A \cap R~ for~ the~ sets~ A~ and~ B}

- A={3,2,1},B={0,1,2}A = \{ - 3 , - 2 , - 1 \} , B = \{ 0,1,2 \}

A) AB={}AB={3,2,1,0,2}\begin{array} { l } A \cup B = \{ \} \\A \cap B = \{ - 3 , - 2 , - 1,0,2 \}\end{array}
B) AB={3,2,1,0,2}AB={}\begin{array} { l } A \cup B = \{ - 3 , - 2 , - 1,0,2 \} \\A \cap B = \{ \}\end{array}
C) AB={}AB={3,2,1,0,1,2}\begin{array} { l } A \cup B = \{ \} \\A \cap B = \{ - 3 , - 2 , - 1,0,1,2 \}\end{array}
D) AB={3,2,1,0,1,2}AB={}\begin{array} { l } A \cup B = \{ - 3 , - 2 , - 1,0,1,2 \} \\A \cap B = \{ \}\end{array}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
23
Illustrate the set on a number line.

- {tt8}\{ \mathrm { t } \mid \mathrm { t } \geq 8 \}  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { t } \mid \mathrm { t } \geq 8 \}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
24
Illustrate the set on a number line.

- {yy<4}\{ \mathrm { y } \mid \mathrm { y } < - 4 \}

 <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { y } \mid \mathrm { y } < - 4 \}    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
25
Illustrate the set on a number line.

- {xx>4}\{ x \mid x > - 4 \}

 <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)

A)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)
B)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)
C)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)
D)  <strong>Illustrate the set on a number line.  - \{ x \mid x > - 4 \}    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
26
Solve the problem.
The Little Town Dog Club offers a "Puppy Kindergarten" for puppies in their community. In order for a dog to
advance from this introductory class to the first level obedience class, it must consistently demonstrate
knowledge of each of 4 commands. The instructor has the following table in her record book. Solve the problem. The Little Town Dog Club offers a Puppy Kindergarten for puppies in their community. In order for a dog to advance from this introductory class to the first level obedience class, it must consistently demonstrate knowledge of each of 4 commands. The instructor has the following table in her record book.   Let A = the set of dogs who have demonstrated knowledge of Sit/Stay. Let B = the set of dogs who have demonstrated knowledge of Down/Stay. Let C = the set of dogs who have demonstrated knowledge of Heel. Let D = the set of dogs who have demonstrated knowledge of Come. Give each of the sets A, B, C, and D using roster notation. Determine the set A ∩ B ∩ C ∩ D. Which dogs are ready to advance to the next level? Let A = the set of dogs who have demonstrated knowledge of Sit/Stay.
Let B = the set of dogs who have demonstrated knowledge of Down/Stay.
Let C = the set of dogs who have demonstrated knowledge of Heel.
Let D = the set of dogs who have demonstrated knowledge of Come.
Give each of the sets A, B, C, and D using roster notation. Determine the set A ∩ B ∩ C ∩ D. Which dogs are ready to
advance to the next level?
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
27
Illustrate the set on a number line.

- {x5x0 and xI}\{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}

 <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)

A)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)
B)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)
C)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)
D)  <strong>Illustrate the set on a number line.  - \{ x \mid - 5 \leq x \leq 0 \text { and } x \in I \}    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
28
List the set in roster form.

- S={xx is a natural number less than 5}S = \{ x \mid x \text { is a natural number less than } 5 \}

A){1, 2, 3, 4, 5}
B){0, 1, 2, 3, 4, 5}
C){1, 2, 3, 4}
D){0, 1, 2, 3, 4}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
29
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  - </strong> A)  \{ x \mid x < 5 \}  B)  \{ x \mid x \geq 5 \}  C)  \{ x \mid x > 5 \}  D)  \{ x \mid x \leq 5 \}

A) {xx<5}\{ x \mid x < 5 \}
B) {xx5}\{ x \mid x \geq 5 \}
C) {xx>5}\{ x \mid x > 5 \}
D) {xx5}\{ x \mid x \leq 5 \}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
30
Illustrate the set on a number line.

- {qq<π and qN}\{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}

 <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { q } \mid \mathrm { q } < \pi \text { and } \mathrm { q } \in \mathrm { N } \}    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
31
Find AR andAR for the sets A and B\mathbf { Find~ A \cup R ~and A \cap R~ for~ the~ sets~ A~ and~ B}

- A={1,2,3,4,5},\mathrm { A } = \{ 1,2,3,4,5 \}, B={2,4,6,8}B = \{ 2,4,6,8 \}

A) AB={2,4}AB={1,2,3,4,5,6,8}\begin{array} { l } A \cup B = \{ 2,4 \} \\A \cap B = \{ 1,2,3,4,5,6,8 \}\end{array}
B) AB={2,4}AB={1,2,3,4,5,6,7,8}\begin{array} { l } A \cup B = \{ 2,4 \} \\A \cap B = \{ 1,2,3,4,5,6,7,8 \}\end{array}
C) AB={1,2,3,4,5,6,8}AB={2,4}\begin{array} { l } \mathrm { A } \cup \mathrm { B } = \{ 1,2,3,4,5,6,8 \} \\\mathrm { A } \cap \mathrm { B } = \{ 2,4 \}\end{array}
D) AB={1,2,3,4,5,6,7,8}AB={2,4}\begin{array} { l } A \cup B = \{ 1,2,3,4,5,6,7,8 \} \\A \cap B = \{ 2,4 \}\end{array}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
32
Find AR andAR for the sets A and B\mathbf { Find~ A \cup R ~and A \cap R~ for~ the~ sets~ A~ and~ B}

-A = { {1,13,19,127,181,}\left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\} B = { {19,181,1729}\left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } , \frac { 1 } { 729 } \right\}

A) AB={19,181}AB={1,13,19,127,181,}\begin{array} { l } A \cup B = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } \right\} \\\\A \cap B = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\}\end{array}
B) AB={19,181,1729}AB={1,13,19,127,181,}\begin{array} { l } \mathrm { A } \cup \mathrm { B } = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } , \frac { 1 } { 729 } \right\} \\\\\mathrm { A } \cap \mathrm { B } = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\}\end{array}
C) AB={1,13,19,127,181,}AB={19,181,1729}\begin{array} { l } \mathrm { A } \cup \mathrm { B } = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\} \\\\\mathrm { A } \cap \mathrm { B } = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } , \frac { 1 } { 729 } \right\}\end{array}
D) AB={1,13,19,127,181,}AB={19,181}\begin{array} { l } A \cup B = \left\{ 1 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 } , \ldots \right\} \\\\A \cap B = \left\{ \frac { 1 } { 9 } , \frac { 1 } { 81 } \right\}\end{array}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
33
List the set in roster form.

- S={xx is and integer between 3 and 4}S = \{ x \mid x \text { is and integer between } 3 \text { and } 4 \}

A){3}
B){3, 4}
C) {72}\left\{ \frac { 7 } { 2 } \right\}
D){ }
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
34
List the set in roster form.

- S={xx is a whole number multiple of 4}S = \{ x \mid x \text { is a whole number multiple of } 4 \}

A){1, 4, 8, 12, 16, . . . }
B){0, 4, 8, 12, 16, . . . }
C){4, 8, 12, 16, 20, . . . }
D){8, 12, 16, 20, 24, . . . }
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
35
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  -  A = -4.8</strong> A)  \{ x \mid x > - 4.8 \}  B)  \{ x \mid x \leq - 4.8 \}  C)  \{ x \mid x \geq - 4.8 \}  D)  \{ x \mid x < - 4.8 \}   A = -4.8

A) {xx>4.8}\{ x \mid x > - 4.8 \}
B) {xx4.8}\{ x \mid x \leq - 4.8 \}
C) {xx4.8}\{ x \mid x \geq - 4.8 \}
D) {xx<4.8}\{ x \mid x < - 4.8 \}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
36
Illustrate the set on a number line.

- {k2<k<6}\{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)

A)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)
B)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)
C)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)
D)  <strong>Illustrate the set on a number line.  - \{ \mathrm { k } \mid 2 < \mathrm { k } < 6 \}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
37
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  - </strong> A)  \{ x \mid - 2 \leq x \leq 6 \}  B)  \{ x \mid - 2 < x \leq 6 \}  C)  \{ x \mid - 2 < x < 6 \}  D)  \{ x \mid - 2 \leq x < 6 \}

A) {x2x6}\{ x \mid - 2 \leq x \leq 6 \}
B) {x2<x6}\{ x \mid - 2 < x \leq 6 \}
C) {x2<x<6}\{ x \mid - 2 < x < 6 \}
D) {x2x<6}\{ x \mid - 2 \leq x < 6 \}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
38
List the set in roster form.

- S={xx is an integer greater than 5}S = \{ x \mid x \text { is an integer greater than } - 5 \}

A){0, 1, 2, 3, 4, 5, . . . }
B){-4, -3, -2, -1, 0, . . . }
C){1, 2, 3, 4, 5, . . . }
D){-5, -4, -3, -2, -1, 0, . . . }
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
39
Express in set builder notation the set of numbers indicated on the number line.

- <strong>Express in set builder notation the set of numbers indicated on the number line.  - </strong> A)  \{ x \mid x \geq - 6 \}  B)  \{ x \mid x > - 6 \}  C)  \{ x \mid x < - 6 \}  D)  \{ x \mid x \leq - 6 \}

A) {xx6}\{ x \mid x \geq - 6 \}
B) {xx>6}\{ x \mid x > - 6 \}
C) {xx<6}\{ x \mid x < - 6 \}
D) {xx6}\{ x \mid x \leq - 6 \}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
40
Solve the problem.

-The table shows the students who had a score of 80 or higher on the first two tests in a chemistry class. (Note: Every student in the class had a different first name.)  First  Test  Second  Test  Fred  Linda  Sue  Earl  Ken  Eloise  Eloise  Fred  Roger  Ken  Bill  Cal \begin{array} { c | c } \begin{array} { c c } \text { First } \\\text { Test }\end{array} & \begin{array} { c } \text { Second } \\\text { Test }\end{array} \\\hline \text { Fred } & \text { Linda } \\\text { Sue } & \text { Earl } \\\text { Ken } & \text { Eloise } \\\text { Eloise } & \text { Fred } \\\text { Roger } & \text { Ken } \\\text { Bill } & \\\text { Cal } &\end{array} Find the set of students who had a score of 80 or higher on the first or second tests.

A){Linda, Ken, Eloise, Roger }
B){Fred, Ken, Eloise}
C){Linda, Sue, Earl, Roger, Bill, Cal}
D){Fred, Linda, Sue, Earl, Ken, Eloise, Roger, Bill, Cal}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
41
Evaluate the absolute value expression.

- 4| - 4 |

A)-4
B)0
C)8
D)4
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
42
Solve the problem.

-List the elements of S that are integers.

A){-5, 0, 3}
B){3}
C) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
D){0, 3}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
43
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is Q a subset of I?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
44
Evaluate the absolute value expression.

- 1722\left| - \frac { 17 } { 22 } \right|

A)0
B) 1722\frac { 17 } { 22 }
C) 1711\frac { 17 } { 11 }
D) 1722- \frac { 17 } { 22 }
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
45
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is I a subset of Q?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
46
Evaluate the absolute value expression.

- 411\left|\frac { 4 } { 11 }\right|

A) 411\frac { 4 } { 11 }
B) 411- \frac { 4 } { 11 }
C)0
D) 811\frac { 8 } { 11 }
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
47
Solve the problem.

-List the elements of S that are real numbers.

A){-5, 0, 3}
B) {5.27,5,0,13,47,107121,3,3,12}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , \sqrt { 3 } , 3 , \sqrt { 12 } \right\}
C) {3,12}\{ \sqrt { 3 } , \sqrt { 12 } \}
D) {5.27,5,0,13,47,107121,3}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
48
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is Q a subset of R?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
49
Solve the problem.

-From the Venn diagram, determine the set A. <strong>Solve the problem.  -From the Venn diagram, determine the set A.  </strong> A){5, 7} B){2, 3, 4, 5, 7} C){2, 3, 4} D){2, 3, 4, 5, 6, 7, 9}

A){5, 7}
B){2, 3, 4, 5, 7}
C){2, 3, 4}
D){2, 3, 4, 5, 6, 7, 9}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
50
Solve the problem.

-List the elements of S that are rational numbers.

A) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
B){-5, 0, 3}
C) {5.27,5,0,13,47,107121,3,3,12}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , \sqrt { 3 } , 3 , \sqrt { 12 } \right\}
D) {5,13,47,107121,3}\left\{ - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
51
Solve the problem.

-List the elements of S that are whole numbers.

A) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
B){-5, 0, 3}
C){0, 3}
D){3}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
52
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is H a subset of R?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
53
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is Q a subset of H?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
54
Evaluate the absolute value expression.

-| 23.5| - 23.5 |

A)47
B)23.5
C)-23.5
D)0
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
55
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is W a subset of N?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
56
Evaluate the absolute value expression.

- 4| 4 |

A)0
B)-4
C)4
D)8
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
57
Solve the problem.

-List the elements of S that are irrational numbers.

A) {3,12}\{ \sqrt { 3 } , \sqrt { 12 } \}
B) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
C) {5.27,5,0,13,47,107121,3,3,12}\left\{ - 5.27 , - 5,0 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , \sqrt { 3 } , 3 , \sqrt { 12 } \right\}
D) {5.27,13,47,107121}\left\{ - 5.27 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } \right\}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
58
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is W a subset of Q?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
59
Let R = the set of real numbers, N = the set of natural numbers, W = the set of whole numbers, I = the set of integers,
Q = the set of rational numbers, and H = the set of irrational numbers. Answer the question.
Is N a subset of W?

A)Yes
B)No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
60
Solve the problem.

-List the elements of S that are natural numbers.

A){0, 3}
B){3}
C) {5.27,5,13,47,107121,3}\left\{ - 5.27 , - 5 , \frac { 1 } { 3 } , \frac { 4 } { 7 } , \frac { 107 } { 121 } , 3 \right\}
D){-5, 0, 3}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate the absolute value expression.

- 16- | 16 |

A)32
B)0
C)-16
D)16
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
62
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 21| - 21 | _________ 21- 21

A) <<
B)=
C) >>
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
63
Evaluate the absolute value expression.

- 8.7- | - 8.7 |

A)0
B)-8.7
C)17.4
D)8.7
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
64
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 4- | - 4 | _________ 10|-10|

A) <<
B)=
C) >>
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
65
List the values from smallest to largest.

- 7,15,9,22,17- 7 , - 15 , - | 9 | , - | 22 | , - | - 17 |

A) 22,9,17,15,7- | 22 | , - | 9 | , - | - 17 | , - 15 , - 7
B) 22,17,9,15,7- | 22 | , - | - 17 | , - | 9 | , - 15 , - 7
C) 22,15,17,9,7- | 22 | , - 15 , - | - 17 | , - | 9 | , - 7
D) 22,17,15,9,7- | 22 | , - | - 17 | , - 15 , - | 9 | , - 7
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
66
Evaluate the absolute value expression.

- 0| 0 |

A)-1
B)1
C)0
D)undefined
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
67
List the values from smallest to largest.

- 2.4,2.1,2.3,2.4,2.7,2.9- 2.4 , - | - 2.1 | , - 2.3 , | - 2.4 | , - | - 2.7 | , - | 2.9 |

A) 2.9,2.7,2.3,2.4,2.1,2.4- | 2.9 | , - | - 2.7 | , - 2.3 , - 2.4 , - | - 2.1 | , | - 2.4 |
B) 2.9,2.7,2.4,2.3,2.1,2.4- | 2.9 | , - | - 2.7 | , - 2.4 , - 2.3 , - | - 2.1 | , | - 2.4 |
C) 2.9,2.4,2.7,2.3,2.1,2.4- | 2.9 | , - 2.4 , - | - 2.7 | , - 2.3 , - | - 2.1 | , | - 2.4 |
D) 2.9,2.7,2.4,2.1,2.3,2.4- | 2.9 | , - | - 2.7 | , - 2.4 , - | - 2.1 | , - 2.3 , | - 2.4 |
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate the absolute value expression.

- 12- | - 12 |

A)0
B)-12
C)24
D)12
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
69
Evaluate the absolute value expression.

- 617- \left| - \frac { 6 } { 17 } \right|

A)0
B) 1217\frac { 12 } { 17 }
C) 617- \frac { 6 } { 17 }
D) 617\frac { 6 } { 17 }
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
70
List the values from smallest to largest.

- 25,12,25,12,78\left| - \frac { 2 } { 5 } \right| , - \left| \frac { 1 } { 2 } \right| , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right| , - \frac { 7 } { 8 }

A) 78,25,12,25,12- \frac { 7 } { 8 } , - \left| - \frac { 2 } { 5 } \right| , - \left| \frac { 1 } { 2 } \right| , \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right|
B) 78,12,25,12,25- \frac { 7 } { 8 } , - \left| \frac { 1 } { 2 } \right| , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right| , \left| - \frac { 2 } { 5 } \right|
C) 78,12,25,25,12- \frac { 7 } { 8 } , - \left| \frac { 1 } { 2 } \right| , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right|
D) 12,78,25,25,12- \left| \frac { 1 } { 2 } \right| , - \frac { 7 } { 8 } , - \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 2 } { 5 } \right| , \left| - \frac { 1 } { 2 } \right|
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
71
Evaluate.
3 + (-14)

A)-17
B)11
C)-11
D)17
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
72
List the values from smallest to largest.

- π,π,5,5,2,2\pi , - \pi , | - 5 | , - | - 5 | , | - 2 | , - | - 2 |

A) 5,2,π,2,π,5- | - 5 | , - | - 2 | , - \pi , | - 2 | , \pi , | - 5 |
B) 5,π,2,π,2,5- | - 5 | , - \pi , - | - 2 | , \pi , | - 2 | , | - 5 |
C) 5,π,2,2,5,π- | - 5 | , - \pi , - | - 2 | , | - 2 | , | - 5 | , \pi
D) 5,π,2,2,π,5- | - 5 | , - \pi , - | - 2 | , | - 2 | , \pi , | - 5 |
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
73
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 17| - 17 | _______ 17- | 17 |

A) >>
B)=
C) <<
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
74
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 7| - 7 | _______ 1- 1

A) <<
B)=
C) >>
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
75
List the values from smallest to largest.

- 4,1,5,8- 4 , | - 1 | , | 5 | , - | - 8 |

A) 4,8,1,5- 4 , - | - 8 | , | - 1 | , | 5 |
B) 8,4,5,1- | - 8 | , - 4 , | 5 | , | - 1 |
C) 8,4,1,5- | - 8 | , - 4 , | - 1 | , | 5 |
D) 8,1,4,5- | - 8 | , | - 1 | , - 4 , | 5 |
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
76
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 8| - 8 | _______ 5- | - 5 |

A) <<
B) >>
C)=
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
77
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 9___2- 9 \_\_\_ | - 2 |

A)=
B) <<
C) >>
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
78
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

-| 21| - 21 | _________ 21| 21 |

A)=
B) >>
C) <<
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
79
Evaluate the absolute value expression.

- 57- \left| \frac { 5 } { 7 } \right|

A) 57- \frac { 5 } { 7 }
B) 107\frac { 10 } { 7 }
C) 57\frac { 5 } { 7 }
D)0
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
80
Insert<,>,or=in the blank to make the statement true.\mathbf { Insert < , > , or = in~ the ~blank~ to~ make ~the ~statement~ true. }

- 10| - 10 | ________ 4| - 4 |

A)=
B) >>
C) <<
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 306 flashcards in this deck.