Deck 1: Preparing for Calculus

Full screen (f)
exit full mode
Question
Let f(x)=x+5f ( x ) = - | x | + 5 Then f(x)f ( - x ) is

A) x+5- | x | + 5
B) x5- | x | - 5
C) x+5| x | + 5
D) x5| x | - 5
E) x+5- | x + 5 |
Use Space or
up arrow
down arrow
to flip the card.
Question
Let f(x)=65xf ( x ) = \sqrt { 6 - 5 x } Then f(x+1)f ( x + 1 ) is

A) 55x\sqrt { 5 - 5 x }
B) 75x\sqrt { 7 - 5 x }
C) 7+5x\sqrt { 7 + 5 x }
D) 15x\sqrt { 1 - 5 x }
E) 1+5x\sqrt { 1 + 5 x }
Question
Let f(x)=2x+3x21f ( x ) = \frac { 2 x + 3 } { x ^ { 2 } - 1 } Then f(x)- f ( x ) is

A) 2x+3x21\frac { 2 x + 3 } { x ^ { 2 } - 1 }
B) 2x3x21\frac { - 2 x - 3 } { x ^ { 2 } - 1 }
C) 2x+3x21\frac { - 2 x + 3 } { x ^ { 2 } - 1 }
D) 2x+3x2+1\frac { - 2 x + 3 } { x ^ { 2 } + 1 }
E) 32xx21\frac { 3 - 2 x } { x ^ { 2 } - 1 }
Question
Let f(x)=5x+2f ( x ) = - 5 x + 2 Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)-1
B)1
C)-5
D)5
E)-5 + h
Question
Let f(x)=x2xf ( x ) = x ^ { 2 } - x Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)-1
B)1
C)x+ h
D)2x+ h
E)2x- 1 + h
Question
Let f(x)=1x1f ( x ) = \frac { 1 } { x - 1 } Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)1
B) 1(x1)2\frac { - 1 } { ( x - 1 ) ^ { 2 } }
C) 1(x1)2\frac { 1 } { ( x - 1 ) ^ { 2 } }
D) 1(x+h1)(x+1)\frac { 1 } { ( x + h - 1 ) ( x + 1 ) }
E) 1(x+h1)(x1)\frac { - 1 } { ( x + h - 1 ) ( x - 1 ) }
Question
Let f(x)=4xf ( x ) = \sqrt { 4 - x } Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)1
B) 14xh\frac { - 1 } { \sqrt { 4 - x - h } }
C) 14xh+4x\frac { 1 } { \sqrt { 4 - x - h } + \sqrt { 4 - x } }
D) 14xh+4x- \frac { 1 } { \sqrt { 4 - x - h } + \sqrt { 4 - x } }
E) 14x+h+4x- \frac { 1 } { \sqrt { 4 - x + h } + \sqrt { 4 - x } }
Question
Let f(x)=2x3f ( x ) = 2 | x | - 3 Then f is

A)an odd function
B)an even function
C)neither an even nor an odd function
D)an increasing function
E)a decreasing function
Question
Let f(x)=x2x3f ( x ) = x - 2 x ^ { 3 } Then f is

A)an odd function
B)an even function
C)neither an even nor an odd function
D)an increasing function
E)a decreasing function
Question
The rate of change of f(x)=2x3f ( x ) = \frac { 2 } { x - 3 } from 2 to 5 is

A)1
B)-1
C) 32- \frac { 3 } { 2 }
D) 32\frac { 3 } { 2 }
E) 53\frac { 5 } { 3 }
Question
The rate of change f(x)=5xf ( x ) = \sqrt { 5 - x } from x = 1 to x = 4 is

A)1
B)-1
C) 13- \frac { 1 } { 3 }
D) 13\frac { 1 } { 3 }
E) 53\frac { 5 } { 3 }
Question
The domain of the function f(x)=32x25x3f ( x ) = \frac { 3 } { 2 x ^ { 2 } - 5 x - 3 } is

A) (12,3)\left( - \frac { 1 } { 2 } , 3 \right)
B) (,12)(3,)\left( - \infty , - \frac { 1 } { 2 } \right) \cup ( 3 , \infty )
C) (,3)(3,12)( - \infty , - 3 ) \cup \left( - 3 , \frac { 1 } { 2 } \right)
D) (,3)(3,12)(12,)( - \infty , - 3 ) \cup \left( - 3 , \frac { 1 } { 2 } \right) \cup \left( \frac { 1 } { 2 } , \infty \right)
E) (,12)(12,3)(3,)\left( - \infty , - \frac { 1 } { 2 } \right) \cup \left( - \frac { 1 } { 2 } , 3 \right) \cup ( 3 , \infty )
Question
The domain of the function f(x)=2x+3f ( x ) = \sqrt { 2 x + 3 } is

A) (,)( - \infty , \infty )
B) (32,)\left( - \frac { 3 } { 2 } , \infty \right)
C) [32,)\left[ - \frac { 3 } { 2 } , \infty \right)
D) (23,)\left( - \frac { 2 } { 3 } , \infty \right)
E) [32,)\left[ \frac { 3 } { 2 } , \infty \right)
Question
The domain of the function f(x)=x24f ( x ) = \sqrt { x ^ { 2 } - 4 } is

A) (,)( - \infty , \infty )
B)(-2,2)
C) [2,2][ - 2,2 ]
D) (,2)(2,)( - \infty , - 2 ) \cup ( 2 , \infty )
E) (,2][2,)( - \infty , - 2 ] \cup [ 2 , \infty )
Question
If f(x)={2x5x<4x2x4f ( x ) = \left\{ \begin{array} { c l } 2 x - 5 & x < - 4 \\\frac { x } { 2 } & x \geq - 4\end{array} \right. , then f(4)f ( - 4 ) is

A) 13- 13
B)-8
C)-2
D)3
E)8
Question
If f(x)={2x+13x<141<x5x25<x<7f ( x ) = \left\{ \begin{array} { c c } - 2 x + 1 & - 3 \leq x < - 1 \\4 & - 1 < x \leq 5 \\x - 2 & 5 < x < 7\end{array} \right. , then

A) f(3)=5f ( - 3 ) = - 5
B) f(1)=4f ( - 1 ) = 4
C) f(5)=4f ( 5 ) = 4
D) f(5)=3f ( 5 ) = 3
E) f(7)=5f ( 7 ) = 5
Question
If f(x)={x213x<03x0x<32x53x<10f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } - 1 & - 3 \leq x < 0 \\3 x & 0 \leq x < 3 \\2 x - 5 & 3 \leq x < 10\end{array} \right. , then

A) f(3)=10f ( - 3 ) = - 10
B) f(0)=1f ( 0 ) = - 1
C) f(0)=0f ( 0 ) = 0
D) f(3)=9f ( 3 ) = 9
E) f(3)=8f ( 3 ) = 8
Question
If f(x)={x1x2+12x<13x3x<6107x7<x<10f ( x ) = \left\{ \begin{array} { c c } \frac { x - 1 } { x ^ { 2 } + 1 } & - 2 \leq x < 1 \\3 x & 3 \leq x < 6 \\10 - 7 x & 7 < x < 10\end{array} \right. then

A) f(2)=3f ( - 2 ) = 3
B) f(1)=0f ( 1 ) = 0
C) f(3)=9f ( 3 ) = 9
D) f(6)=18f ( 6 ) = 18
E) f(10)=60f ( 10 ) = 60
Question
If f(x)={2x+13x<141<x<5,x25<x<7f ( x ) = \left\{ \begin{array} { c c } - 2 x + 1 & - 3 \leq x < - 1 \\4 & - 1 < x < 5, \\x - 2 & 5 < x < 7\end{array} \right. then the domain of f is

A) [3,7][ - 3,7 ]
B) [3,7)[ - 3,7 )
C) (3,1)(1,7)( - 3 , - 1 ) \cup ( - 1,7 )
D) [3,1)(1,7][ - 3 , - 1 ) \cup ( - 1,7 ]
E) [3,1)(1,5)(5,7)[ - 3 , - 1 ) \cup ( - 1,5 ) \cup ( 5,7 )
Question
If f(x)={x213x<03x0x<32x53x<10f ( x ) = \left\{ \begin{array} { c l } x ^ { 2 } - 1 & - 3 \leq x < 0 \\3 x & 0 \leq x < 3 \\2 x - 5 & 3 \leq x < 10\end{array} \right. then the domain of f is

A) [3,10][ - 3,10 ]
B) [3,10)[ - 3,10 )
C) (3,0)(0,10)( - 3,0 ) \cup ( 0,10 )
D) [3,3)(3,10][ - 3,3 ) \cup ( 3,10 ]
E) [3,0)(3,10)[ - 3,0 ) \cup ( 3,10 )
Question
If f(x)=2xf ( x ) = 2 x , then f(2.8)f ( - 2.8 ) is

A)-6
B)-5.6
C)-4
D)4
E)6
Question
If f(x)=x+4f ( x ) = - \lfloor x \rfloor + 4 , then f(5.1)f ( - 5.1 ) is

A)-2
B)-1
C)9
D)9.1
E)10
Question
If f(x)=3xf ( x ) = \lfloor - 3 x \rfloor , then f(2.5)f ( 2.5 ) is

A)-7
B)-8
C)-9
D)7
E)8
Question
If f(x)=x3f ( x ) = \left\lceil \frac { x } { 3 } \right\rceil , then f(1.5)f ( - 1.5 ) is

A)-1
B)-0.5
C)0
D)0.5
E)1
Question
If f(x)=2x3xf ( x ) = 2 x - 3 x , then f(3.2)f ( 3.2 ) is

A)-3
B)-1
C)1
D)3
E)4
Question
If f(x)=3x+4xf ( x ) = 3 \lceil x \rceil + 4 \lceil x \rceil , then f(1.6)f ( - 1.6 ) is

A)-11
B)-10
C)-9
D)-8
E)-7
Question
The domain of f(x)=4x6x2+9f ( x ) = \frac { 4 x - 6 } { x ^ { 2 } + 9 } is

A) (,)( - \infty , \infty )
B) (,3)( - \infty , - 3 )
C) (3,3)( - 3,3 )
D) (3,)( 3 , \infty )
E) (,3)(3,)( - \infty , - 3 ) \cup ( 3 , \infty )
Question
The domain of f(x)=3x29x24f ( x ) = \frac { 3 x - 2 } { 9 x ^ { 2 } - 4 } is

A) (,23)\left( - \infty , - \frac { 2 } { 3 } \right)
B) (,23)\left( - \infty , \frac { 2 } { 3 } \right)
C) (23,23)\left( - \frac { 2 } { 3 } , \frac { 2 } { 3 } \right)
D) (,23)(23,)\left( - \infty , - \frac { 2 } { 3 } \right) \cup \left( \frac { 2 } { 3 } , \infty \right)
E) (,23)(23,23)(23,)\left( - \infty , - \frac { 2 } { 3 } \right) \cup \left( - \frac { 2 } { 3 } , \frac { 2 } { 3 } \right) \cup \left( \frac { 2 } { 3 } , \infty \right)
Question
The set of all x-intercepts of f(x)=x2x6x2+x6f ( x ) = \frac { x ^ { 2 } - x - 6 } { x ^ { 2 } + x - 6 } is

A){-3,-2}
B){-3,2}
C){-6,1}
D){-2,3}
E){-1,6}
Question
The set of all x-intercepts of f(x)=x2xx2+5x6f ( x ) = \frac { x ^ { 2 } - x } { x ^ { 2 } + 5 x - 6 } is

A){0}
B){0,1}
C){-1,0}
D){-6,1}
E){-1,6}
Question
The set of all x-intercepts of f(x)=2x+32x2+x3f ( x ) = \frac { 2 x + 3 } { 2 x ^ { 2 } + x - 3 } is

A) \varnothing
B) {32,1}\left\{ - \frac { 3 } { 2 } , 1 \right\}
C) {32}\left\{ - \frac { 3 } { 2 } \right\}
D) {1,32}\left\{ - 1 , \frac { 3 } { 2 } \right\}
E){1}
Question
The set of all x-intercepts of f(x)=x+1f ( x ) = \lceil x \rceil + 1 is

A) (2,1]( - 2 , - 1 ]
B) (2,1)( - 2 , - 1 )
C){-1}
D){-2}
E) [2,1)[ - 2 , - 1 )
Question
The set of all x-intercepts of f(x)=x2f ( x ) = \left\lfloor \frac { x } { 2 } \right\rfloor is

A) (0,1]( 0,1 ]
B) (0,2)( 0,2 )
C) [0,2)[ 0,2 )
D) [0,2][ 0,2 ]
E) [1,2)[ 1,2 )
Question
The set of all x-intercepts of f(x)=x1f ( x ) = \lceil x \rceil - 1 is

A) (0,1]( 0,1 ]
B) [0,1)[ 0,1 )
C) [1,2)[ 1,2 )
D) (1,2)(1,2)
E) (1,2]( 1,2 ]
Question
Which of the following is a constant function?

A) f(x)=2x25f ( x ) = 2 x ^ { 2 } - 5
B) f(x)=1ef ( x ) = \frac { 1 } { e }
C) f(x)=1xf ( x ) = \frac { 1 } { x }
D) f(x)=2x+7f ( x ) = 2 x + 7
E) f(x)=xf ( x ) = \sqrt { x }
Question
Which of the following is a constant function?

A) f(x)=1π2f ( x ) = \frac { 1 } { \pi ^ { 2 } }
B) f(x)=x6+1f ( x ) = x ^ { 6 } + 1
C) f(x)=x+6f ( x ) = x + 6
D) f(x)=xf ( x ) = | x |
E) f(x)=xf ( x ) = \sqrt { x }
Question
Which of the following is a polynomial function?

A) f(x)=x3/2+x1f ( x ) = x ^ { 3 / 2 } + x - 1
B) f(x)=32x221xf ( x ) = \frac { 3 } { 2 } x ^ { 2 } - 2 - \frac { 1 } { x }
C) f(x)=3x4f ( x ) = 3 x - 4
D) f(x)=x2+3x2f ( x ) = \frac { x } { 2 } + \frac { 3 } { x ^ { 2 } }
E) f(x)=x2x+1xf ( x ) = \frac { x ^ { 2 } - x + 1 } { x }
Question
Which of the following is a polynomial function?

A) f(x)=x2f ( x ) = \frac { \lfloor x \rfloor } { 2 }
B) f(x)=x+2f ( x ) = | x | + 2
C) f(x)=3xf ( x ) = 3 \lceil x \rceil
D) f(x)=x5f ( x ) = - \frac { x } { 5 }
E) f(x)=5xf ( x ) = \sqrt { 5 x }
Question
Which of the following is a rational function?

A) f(x)=x3/21+1xf ( x ) = x ^ { 3 / 2 } - 1 + \frac { 1 } { x }
B) f(x)=x215x6f ( x ) = \frac { x ^ { 2 } - 1 } { 5 x - 6 }
C) f(x)=x+6f ( x ) = \sqrt { | x | + 6 }
D) f(x)=8x+x3f ( x ) = 8 x + \sqrt [ 3 ] { x }
E) f(x)=5xx2+1f ( x ) = \frac { 5 x } { \sqrt { x ^ { 2 } + 1 } }
Question
Which of the following is a rational function?

A) f(x)=x+3x2f ( x ) = \frac { \lfloor x \rfloor + 3 } { x - 2 }
B) f(x)=x2+5x+1f ( x ) = \frac { | x | ^ { 2 } + 5 } { x + 1 }
C) f(x)=x5x5f ( x ) = \frac { \sqrt { x } - 5 } { \sqrt { x - 5 } }
D) f(x)=12x2+5xf ( x ) = \frac { 1 } { 2 } x ^ { 2 } + \frac { 5 } { \sqrt { x } }
E) f(x)=32x211xf ( x ) = \frac { 3 } { 2 } x ^ { 2 } - \frac { 11 } { x }
Question
Let f(x)=1+1xf ( x ) = 1 + \frac { 1 } { x } and g(x)=1xg ( x ) = \frac { 1 } { x } Which of the following is incorrect?

A) (f+g)(1)=1( f + g ) ( - 1 ) = - 1
B) (fg)(1)=1( f - g ) ( - 1 ) = - 1
C) (gf)(1)=1( g - f ) ( - 1 ) = - 1
D) (fg)(1)=0( f g ) ( - 1 ) = 0
E) fg(1)=0\frac { f } { g } ( - 1 ) = 0
Question
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Which of the following is incorrect?

A) (f+g)(2)=2( f + g ) ( 2 ) = 2
B) (fg)(2)=0( f - g ) ( 2 ) = 0
C) (fg)(2)=1( f g ) ( 2 ) = 1
D) fg(2)=1\frac { f } { g } ( 2 ) = 1
E) gf(1)=1\frac { g } { f } ( 1 ) = 1
Question
Let f(x)=2xf ( x ) = 2 | x | and g(x)=xg ( x ) = x Which of the following is incorrect?

A) (f+g)(0.5)=1( f + g ) ( 0.5 ) = 1
B) (fg)(0.5)=1( f - g ) ( 0.5 ) = 1
C) (gf)(0.5)=0( g f ) ( 0.5 ) = 0
D) fg(0.5)=0\frac { f } { g } ( 0.5 ) = 0
E) gf(0.5)=0\frac { g } { f } ( 0.5 ) = 0
Question
Let f(x)=3x+2f ( x ) = \frac { 3 } { x + 2 } and g(x)=x2+1g ( x ) = \left| x ^ { 2 } + 1 \right| Which of the following is incorrect?

A) (f+g)(1)=5( f + g ) ( - 1 ) = 5
B) (fg)(1)=1( f - g ) ( - 1 ) = - 1
C) (gf)(1)=6( g f ) ( - 1 ) = 6
D) fg(1)=32\frac { f } { g } ( - 1 ) = \frac { 3 } { 2 }
E) gf(1)=2\frac { g } { f } ( 1 ) = 2
Question
Let f(x)=πf ( x ) = \pi and g(x)=e+3g ( x ) = e + 3 Which of the following is incorrect?

A) (f+g)(0)=π+e+3( f + g ) ( 0 ) = \pi + e + 3
B) (fg)(0)=πe+3( f - g ) ( 0 ) = \pi - e + 3
C) (gf)(0)=e+3π( g - f ) ( 0 ) = e + 3 - \pi
D) fg(0)=πe+3\frac { f } { g } ( 0 ) = \frac { \pi } { e + 3 }
E) gf(0)=e+3π\frac { g } { f } ( 0 ) = \frac { e + 3 } { \pi }
Question
Let f(x)=2πf ( x ) = 2 \pi and g(x)=e+3g ( x ) = e + 3 Which of the following is correct?

A) (f+g)(0)=2π+6( f + g ) ( 0 ) = 2 \pi + 6
B) (fg)(0)=2πe+3( f - g ) ( 0 ) = 2 \pi - e + 3
C) (gf)(0)=52π( g - f ) ( 0 ) = 5 - 2 \pi
D) fg(0)=π5\frac { f } { g } ( 0 ) = \frac { \pi } { 5 }
E) gf(0)=6π\frac { g } { f } ( 0 ) = \frac { 6 } { \pi }
Question
Let f(x)=x+1xf ( x ) = x + \frac { 1 } { x } and g(x)=1xg ( x ) = \frac { 1 } { x } Then (fg)(1)( f \circ g ) ( - 1 ) is

A)-1
B)0
C)1
D)-2
E)2
Question
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Then (gf)(2)( g \circ f ) ( 2 ) is

A)-2
B)-1
C)0
D)1
E)2
Question
Let f(x)=2xf ( x ) = 2 | x | and g(x)=xg ( x ) = \lfloor x \rfloor Then (fg)(0.5)( f \circ g ) ( - 0.5 ) is

A)-2
B)-1
C)0
D)1
E)2
Question
Let f(x)=2πf ( x ) = 2 \pi and g(x)=e+3g ( x ) = e + 3 Then (gf)(0)( g \circ f ) ( 0 ) is

A) 2π2 \pi
B)5
C)6
D)7
E) 2π(e+3)2 \pi ( e + 3 )
Question
Let f(x)=2πf ( x ) = 2 \pi and g(x)=e+3g ( x ) = e + 3 The domain of fgf \circ g is

A) (,)( - \infty , \infty )
B) (,2π]( - \infty , 2 \pi ]
C) (,0)( - \infty , 0 )
D) (,0]( - \infty , 0 ]
E) [0,)[ 0 , \infty )
Question
Let f(x)=2πf ( x ) = 2 \pi and g(x)=5e+3g ( x ) = \frac { 5 } { e + 3 } The domain of gfg \circ f is

A) (,)( - \infty , \infty )
B) (,3)(3,)( - \infty , - 3 ) \cup ( - 3 , \infty )
C) (,2π)(2π,)( - \infty , 2 \pi ) \cup ( 2 \pi , \infty )
D) (,2π)(2π,)( - \infty , - 2 \pi ) \cup ( - 2 \pi , \infty )
E) (,e)(e,)( - \infty , e ) \cup ( e , \infty )
Question
Let f(x)=x+1xf ( x ) = x + \frac { 1 } { x } and g(x)=1xg ( x ) = \frac { 1 } { x } Then the domain of gfg \circ f is

A) (,0)(0,)( - \infty , 0 ) \cup ( 0 , \infty )
B) (,1)(1,)( - \infty , - 1 ) \cup ( - 1 , \infty )
C) (,1)(0,)( - \infty , - 1 ) \cup ( 0 , \infty )
D) (,1)(1,0)( - \infty , - 1 ) \cup ( - 1,0 )
E) (,1)(1,0)(0,)( - \infty , - 1 ) \cup ( - 1,0 ) \cup ( 0 , \infty )
Question
Let f(x)=2xf ( x ) = 2 | x | and g(x)=xg ( x ) = \lfloor x \rfloor Then the domain of
Fog
Is

A) (,)( - \infty , \infty )
B) (,0)( - \infty , 0 )
C) (0,)( 0 , \infty )
D) (,0]( - \infty , 0 ]
E) [0,)[ 0 , \infty )
Question
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Then the domain of fgf \circ g is

A) [1,)[ 1 , \infty )
B) (0,2]( 0,2 ]
C) [1,2][ 1,2 ]
D) (0,1](2,)( 0,1 ] \cup ( 2 , \infty )
E) [1,)[ 1 , \infty ) .
Question
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Then the domain of gfg \circ f is

A) [1,)[ 1 , \infty )
B) (1,)( 1 , \infty )
C) (0,)( 0 , \infty )
D) (0,1)(1,)( 0,1 ) \cup ( 1 , \infty )
E) [0,)[ 0 , \infty )
Question
Let f(x)=2πf ( x ) = 2 \pi and g(x)=5e+3g ( x ) = \frac { 5 } { e + 3 } Then (fg)(x)( f \circ g ) ( x ) is

A) 5e+3\frac { 5 } { e + 3 }
B) 2π2 \pi
C) 10πe+3\frac { 10 \pi } { e + 3 }
D) 52π(e+3)\frac { 5 } { 2 \pi ( e + 3 ) }
E) 52π+e+3\frac { 5 } { 2 \pi + e + 3 }
Question
Let f(x)=3x4f ( x ) = \sqrt { 3 x - 4 } and g(x)=5x+6g ( x ) = 5 x + 6 Then (fg)(x)( f \circ g ) ( x ) is

A) 53x45 \sqrt { 3 x - 4 }
B) 15x+20\sqrt { 15 x + 20 }
C) 15x20\sqrt { 15 x - 20 }
D) 15x+14\sqrt { 15 x + 14 }
E) 15x22\sqrt { 15 x - 22 }
Question
Let f(x)=3x4f ( x ) = \sqrt { 3 x - 4 } and g(x)=5x+6g ( x ) = 5 x + 6 Then (gf)(x)( g \circ f ) ( x ) is

A) 53x4+65 \sqrt { 3 x - 4 } + 6
B) 15x+20\sqrt { 15 x + 20 }
C) 15x20\sqrt { 15 x - 20 }
D) 15x+14\sqrt { 15 x + 14 }
E) 15x22\sqrt { 15 x - 22 }
Question
Let f(x)=3+1xf ( x ) = 3 + \frac { 1 } { x } and g(x)=31xg ( x ) = 3 - \frac { 1 } { x } Then (gf)(x)( g \circ f ) ( x ) is

A) 8x353x+1\frac { 8 x - 35 } { 3 x + 1 }
B) 8x+33x+1\frac { 8 x + 3 } { 3 x + 1 }
C) 9x+33x+1\frac { 9 x + 3 } { 3 x + 1 }
D) 9x33x+1\frac { 9 x - 3 } { 3 x + 1 }
E) 10x+33x+1\frac { 10 x + 3 } { 3 x + 1 }
Question
Which of the following functions is one-to-one?

A) f(x)=xf ( x ) = | x |
B) g(x)=x2g ( x ) = x ^ { 2 }
C) h(x)=6h ( x ) = 6
D) F(x)=x6F ( x ) = x - 6
E) G(x)=xG ( x ) = \lfloor x \rfloor
Question
Which of the following functions is one-to-one?

A) f(x)=x2f ( x ) = | x - 2 |
B) g(x)=x2+5g ( x ) = - x ^ { 2 } + 5
C) h(x)=1πh ( x ) = \frac { 1 } { \pi }
D) F(x)=xF ( x ) = \lceil x \rceil
E) G(x)=x3G ( x ) = x ^ { 3 }
Question
Which of the following functions is one-to-one?

A) f(x)=1x+1f ( x ) = \frac { 1 } { x + 1 }
B) g(x)=2x23x+1g ( x ) = 2 x ^ { 2 } - 3 x + 1
C) h(x)=e3h ( x ) = e ^ { 3 }
D) F(x)=5xF ( x ) = - 5 | x |
E) G(x)=xG ( x ) = - \lfloor x \rfloor
Question
Which of the following functions is one-to-one?

A) f(x)=1ef ( x ) = \frac { 1 } { e }
B) g(x)=x1+2g ( x ) = \lfloor x - 1 \rfloor + 2
C) h(x)=xh ( x ) = \sqrt { x }
D) F(x)=2x+3F ( x ) = 2 | x | + 3
E) G(x)=xG ( x ) = - \lfloor x \rfloor
Question
Which of the following functions is one-to-one?

A) f(x)=2e+1f ( x ) = 2 e + 1
B) g(x)=x3g ( x ) = \sqrt [ 3 ] { x }
C) h(x)=x2h ( x ) = - x ^ { 2 }
D) F(x)=xF ( x ) = - | x |
E) G(x)=1x2G ( x ) = - \frac { 1 } { x ^ { 2 } }
Question
Which of the following functions is one-to-one?

A) f(x)=x+2f ( x ) = \lfloor x \rfloor + 2
B) g(x)=1(x3)2g ( x ) = \frac { 1 } { ( x - 3 ) ^ { 2 } }
C) h(x)=(2x1)2h ( x ) = ( 2 x - 1 ) ^ { 2 }
D) F(x)=3x6F ( x ) = \frac { 3 } { x } - 6
E) G(x)=xG ( x ) = | x |
Question
The function f(x)=(x+1)2f ( x ) = ( x + 1 ) ^ { 2 } is one-to-one if its domain is

A) (,1]( - \infty , - 1 ]
B) (,)( - \infty , \infty )
C) [2,)[ - 2 , \infty )
D) (,1)(1,)( - \infty , - 1 ) \cup ( - 1 , \infty )
E) (,1]( - \infty , 1 ]
Question
The function f(x)=(2x1)2f ( x ) = ( 2 x - 1 ) ^ { 2 } is one-to-one if its domain is

A) (,)( - \infty , \infty )
B) (,12)\left( - \infty , \frac { 1 } { 2 } \right)
C) [1,)[ - 1 , \infty )
D) (,1)(1,)( - \infty , - 1 ) \cup ( 1 , \infty )
E) (,2]( - \infty , 2 ]
Question
The function f(x)=2x2f ( x ) = \frac { 2 } { x ^ { 2 } } is one-to-one if its domain is

A) (,)( - \infty , \infty )
B) (,0)(0,)( - \infty , 0 ) \cup ( 0 , \infty )
C) (0,)( 0 , \infty )
D) (,1)(1,)( - \infty , - 1 ) \cup ( 1 , \infty )
E) (,1]( - \infty , 1 ]
Question
The function f(x)=x2f ( x ) = - x ^ { 2 } is one-to-one if its domain is

A) (,)( - \infty , \infty )
B) (,0)(0,)( - \infty , 0 ) \cup ( 0 , \infty )
C) (,1]( - \infty , 1 ]
D) [0,)[ 0 , \infty )
E) [1,)[ - 1 , \infty )
Question
Consider the one-to-one function f(x)=2(x1)+3f ( x ) = 2 ( x - 1 ) + 3 . Then f1(x)f ^ { - 1 } ( x ) is

A) 2x12 x - 1
B) x+12\frac { x + 1 } { 2 }
C) 12x+1\frac { 1 } { 2 x + 1 }
D) x12\frac { x - 1 } { 2 }
E) 2(x+1)+32 ( x + 1 ) + 3
Question
Consider the one-to-one function f(x)=4x35f ( x ) = 4 x ^ { 3 } - 5 . Then f1(x)f ^ { - 1 } ( x ) is

A) 4x3+54 x ^ { 3 } + 5
B) 4x+534 \sqrt [ 3 ] { x + 5 }
C) x345\frac { \sqrt [ 3 ] { x } } { 4 } - 5
D) 43\sqrt [ 3 ] { 4 }
E) x+543\sqrt [ 3 ] { \frac { x + 5 } { 4 } }
Question
Consider the one-to-one function f(x)=2x+33f ( x ) = \sqrt [ 3 ] { 2 x + 3 } . Then f1(x)f ^ { - 1 } ( x ) is

A) (x23)3\left( \frac { x } { 2 } - 3 \right) ^ { 3 }
B) (x32)3\left( \frac { x - 3 } { 2 } \right) ^ { 3 }
C) x332\frac { x ^ { 3 } - 3 } { 2 }
D) (x2+3)3\left( \frac { x } { 2 } + 3 \right) ^ { 3 }
E) 2x332 x ^ { 3 } - 3
Question
Consider the one-to-one function f(x)=2xf ( x ) = \frac { 2 } { x } . Then f1(x)f ^ { - 1 } ( x ) is

A) 2x- \frac { 2 } { x }
B) 2x\frac { 2 } { x }
C) x2- \frac { x } { 2 }
D) x2\frac { x } { 2 }
E) 2x\frac { 2 } { | x | }
Question
Consider the one-to-one function f(x)=1x1+xf ( x ) = \frac { 1 - x } { 1 + x } . Then f1(x)f ^ { - 1 } ( x ) is

A) 1x1+x\frac { 1 - x } { 1 + x }
B) x1x+1\frac { x - 1 } { x + 1 }
C) 1+x1x\frac { 1 + x } { 1 - x }
D) 1+xx1\frac { 1 + x } { x - 1 }
E) 1+1xx1\frac { 1 + \frac { 1 } { x } } { x - 1 }
Question
Consider the one-to-one function f(x)=2x13x+4f ( x ) = \frac { 2 x - 1 } { 3 x + 4 } . Then f1(x)f ^ { - 1 } ( x ) is

A) 3x+42x1\frac { 3 x + 4 } { 2 x - 1 }
B) 4x+32x1\frac { 4 x + 3 } { 2 x - 1 }
C) 4x+32x+1\frac { 4 x + 3 } { 2 x + 1 }
D) 4x32x+1\frac { 4 x - 3 } { 2 x + 1 }
E) 4x+123x\frac { 4 x + 1 } { 2 - 3 x }
Question
Consider the one-to-one function f(x)=1x2f ( x ) = \frac { 1 } { x - 2 } . Then f1(x)f ^ { - 1 } ( x ) is

A) x2x - 2
B) x+2x + 2
C) 1x+2\frac { 1 } { x + 2 }
D) 1x+2\frac { 1 } { x } + 2
E) 2x+1\frac { 2 } { x } + 1
Question
Consider the one-to-one function f(x)=3x2x1f ( x ) = \frac { 3 x } { 2 x - 1 } . Then f1(x)f ^ { - 1 } ( x ) is

A) 2x13x\frac { 2 x - 1 } { 3 x }
B) 2x+13x\frac { 2 x + 1 } { 3 x }
C) x3x2\frac { x } { 3 x - 2 }
D) x23x\frac { x } { 2 - 3 x }
E) x2x3\frac { x } { 2 x - 3 }
Question
Consider the one-to-one function f(x)=2x+53f ( x ) = 2 - \sqrt [ 3 ] { x + 5 } . Then f1(x)f ^ { - 1 } ( x ) is

A) 5(2x)35 - ( 2 - x ) ^ { 3 }
B) 5+(2x)35 + ( 2 - x ) ^ { 3 }
C) 5+(x2)35 + ( x - 2 ) ^ { 3 }
D) (2x)35( 2 - x ) ^ { 3 } - 5
E) (2+x)35( 2 + x ) ^ { 3 } - 5
Question
Consider the one-to-one function f(x)=4+x73f ( x ) = 4 + \sqrt [ 3 ] { x - 7 } . Then f1(x)f ^ { - 1 } ( x ) is

A) (x+7)34( x + 7 ) ^ { 3 } - 4
B) (x4)37( x - 4 ) ^ { 3 } - 7
C) (x7)3+4( x - 7 ) ^ { 3 } + 4
D) (x+4)37( x + 4 ) ^ { 3 } - 7
E) (x4)3+7( x - 4 ) ^ { 3 } + 7
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/160
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Preparing for Calculus
1
Let f(x)=x+5f ( x ) = - | x | + 5 Then f(x)f ( - x ) is

A) x+5- | x | + 5
B) x5- | x | - 5
C) x+5| x | + 5
D) x5| x | - 5
E) x+5- | x + 5 |
x+5- | x | + 5
2
Let f(x)=65xf ( x ) = \sqrt { 6 - 5 x } Then f(x+1)f ( x + 1 ) is

A) 55x\sqrt { 5 - 5 x }
B) 75x\sqrt { 7 - 5 x }
C) 7+5x\sqrt { 7 + 5 x }
D) 15x\sqrt { 1 - 5 x }
E) 1+5x\sqrt { 1 + 5 x }
15x\sqrt { 1 - 5 x }
3
Let f(x)=2x+3x21f ( x ) = \frac { 2 x + 3 } { x ^ { 2 } - 1 } Then f(x)- f ( x ) is

A) 2x+3x21\frac { 2 x + 3 } { x ^ { 2 } - 1 }
B) 2x3x21\frac { - 2 x - 3 } { x ^ { 2 } - 1 }
C) 2x+3x21\frac { - 2 x + 3 } { x ^ { 2 } - 1 }
D) 2x+3x2+1\frac { - 2 x + 3 } { x ^ { 2 } + 1 }
E) 32xx21\frac { 3 - 2 x } { x ^ { 2 } - 1 }
2x3x21\frac { - 2 x - 3 } { x ^ { 2 } - 1 }
4
Let f(x)=5x+2f ( x ) = - 5 x + 2 Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)-1
B)1
C)-5
D)5
E)-5 + h
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
5
Let f(x)=x2xf ( x ) = x ^ { 2 } - x Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)-1
B)1
C)x+ h
D)2x+ h
E)2x- 1 + h
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
6
Let f(x)=1x1f ( x ) = \frac { 1 } { x - 1 } Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)1
B) 1(x1)2\frac { - 1 } { ( x - 1 ) ^ { 2 } }
C) 1(x1)2\frac { 1 } { ( x - 1 ) ^ { 2 } }
D) 1(x+h1)(x+1)\frac { 1 } { ( x + h - 1 ) ( x + 1 ) }
E) 1(x+h1)(x1)\frac { - 1 } { ( x + h - 1 ) ( x - 1 ) }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
7
Let f(x)=4xf ( x ) = \sqrt { 4 - x } Then f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } is

A)1
B) 14xh\frac { - 1 } { \sqrt { 4 - x - h } }
C) 14xh+4x\frac { 1 } { \sqrt { 4 - x - h } + \sqrt { 4 - x } }
D) 14xh+4x- \frac { 1 } { \sqrt { 4 - x - h } + \sqrt { 4 - x } }
E) 14x+h+4x- \frac { 1 } { \sqrt { 4 - x + h } + \sqrt { 4 - x } }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
8
Let f(x)=2x3f ( x ) = 2 | x | - 3 Then f is

A)an odd function
B)an even function
C)neither an even nor an odd function
D)an increasing function
E)a decreasing function
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
9
Let f(x)=x2x3f ( x ) = x - 2 x ^ { 3 } Then f is

A)an odd function
B)an even function
C)neither an even nor an odd function
D)an increasing function
E)a decreasing function
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
10
The rate of change of f(x)=2x3f ( x ) = \frac { 2 } { x - 3 } from 2 to 5 is

A)1
B)-1
C) 32- \frac { 3 } { 2 }
D) 32\frac { 3 } { 2 }
E) 53\frac { 5 } { 3 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
11
The rate of change f(x)=5xf ( x ) = \sqrt { 5 - x } from x = 1 to x = 4 is

A)1
B)-1
C) 13- \frac { 1 } { 3 }
D) 13\frac { 1 } { 3 }
E) 53\frac { 5 } { 3 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
12
The domain of the function f(x)=32x25x3f ( x ) = \frac { 3 } { 2 x ^ { 2 } - 5 x - 3 } is

A) (12,3)\left( - \frac { 1 } { 2 } , 3 \right)
B) (,12)(3,)\left( - \infty , - \frac { 1 } { 2 } \right) \cup ( 3 , \infty )
C) (,3)(3,12)( - \infty , - 3 ) \cup \left( - 3 , \frac { 1 } { 2 } \right)
D) (,3)(3,12)(12,)( - \infty , - 3 ) \cup \left( - 3 , \frac { 1 } { 2 } \right) \cup \left( \frac { 1 } { 2 } , \infty \right)
E) (,12)(12,3)(3,)\left( - \infty , - \frac { 1 } { 2 } \right) \cup \left( - \frac { 1 } { 2 } , 3 \right) \cup ( 3 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
13
The domain of the function f(x)=2x+3f ( x ) = \sqrt { 2 x + 3 } is

A) (,)( - \infty , \infty )
B) (32,)\left( - \frac { 3 } { 2 } , \infty \right)
C) [32,)\left[ - \frac { 3 } { 2 } , \infty \right)
D) (23,)\left( - \frac { 2 } { 3 } , \infty \right)
E) [32,)\left[ \frac { 3 } { 2 } , \infty \right)
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
14
The domain of the function f(x)=x24f ( x ) = \sqrt { x ^ { 2 } - 4 } is

A) (,)( - \infty , \infty )
B)(-2,2)
C) [2,2][ - 2,2 ]
D) (,2)(2,)( - \infty , - 2 ) \cup ( 2 , \infty )
E) (,2][2,)( - \infty , - 2 ] \cup [ 2 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
15
If f(x)={2x5x<4x2x4f ( x ) = \left\{ \begin{array} { c l } 2 x - 5 & x < - 4 \\\frac { x } { 2 } & x \geq - 4\end{array} \right. , then f(4)f ( - 4 ) is

A) 13- 13
B)-8
C)-2
D)3
E)8
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
16
If f(x)={2x+13x<141<x5x25<x<7f ( x ) = \left\{ \begin{array} { c c } - 2 x + 1 & - 3 \leq x < - 1 \\4 & - 1 < x \leq 5 \\x - 2 & 5 < x < 7\end{array} \right. , then

A) f(3)=5f ( - 3 ) = - 5
B) f(1)=4f ( - 1 ) = 4
C) f(5)=4f ( 5 ) = 4
D) f(5)=3f ( 5 ) = 3
E) f(7)=5f ( 7 ) = 5
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
17
If f(x)={x213x<03x0x<32x53x<10f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } - 1 & - 3 \leq x < 0 \\3 x & 0 \leq x < 3 \\2 x - 5 & 3 \leq x < 10\end{array} \right. , then

A) f(3)=10f ( - 3 ) = - 10
B) f(0)=1f ( 0 ) = - 1
C) f(0)=0f ( 0 ) = 0
D) f(3)=9f ( 3 ) = 9
E) f(3)=8f ( 3 ) = 8
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
18
If f(x)={x1x2+12x<13x3x<6107x7<x<10f ( x ) = \left\{ \begin{array} { c c } \frac { x - 1 } { x ^ { 2 } + 1 } & - 2 \leq x < 1 \\3 x & 3 \leq x < 6 \\10 - 7 x & 7 < x < 10\end{array} \right. then

A) f(2)=3f ( - 2 ) = 3
B) f(1)=0f ( 1 ) = 0
C) f(3)=9f ( 3 ) = 9
D) f(6)=18f ( 6 ) = 18
E) f(10)=60f ( 10 ) = 60
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
19
If f(x)={2x+13x<141<x<5,x25<x<7f ( x ) = \left\{ \begin{array} { c c } - 2 x + 1 & - 3 \leq x < - 1 \\4 & - 1 < x < 5, \\x - 2 & 5 < x < 7\end{array} \right. then the domain of f is

A) [3,7][ - 3,7 ]
B) [3,7)[ - 3,7 )
C) (3,1)(1,7)( - 3 , - 1 ) \cup ( - 1,7 )
D) [3,1)(1,7][ - 3 , - 1 ) \cup ( - 1,7 ]
E) [3,1)(1,5)(5,7)[ - 3 , - 1 ) \cup ( - 1,5 ) \cup ( 5,7 )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
20
If f(x)={x213x<03x0x<32x53x<10f ( x ) = \left\{ \begin{array} { c l } x ^ { 2 } - 1 & - 3 \leq x < 0 \\3 x & 0 \leq x < 3 \\2 x - 5 & 3 \leq x < 10\end{array} \right. then the domain of f is

A) [3,10][ - 3,10 ]
B) [3,10)[ - 3,10 )
C) (3,0)(0,10)( - 3,0 ) \cup ( 0,10 )
D) [3,3)(3,10][ - 3,3 ) \cup ( 3,10 ]
E) [3,0)(3,10)[ - 3,0 ) \cup ( 3,10 )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
21
If f(x)=2xf ( x ) = 2 x , then f(2.8)f ( - 2.8 ) is

A)-6
B)-5.6
C)-4
D)4
E)6
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
22
If f(x)=x+4f ( x ) = - \lfloor x \rfloor + 4 , then f(5.1)f ( - 5.1 ) is

A)-2
B)-1
C)9
D)9.1
E)10
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
23
If f(x)=3xf ( x ) = \lfloor - 3 x \rfloor , then f(2.5)f ( 2.5 ) is

A)-7
B)-8
C)-9
D)7
E)8
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
24
If f(x)=x3f ( x ) = \left\lceil \frac { x } { 3 } \right\rceil , then f(1.5)f ( - 1.5 ) is

A)-1
B)-0.5
C)0
D)0.5
E)1
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
25
If f(x)=2x3xf ( x ) = 2 x - 3 x , then f(3.2)f ( 3.2 ) is

A)-3
B)-1
C)1
D)3
E)4
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
26
If f(x)=3x+4xf ( x ) = 3 \lceil x \rceil + 4 \lceil x \rceil , then f(1.6)f ( - 1.6 ) is

A)-11
B)-10
C)-9
D)-8
E)-7
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
27
The domain of f(x)=4x6x2+9f ( x ) = \frac { 4 x - 6 } { x ^ { 2 } + 9 } is

A) (,)( - \infty , \infty )
B) (,3)( - \infty , - 3 )
C) (3,3)( - 3,3 )
D) (3,)( 3 , \infty )
E) (,3)(3,)( - \infty , - 3 ) \cup ( 3 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
28
The domain of f(x)=3x29x24f ( x ) = \frac { 3 x - 2 } { 9 x ^ { 2 } - 4 } is

A) (,23)\left( - \infty , - \frac { 2 } { 3 } \right)
B) (,23)\left( - \infty , \frac { 2 } { 3 } \right)
C) (23,23)\left( - \frac { 2 } { 3 } , \frac { 2 } { 3 } \right)
D) (,23)(23,)\left( - \infty , - \frac { 2 } { 3 } \right) \cup \left( \frac { 2 } { 3 } , \infty \right)
E) (,23)(23,23)(23,)\left( - \infty , - \frac { 2 } { 3 } \right) \cup \left( - \frac { 2 } { 3 } , \frac { 2 } { 3 } \right) \cup \left( \frac { 2 } { 3 } , \infty \right)
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
29
The set of all x-intercepts of f(x)=x2x6x2+x6f ( x ) = \frac { x ^ { 2 } - x - 6 } { x ^ { 2 } + x - 6 } is

A){-3,-2}
B){-3,2}
C){-6,1}
D){-2,3}
E){-1,6}
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
30
The set of all x-intercepts of f(x)=x2xx2+5x6f ( x ) = \frac { x ^ { 2 } - x } { x ^ { 2 } + 5 x - 6 } is

A){0}
B){0,1}
C){-1,0}
D){-6,1}
E){-1,6}
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
31
The set of all x-intercepts of f(x)=2x+32x2+x3f ( x ) = \frac { 2 x + 3 } { 2 x ^ { 2 } + x - 3 } is

A) \varnothing
B) {32,1}\left\{ - \frac { 3 } { 2 } , 1 \right\}
C) {32}\left\{ - \frac { 3 } { 2 } \right\}
D) {1,32}\left\{ - 1 , \frac { 3 } { 2 } \right\}
E){1}
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
32
The set of all x-intercepts of f(x)=x+1f ( x ) = \lceil x \rceil + 1 is

A) (2,1]( - 2 , - 1 ]
B) (2,1)( - 2 , - 1 )
C){-1}
D){-2}
E) [2,1)[ - 2 , - 1 )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
33
The set of all x-intercepts of f(x)=x2f ( x ) = \left\lfloor \frac { x } { 2 } \right\rfloor is

A) (0,1]( 0,1 ]
B) (0,2)( 0,2 )
C) [0,2)[ 0,2 )
D) [0,2][ 0,2 ]
E) [1,2)[ 1,2 )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
34
The set of all x-intercepts of f(x)=x1f ( x ) = \lceil x \rceil - 1 is

A) (0,1]( 0,1 ]
B) [0,1)[ 0,1 )
C) [1,2)[ 1,2 )
D) (1,2)(1,2)
E) (1,2]( 1,2 ]
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
35
Which of the following is a constant function?

A) f(x)=2x25f ( x ) = 2 x ^ { 2 } - 5
B) f(x)=1ef ( x ) = \frac { 1 } { e }
C) f(x)=1xf ( x ) = \frac { 1 } { x }
D) f(x)=2x+7f ( x ) = 2 x + 7
E) f(x)=xf ( x ) = \sqrt { x }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
36
Which of the following is a constant function?

A) f(x)=1π2f ( x ) = \frac { 1 } { \pi ^ { 2 } }
B) f(x)=x6+1f ( x ) = x ^ { 6 } + 1
C) f(x)=x+6f ( x ) = x + 6
D) f(x)=xf ( x ) = | x |
E) f(x)=xf ( x ) = \sqrt { x }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
37
Which of the following is a polynomial function?

A) f(x)=x3/2+x1f ( x ) = x ^ { 3 / 2 } + x - 1
B) f(x)=32x221xf ( x ) = \frac { 3 } { 2 } x ^ { 2 } - 2 - \frac { 1 } { x }
C) f(x)=3x4f ( x ) = 3 x - 4
D) f(x)=x2+3x2f ( x ) = \frac { x } { 2 } + \frac { 3 } { x ^ { 2 } }
E) f(x)=x2x+1xf ( x ) = \frac { x ^ { 2 } - x + 1 } { x }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
38
Which of the following is a polynomial function?

A) f(x)=x2f ( x ) = \frac { \lfloor x \rfloor } { 2 }
B) f(x)=x+2f ( x ) = | x | + 2
C) f(x)=3xf ( x ) = 3 \lceil x \rceil
D) f(x)=x5f ( x ) = - \frac { x } { 5 }
E) f(x)=5xf ( x ) = \sqrt { 5 x }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
39
Which of the following is a rational function?

A) f(x)=x3/21+1xf ( x ) = x ^ { 3 / 2 } - 1 + \frac { 1 } { x }
B) f(x)=x215x6f ( x ) = \frac { x ^ { 2 } - 1 } { 5 x - 6 }
C) f(x)=x+6f ( x ) = \sqrt { | x | + 6 }
D) f(x)=8x+x3f ( x ) = 8 x + \sqrt [ 3 ] { x }
E) f(x)=5xx2+1f ( x ) = \frac { 5 x } { \sqrt { x ^ { 2 } + 1 } }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
40
Which of the following is a rational function?

A) f(x)=x+3x2f ( x ) = \frac { \lfloor x \rfloor + 3 } { x - 2 }
B) f(x)=x2+5x+1f ( x ) = \frac { | x | ^ { 2 } + 5 } { x + 1 }
C) f(x)=x5x5f ( x ) = \frac { \sqrt { x } - 5 } { \sqrt { x - 5 } }
D) f(x)=12x2+5xf ( x ) = \frac { 1 } { 2 } x ^ { 2 } + \frac { 5 } { \sqrt { x } }
E) f(x)=32x211xf ( x ) = \frac { 3 } { 2 } x ^ { 2 } - \frac { 11 } { x }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
41
Let f(x)=1+1xf ( x ) = 1 + \frac { 1 } { x } and g(x)=1xg ( x ) = \frac { 1 } { x } Which of the following is incorrect?

A) (f+g)(1)=1( f + g ) ( - 1 ) = - 1
B) (fg)(1)=1( f - g ) ( - 1 ) = - 1
C) (gf)(1)=1( g - f ) ( - 1 ) = - 1
D) (fg)(1)=0( f g ) ( - 1 ) = 0
E) fg(1)=0\frac { f } { g } ( - 1 ) = 0
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
42
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Which of the following is incorrect?

A) (f+g)(2)=2( f + g ) ( 2 ) = 2
B) (fg)(2)=0( f - g ) ( 2 ) = 0
C) (fg)(2)=1( f g ) ( 2 ) = 1
D) fg(2)=1\frac { f } { g } ( 2 ) = 1
E) gf(1)=1\frac { g } { f } ( 1 ) = 1
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
43
Let f(x)=2xf ( x ) = 2 | x | and g(x)=xg ( x ) = x Which of the following is incorrect?

A) (f+g)(0.5)=1( f + g ) ( 0.5 ) = 1
B) (fg)(0.5)=1( f - g ) ( 0.5 ) = 1
C) (gf)(0.5)=0( g f ) ( 0.5 ) = 0
D) fg(0.5)=0\frac { f } { g } ( 0.5 ) = 0
E) gf(0.5)=0\frac { g } { f } ( 0.5 ) = 0
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
44
Let f(x)=3x+2f ( x ) = \frac { 3 } { x + 2 } and g(x)=x2+1g ( x ) = \left| x ^ { 2 } + 1 \right| Which of the following is incorrect?

A) (f+g)(1)=5( f + g ) ( - 1 ) = 5
B) (fg)(1)=1( f - g ) ( - 1 ) = - 1
C) (gf)(1)=6( g f ) ( - 1 ) = 6
D) fg(1)=32\frac { f } { g } ( - 1 ) = \frac { 3 } { 2 }
E) gf(1)=2\frac { g } { f } ( 1 ) = 2
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
45
Let f(x)=πf ( x ) = \pi and g(x)=e+3g ( x ) = e + 3 Which of the following is incorrect?

A) (f+g)(0)=π+e+3( f + g ) ( 0 ) = \pi + e + 3
B) (fg)(0)=πe+3( f - g ) ( 0 ) = \pi - e + 3
C) (gf)(0)=e+3π( g - f ) ( 0 ) = e + 3 - \pi
D) fg(0)=πe+3\frac { f } { g } ( 0 ) = \frac { \pi } { e + 3 }
E) gf(0)=e+3π\frac { g } { f } ( 0 ) = \frac { e + 3 } { \pi }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
46
Let f(x)=2πf ( x ) = 2 \pi and g(x)=e+3g ( x ) = e + 3 Which of the following is correct?

A) (f+g)(0)=2π+6( f + g ) ( 0 ) = 2 \pi + 6
B) (fg)(0)=2πe+3( f - g ) ( 0 ) = 2 \pi - e + 3
C) (gf)(0)=52π( g - f ) ( 0 ) = 5 - 2 \pi
D) fg(0)=π5\frac { f } { g } ( 0 ) = \frac { \pi } { 5 }
E) gf(0)=6π\frac { g } { f } ( 0 ) = \frac { 6 } { \pi }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
47
Let f(x)=x+1xf ( x ) = x + \frac { 1 } { x } and g(x)=1xg ( x ) = \frac { 1 } { x } Then (fg)(1)( f \circ g ) ( - 1 ) is

A)-1
B)0
C)1
D)-2
E)2
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
48
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Then (gf)(2)( g \circ f ) ( 2 ) is

A)-2
B)-1
C)0
D)1
E)2
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
49
Let f(x)=2xf ( x ) = 2 | x | and g(x)=xg ( x ) = \lfloor x \rfloor Then (fg)(0.5)( f \circ g ) ( - 0.5 ) is

A)-2
B)-1
C)0
D)1
E)2
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
50
Let f(x)=2πf ( x ) = 2 \pi and g(x)=e+3g ( x ) = e + 3 Then (gf)(0)( g \circ f ) ( 0 ) is

A) 2π2 \pi
B)5
C)6
D)7
E) 2π(e+3)2 \pi ( e + 3 )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
51
Let f(x)=2πf ( x ) = 2 \pi and g(x)=e+3g ( x ) = e + 3 The domain of fgf \circ g is

A) (,)( - \infty , \infty )
B) (,2π]( - \infty , 2 \pi ]
C) (,0)( - \infty , 0 )
D) (,0]( - \infty , 0 ]
E) [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
52
Let f(x)=2πf ( x ) = 2 \pi and g(x)=5e+3g ( x ) = \frac { 5 } { e + 3 } The domain of gfg \circ f is

A) (,)( - \infty , \infty )
B) (,3)(3,)( - \infty , - 3 ) \cup ( - 3 , \infty )
C) (,2π)(2π,)( - \infty , 2 \pi ) \cup ( 2 \pi , \infty )
D) (,2π)(2π,)( - \infty , - 2 \pi ) \cup ( - 2 \pi , \infty )
E) (,e)(e,)( - \infty , e ) \cup ( e , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
53
Let f(x)=x+1xf ( x ) = x + \frac { 1 } { x } and g(x)=1xg ( x ) = \frac { 1 } { x } Then the domain of gfg \circ f is

A) (,0)(0,)( - \infty , 0 ) \cup ( 0 , \infty )
B) (,1)(1,)( - \infty , - 1 ) \cup ( - 1 , \infty )
C) (,1)(0,)( - \infty , - 1 ) \cup ( 0 , \infty )
D) (,1)(1,0)( - \infty , - 1 ) \cup ( - 1,0 )
E) (,1)(1,0)(0,)( - \infty , - 1 ) \cup ( - 1,0 ) \cup ( 0 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
54
Let f(x)=2xf ( x ) = 2 | x | and g(x)=xg ( x ) = \lfloor x \rfloor Then the domain of
Fog
Is

A) (,)( - \infty , \infty )
B) (,0)( - \infty , 0 )
C) (0,)( 0 , \infty )
D) (,0]( - \infty , 0 ]
E) [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
55
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Then the domain of fgf \circ g is

A) [1,)[ 1 , \infty )
B) (0,2]( 0,2 ]
C) [1,2][ 1,2 ]
D) (0,1](2,)( 0,1 ] \cup ( 2 , \infty )
E) [1,)[ 1 , \infty ) .
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
56
Let f(x)=x1f ( x ) = \sqrt { x - 1 } and g(x)=2xg ( x ) = \frac { 2 } { x } Then the domain of gfg \circ f is

A) [1,)[ 1 , \infty )
B) (1,)( 1 , \infty )
C) (0,)( 0 , \infty )
D) (0,1)(1,)( 0,1 ) \cup ( 1 , \infty )
E) [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
57
Let f(x)=2πf ( x ) = 2 \pi and g(x)=5e+3g ( x ) = \frac { 5 } { e + 3 } Then (fg)(x)( f \circ g ) ( x ) is

A) 5e+3\frac { 5 } { e + 3 }
B) 2π2 \pi
C) 10πe+3\frac { 10 \pi } { e + 3 }
D) 52π(e+3)\frac { 5 } { 2 \pi ( e + 3 ) }
E) 52π+e+3\frac { 5 } { 2 \pi + e + 3 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
58
Let f(x)=3x4f ( x ) = \sqrt { 3 x - 4 } and g(x)=5x+6g ( x ) = 5 x + 6 Then (fg)(x)( f \circ g ) ( x ) is

A) 53x45 \sqrt { 3 x - 4 }
B) 15x+20\sqrt { 15 x + 20 }
C) 15x20\sqrt { 15 x - 20 }
D) 15x+14\sqrt { 15 x + 14 }
E) 15x22\sqrt { 15 x - 22 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
59
Let f(x)=3x4f ( x ) = \sqrt { 3 x - 4 } and g(x)=5x+6g ( x ) = 5 x + 6 Then (gf)(x)( g \circ f ) ( x ) is

A) 53x4+65 \sqrt { 3 x - 4 } + 6
B) 15x+20\sqrt { 15 x + 20 }
C) 15x20\sqrt { 15 x - 20 }
D) 15x+14\sqrt { 15 x + 14 }
E) 15x22\sqrt { 15 x - 22 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
60
Let f(x)=3+1xf ( x ) = 3 + \frac { 1 } { x } and g(x)=31xg ( x ) = 3 - \frac { 1 } { x } Then (gf)(x)( g \circ f ) ( x ) is

A) 8x353x+1\frac { 8 x - 35 } { 3 x + 1 }
B) 8x+33x+1\frac { 8 x + 3 } { 3 x + 1 }
C) 9x+33x+1\frac { 9 x + 3 } { 3 x + 1 }
D) 9x33x+1\frac { 9 x - 3 } { 3 x + 1 }
E) 10x+33x+1\frac { 10 x + 3 } { 3 x + 1 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
61
Which of the following functions is one-to-one?

A) f(x)=xf ( x ) = | x |
B) g(x)=x2g ( x ) = x ^ { 2 }
C) h(x)=6h ( x ) = 6
D) F(x)=x6F ( x ) = x - 6
E) G(x)=xG ( x ) = \lfloor x \rfloor
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
62
Which of the following functions is one-to-one?

A) f(x)=x2f ( x ) = | x - 2 |
B) g(x)=x2+5g ( x ) = - x ^ { 2 } + 5
C) h(x)=1πh ( x ) = \frac { 1 } { \pi }
D) F(x)=xF ( x ) = \lceil x \rceil
E) G(x)=x3G ( x ) = x ^ { 3 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
63
Which of the following functions is one-to-one?

A) f(x)=1x+1f ( x ) = \frac { 1 } { x + 1 }
B) g(x)=2x23x+1g ( x ) = 2 x ^ { 2 } - 3 x + 1
C) h(x)=e3h ( x ) = e ^ { 3 }
D) F(x)=5xF ( x ) = - 5 | x |
E) G(x)=xG ( x ) = - \lfloor x \rfloor
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
64
Which of the following functions is one-to-one?

A) f(x)=1ef ( x ) = \frac { 1 } { e }
B) g(x)=x1+2g ( x ) = \lfloor x - 1 \rfloor + 2
C) h(x)=xh ( x ) = \sqrt { x }
D) F(x)=2x+3F ( x ) = 2 | x | + 3
E) G(x)=xG ( x ) = - \lfloor x \rfloor
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
65
Which of the following functions is one-to-one?

A) f(x)=2e+1f ( x ) = 2 e + 1
B) g(x)=x3g ( x ) = \sqrt [ 3 ] { x }
C) h(x)=x2h ( x ) = - x ^ { 2 }
D) F(x)=xF ( x ) = - | x |
E) G(x)=1x2G ( x ) = - \frac { 1 } { x ^ { 2 } }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
66
Which of the following functions is one-to-one?

A) f(x)=x+2f ( x ) = \lfloor x \rfloor + 2
B) g(x)=1(x3)2g ( x ) = \frac { 1 } { ( x - 3 ) ^ { 2 } }
C) h(x)=(2x1)2h ( x ) = ( 2 x - 1 ) ^ { 2 }
D) F(x)=3x6F ( x ) = \frac { 3 } { x } - 6
E) G(x)=xG ( x ) = | x |
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
67
The function f(x)=(x+1)2f ( x ) = ( x + 1 ) ^ { 2 } is one-to-one if its domain is

A) (,1]( - \infty , - 1 ]
B) (,)( - \infty , \infty )
C) [2,)[ - 2 , \infty )
D) (,1)(1,)( - \infty , - 1 ) \cup ( - 1 , \infty )
E) (,1]( - \infty , 1 ]
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
68
The function f(x)=(2x1)2f ( x ) = ( 2 x - 1 ) ^ { 2 } is one-to-one if its domain is

A) (,)( - \infty , \infty )
B) (,12)\left( - \infty , \frac { 1 } { 2 } \right)
C) [1,)[ - 1 , \infty )
D) (,1)(1,)( - \infty , - 1 ) \cup ( 1 , \infty )
E) (,2]( - \infty , 2 ]
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
69
The function f(x)=2x2f ( x ) = \frac { 2 } { x ^ { 2 } } is one-to-one if its domain is

A) (,)( - \infty , \infty )
B) (,0)(0,)( - \infty , 0 ) \cup ( 0 , \infty )
C) (0,)( 0 , \infty )
D) (,1)(1,)( - \infty , - 1 ) \cup ( 1 , \infty )
E) (,1]( - \infty , 1 ]
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
70
The function f(x)=x2f ( x ) = - x ^ { 2 } is one-to-one if its domain is

A) (,)( - \infty , \infty )
B) (,0)(0,)( - \infty , 0 ) \cup ( 0 , \infty )
C) (,1]( - \infty , 1 ]
D) [0,)[ 0 , \infty )
E) [1,)[ - 1 , \infty )
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
71
Consider the one-to-one function f(x)=2(x1)+3f ( x ) = 2 ( x - 1 ) + 3 . Then f1(x)f ^ { - 1 } ( x ) is

A) 2x12 x - 1
B) x+12\frac { x + 1 } { 2 }
C) 12x+1\frac { 1 } { 2 x + 1 }
D) x12\frac { x - 1 } { 2 }
E) 2(x+1)+32 ( x + 1 ) + 3
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
72
Consider the one-to-one function f(x)=4x35f ( x ) = 4 x ^ { 3 } - 5 . Then f1(x)f ^ { - 1 } ( x ) is

A) 4x3+54 x ^ { 3 } + 5
B) 4x+534 \sqrt [ 3 ] { x + 5 }
C) x345\frac { \sqrt [ 3 ] { x } } { 4 } - 5
D) 43\sqrt [ 3 ] { 4 }
E) x+543\sqrt [ 3 ] { \frac { x + 5 } { 4 } }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
73
Consider the one-to-one function f(x)=2x+33f ( x ) = \sqrt [ 3 ] { 2 x + 3 } . Then f1(x)f ^ { - 1 } ( x ) is

A) (x23)3\left( \frac { x } { 2 } - 3 \right) ^ { 3 }
B) (x32)3\left( \frac { x - 3 } { 2 } \right) ^ { 3 }
C) x332\frac { x ^ { 3 } - 3 } { 2 }
D) (x2+3)3\left( \frac { x } { 2 } + 3 \right) ^ { 3 }
E) 2x332 x ^ { 3 } - 3
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
74
Consider the one-to-one function f(x)=2xf ( x ) = \frac { 2 } { x } . Then f1(x)f ^ { - 1 } ( x ) is

A) 2x- \frac { 2 } { x }
B) 2x\frac { 2 } { x }
C) x2- \frac { x } { 2 }
D) x2\frac { x } { 2 }
E) 2x\frac { 2 } { | x | }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
75
Consider the one-to-one function f(x)=1x1+xf ( x ) = \frac { 1 - x } { 1 + x } . Then f1(x)f ^ { - 1 } ( x ) is

A) 1x1+x\frac { 1 - x } { 1 + x }
B) x1x+1\frac { x - 1 } { x + 1 }
C) 1+x1x\frac { 1 + x } { 1 - x }
D) 1+xx1\frac { 1 + x } { x - 1 }
E) 1+1xx1\frac { 1 + \frac { 1 } { x } } { x - 1 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
76
Consider the one-to-one function f(x)=2x13x+4f ( x ) = \frac { 2 x - 1 } { 3 x + 4 } . Then f1(x)f ^ { - 1 } ( x ) is

A) 3x+42x1\frac { 3 x + 4 } { 2 x - 1 }
B) 4x+32x1\frac { 4 x + 3 } { 2 x - 1 }
C) 4x+32x+1\frac { 4 x + 3 } { 2 x + 1 }
D) 4x32x+1\frac { 4 x - 3 } { 2 x + 1 }
E) 4x+123x\frac { 4 x + 1 } { 2 - 3 x }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
77
Consider the one-to-one function f(x)=1x2f ( x ) = \frac { 1 } { x - 2 } . Then f1(x)f ^ { - 1 } ( x ) is

A) x2x - 2
B) x+2x + 2
C) 1x+2\frac { 1 } { x + 2 }
D) 1x+2\frac { 1 } { x } + 2
E) 2x+1\frac { 2 } { x } + 1
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
78
Consider the one-to-one function f(x)=3x2x1f ( x ) = \frac { 3 x } { 2 x - 1 } . Then f1(x)f ^ { - 1 } ( x ) is

A) 2x13x\frac { 2 x - 1 } { 3 x }
B) 2x+13x\frac { 2 x + 1 } { 3 x }
C) x3x2\frac { x } { 3 x - 2 }
D) x23x\frac { x } { 2 - 3 x }
E) x2x3\frac { x } { 2 x - 3 }
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
79
Consider the one-to-one function f(x)=2x+53f ( x ) = 2 - \sqrt [ 3 ] { x + 5 } . Then f1(x)f ^ { - 1 } ( x ) is

A) 5(2x)35 - ( 2 - x ) ^ { 3 }
B) 5+(2x)35 + ( 2 - x ) ^ { 3 }
C) 5+(x2)35 + ( x - 2 ) ^ { 3 }
D) (2x)35( 2 - x ) ^ { 3 } - 5
E) (2+x)35( 2 + x ) ^ { 3 } - 5
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
80
Consider the one-to-one function f(x)=4+x73f ( x ) = 4 + \sqrt [ 3 ] { x - 7 } . Then f1(x)f ^ { - 1 } ( x ) is

A) (x+7)34( x + 7 ) ^ { 3 } - 4
B) (x4)37( x - 4 ) ^ { 3 } - 7
C) (x7)3+4( x - 7 ) ^ { 3 } + 4
D) (x+4)37( x + 4 ) ^ { 3 } - 7
E) (x4)3+7( x - 4 ) ^ { 3 } + 7
Unlock Deck
Unlock for access to all 160 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 160 flashcards in this deck.