Deck 7: Applications of the Integral

Full screen (f)
exit full mode
Question
Let A denote the area enclosed by the equation y=x24x+3y = x ^ { 2 } - 4 x + 3 and the x-axis. Then A is

A) 49\frac { 4 } { 9 }
B) 45\frac { 4 } { 5 }
C) 43\frac { 4 } { 3 }
D) 83\frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Let A denote the area enclosed by the equation y=sinxy = \sin x and the x-axis with x[0,π]x \in [ 0 , \pi ] Then A is

A) 12\frac { 1 } { 2 }
B)1
C) 32\frac { 3 } { 2 }
D)2
E) 52\frac { 5 } { 2 }
Question
Let A denote the area enclosed by the equation y=4xy = 4 - | x | and the x-axis. Then A is

A)8
B)10
C)12
D)14
E)16
Question
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=2xy = 2 x Then A is

A) 49\frac { 4 } { 9 }
B) 45\frac { 4 } { 5 }
C) 43\frac { 4 } { 3 }
D) 83\frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
Question
Let A denote the area enclosed by the equations y=x2+1y = x ^ { 2 } + 1 and y=4x2y = - 4 x - 2 Then A is

A) 49\frac { 4 } { 9 }
B) 45\frac { 4 } { 5 }
C) 43\frac { 4 } { 3 }
D) 83\frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
Question
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=8x2y = 8 - x ^ { 2 } Then A is

A) 43\frac { 4 } { 3 }
B) 83\frac { 8 } { 3 }
C) 163\frac { 16 } { 3 }
D) 323\frac { 32 } { 3 }
E) 643\frac { 64 } { 3 }
Question
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=6xx2y = 6 x - x ^ { 2 } Then A is

A)3
B)6
C)9
D)12
E)18
Question
Let A denote the area enclosed by the y-axis and the equations y = sin x and y = cos x for 0xπ40 \leq x \leq \frac { \pi } { 4 } Then A is

A) 22\frac { \sqrt { 2 } } { 2 }
B) 21\sqrt { 2 } - 1
C) 2\sqrt { 2 }
D)1
E) 2+1\sqrt { 2 } + 1
Question
Let A denote the area enclosed by the equations y = x3 and y = x. Then A is

A) 12\frac { 1 } { 2 }
B)1
C) 32\frac { 3 } { 2 }
D)2
E) 52\frac { 5 } { 2 }
Question
Let A denote the area enclosed by the equations y=2x33x25xy = 2 x ^ { 3 } - 3 x ^ { 2 } - 5 x and y=x32x23xy = x ^ { 3 } - 2 x ^ { 2 } - 3 x Then A is

A)2
B) 2712\frac { 27 } { 12 }
C)3
D) 3712\frac { 37 } { 12 }
E) 3912\frac { 39 } { 12 }
Question
Let A denote the area enclosed by the equations y=32xy = 3 - 2 | x | and y=xy = | x | \text {. } Then A is

A)2
B) 94\frac { 9 } { 4 }
C) 114\frac { 11 } { 4 }
D)3
E) 134\frac { 13 } { 4 }
Question
Let A denote the area enclosed by the equations y=3xy = \frac { 3 } { x } and y=4xy = 4 - x Then A is

A)2
B) 2+ln32 + \ln 3
C)3
D) 43ln34 - 3 \ln 3
E) 3+ln33 + \ln 3
Question
Let A denote the area enclosed by the equations y=2xy = 2 | x | and y=3xy = 3 - x Then A is

A)15
B)12
C)9
D)6
E)3
Question
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=2xy = 2 - | x | Then A is

A) 113\frac { 11 } { 3 }
B)3
C) 73\frac { 7 } { 3 }
D) 53\frac { 5 } { 3 }
E) 43\frac { 4 } { 3 }
Question
Let A denote the area enclosed by the equations y=x3y = \sqrt [ 3 ] { x } and y=4xy = 4 x Then A is

A) 164\frac { 1 } { 64 }
B) 132\frac { 1 } { 32 }
C) 116\frac { 1 } { 16 }
D) 18\frac { 1 } { 8 }
E) 14\frac { 1 } { 4 }
Question
Let A denote the area enclosed by the equations y2=x2y ^ { 2 } = x - 2 and x=4x = 4 Then A is

A) 643\frac { 64 } { 3 }
B) 323\frac { 32 } { 3 }
C) 163\frac { 16 } { 3 }
D) 823\frac { 8 \sqrt { 2 } } { 3 }
E) 43\frac { 4 } { 3 }
Question
Let A denote the area enclosed by the equations y2=xy ^ { 2 } = x and y=2xy = 2 - x Then A is

A) 112\frac { 11 } { 2 }
B) 92\frac { 9 } { 2 }
C) 72\frac { 7 } { 2 }
D) 52\frac { 5 } { 2 }
E) 32\frac { 3 } { 2 }
Question
Let A denote the area enclosed by the equations x=y32yx = y ^ { 3 } - 2 y and x=7y.x = 7 y . Then A is

A) 812\frac { 81 } { 2 }
B) 632\frac { 63 } { 2 }
C) 452\frac { 45 } { 2 }
D) 272\frac { 27 } { 2 }
E) 92\frac { 9 } { 2 }
Question
Let A denote the area enclosed by the equations x=y2x = y ^ { 2 } and x=y+6x = y + 6 Then A is

A) 6256\frac { 625 } { 6 }
B) 2256\frac { 225 } { 6 }
C) 1256\frac { 125 } { 6 }
D) 256\frac { 25 } { 6 }
E) 56\frac { 5 } { 6 }
Question
Let A denote the area enclosed by the equations x=3yy2x = 3 y - y ^ { 2 } and x = y. Then A is

A) 403\frac { 40 } { 3 }
B) 353\frac { 35 } { 3 }
C) 253\frac { 25 } { 3 }
D)10
E) 43\frac { 4 } { 3 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=2x2,y = 2 x ^ { 2 }, the x-axis, x=1;x = 1 ; about the x-axis. Then V is

A) 4π3\frac { 4 \pi } { 3 }
B) 4π5\frac { 4 \pi } { 5 }
C) 8π3\frac { 8 \pi } { 3 }
D) 8π5\frac { 8 \pi } { 5 }
E) π5\frac { \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=2xy = 2 | x | \text {, } the x-axis, x=1;x = - 1 ; about the x-axis. Then V is

A) 13π3\frac { 13 \pi } { 3 }
B) 11π3\frac { 11 \pi } { 3 }
C) 10π3\frac { 10 \pi } { 3 }
D) 4π3\frac { 4 \pi } { 3 }
E) 7π3\frac { 7 \pi } { 3 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x=4;x = 4; about the x-axis. Then V is

A) 8π8 \pi
B) 7π7 \pi
C) 6π6 \pi
D) 5π5 \pi
E) 4π4 \pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=3x2,y = 3 x ^ { 2 }, the x-axis, x=1;x = 1 ; about the x-axis. Then V is

A) 12π5\frac { 12 \pi } { 5 }
B) 11π5\frac { 11 \pi } { 5 }
C) 9π5\frac { 9 \pi } { 5 }
D) 8π5\frac { 8 \pi } { 5 }
E) 7π5\frac { 7 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the y-axis, y=2;y = 2; about the y-axis. Then V is

A) 52π5\frac { 52 \pi } { 5 }
B) 42π5\frac { 42 \pi } { 5 }
C) 32π5\frac { 32 \pi } { 5 }
D) 22π5\frac { 22 \pi } { 5 }
E) 12π5\frac { 12 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x=1;x = 1; about the y-axis. Then V is

A) 4π5\frac { 4 \pi } { 5 }
B) 8π5\frac { 8 \pi } { 5 }
C) 16π5\frac { 16 \pi } { 5 }
D) 32π5\frac { 32 \pi } { 5 }
E) 64π5\frac { 64 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=sinx,y = \sqrt { \sin x }, the y-axis, about the x-axis. Then V is

A) π\pi
B) 3π2\frac { 3 \pi } { 2 }
C) 2π2 \pi
D) 5π2\frac { 5 \pi } { 2 }
E) 3π3 \pi
Question
Let V be the volume of the solid generated by revolving the region bounded above by y=cosxy = \sqrt { \cos x } and bounded below by the x-axis from x = 0 to x=π2;x = \frac { \pi } { 2 }; about the x-axis. Then V is

A) π\pi
B) 3π2\frac { 3 \pi } { 2 }
C) 2π2 \pi
D) 5π2\frac { 5 \pi } { 2 }
E) 3π3 \pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x2,y = x ^ { 2 }, the x-axis, x=2;x = 2; about x=2x = 2 Then V is

A) 10π3\frac { 10 \pi } { 3 }
B) 11π5\frac { 11 \pi } { 5 }
C) 9π5\frac { 9 \pi } { 5 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the y-axis, y = 4; about y = 4. Then V is

A) π\pi
B) 128π3\frac { 128 \pi } { 3 }
C) 128π5\frac { 128 \pi } { 5 }
D) 128π3\frac { 128 \pi } { 3 } .
E) 64π5\frac { 64 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region bounded above by y=2x2y = 2 x ^ { 2 } and bounded below the x-axis, x[0,2];x \in [ 0 , \sqrt { 2 } ]; about the y-axis. Then V is

A) 4π4 \pi
B) 128π3\frac { 128 \pi } { 3 }
C) 32π5\frac { 32 \pi } { 5 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = sec x, the x-axis, x=π3;x = \frac { \pi } { 3 }; about the x-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 128π3\frac { 128 \pi } { 3 }
C) 32π5\frac { 32 \pi } { 5 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x=4;x = 4; about the y-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 128π5\frac { 128 \pi } { 5 }
C) 88π5\frac { 88 \pi } { 5 }
D) 8π5\frac { 8 \pi } { 5 }
E) 8π3\frac { 8 \pi } { 3 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=2x2,y = 2 x ^ { 2 }, the x-axis, x=1;x = 1; about the y-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 128π3\frac { 128 \pi } { 3 }
C) 88π3\frac { 88 \pi } { 3 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the y-axis, y=2;y = 2; about the x-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 8π8 \pi
C) 88π3\frac { 88 \pi } { 3 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x = 4; about y=3y = 3 . Then V is

A) 3π\sqrt { 3 } \pi
B) 8π8 \pi
C) 24π24 \pi
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by about the x-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 8π8 \pi
C) 24π24 \pi
D) 1408π15\frac { 1408 \pi } { 15 }
E) 8π15\frac { 8 \pi } { 15 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by x=y2+1,x=2y+1;x = y ^ { 2 } + 1 , x = 2 y + 1; about x=1x = - 1 Then V is

A) 48π5\frac { 48 \pi } { 5 }
B) 8π8 \pi
C) 24π24 \pi
D) 1408π5\frac { 1408 \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by about x = 1. Then V is

A) 48π5\frac { 48 \pi } { 5 }
B) 8π8 \pi
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by about x = 2. Then V is

A) 48π5\frac { 48 \pi } { 5 }
B) 8π8 \pi
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = x2, y = x - x2; about the x-axis. Then V is

A) π96\frac { \pi } { 96 }
B) 8π8 \pi
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by x = y2, x = 2y - y2; about the x-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 8π8 \pi
C) π3\frac { \pi } { 3 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = x2, y = x + 2; about the x-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 64π5\frac { 64 \pi } { 5 }
C) 24π24 \pi
D) 72π5\frac { 72 \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by x = y2, x = y + 2; about the y-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 8π8 \pi
C) π3\frac { \pi } { 3 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 72π5\frac { 72 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = x3, y = 2x2 - x3; about the y-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 64π5\frac { 64 \pi } { 5 }
C) π5\frac { \pi } { 5 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by x = y3, x = 2y2 - y3; about the x-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 8π8 \pi
C) π3\frac { \pi } { 3 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) π5\frac { \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = -x2, y = x2 - 2x; about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by x = -y2, x = y2 - 2y; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = x2, y = 2 - x; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 72π5\frac { 72 \pi } { 5 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by x = -y2, x = y - 2; about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 72π5\frac { 72 \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = -x3, y = x3 - 2x2; about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 72π5\frac { 72 \pi } { 5 }
D) π5\frac { \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by x = -y3, x = y3 - 2y2; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) π5\frac { \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by y = 5 - x2, y = 4; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) π5\frac { \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed byabout the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) π5\frac { \pi } { 5 }
E) π\pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) π5\frac { \pi } { 5 }
E) π\pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 2π(1π2)12\frac { 2 \pi \left( 1 - \pi ^ { 2 } \right) } { 12 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) π(4π)2\frac { \pi ( 4 - \pi ) } { 2 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Question
Let V be the volume of the solid generated by revolving the region enclosed by about x=y2,x = - y ^ { 2 }, Then V is

A) 5π3\frac { 5 \pi } { 3 }
B) π5\frac { \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Question
Let V be the volume of the solid generated by revolving the region enclosed by about y=x2,y = - x ^ { 2 }, Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) 7π3\frac { 7 \pi } { 3 }
E) π\pi
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -1 to x = 1. The cross-sections of this solid perpendicular to the x-axis run from y=41x2y = - 4 \sqrt { 1 - x ^ { 2 } } to y=41x2y = 4 \sqrt { 1 - x ^ { 2 } } and they are squares with bases in the xy-plane. Then V is

A) 253\frac { 25 } { 3 }
B) 2745\frac { 274 } { 5 }
C) 2563\frac { 256 } { 3 }
D) 73\frac { 7 } { 3 }
E)42
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -3 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=9x2y = - \sqrt { 9 - x ^ { 2 } } to y=9x2y = \sqrt { 9 - x ^ { 2 } } and they are squares with bases in the xy-plane. Then V is

A) 253\frac { 25 } { 3 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7272
E) 5555
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 4. The cross-sections of this solid perpendicular to the x-axis run from y=x28y = \frac { x ^ { 2 } } { 8 } to y=xy = \sqrt { x } and they are squares with bases in the xy-plane. Then V is

A) 253\frac { 25 } { 3 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E)55
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x29y = \frac { x ^ { 2 } } { 9 } to y=x3y = \sqrt { \frac { x } { 3 } } and they are squares with bases in the xy-plane. Then V is

A) 2770\frac { 27 } { 70 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E) 253\frac { 25 } { 3 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y = 0 to y = x2 and they are squares with bases in the xy-plane. Then V is

A) 2770\frac { 27 } { 70 }
B) 253\frac { 25 } { 3 }
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E) 325\frac { 32 } { 5 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x2y = x ^ { 2 } to y=33xy = 3 \sqrt { 3 x } and they are squares with bases in the xy-plane. Then V is

A) 218770\frac { 2187 } { 70 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E) 325\frac { 32 } { 5 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=0y = 0 to y=3xy = 3 - x and they are squares with bases in the xy-plane. Then V is

A) 7235\frac { 72 } { 35 }
B)14
C) 563\frac { 56 } { 3 }
D)9
E) 325\frac { 32 } { 5 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -3 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=9x2y = - \sqrt { 9 - x ^ { 2 } } to y=9x2y = \sqrt { 9 - x ^ { 2 } } and they are semicircles with diameters in the xy-plane. Then V is

A) π3\frac { \pi } { 3 }
B) 14π14 \pi
C) 18π18 \pi
D) 7π3\frac { 7 \pi } { 3 }
E) π\pi
Question
Let V be the volume of a wedge cut from a right-circular cylinder with a radius of 1 inch by two planes, one perpendicular to the axis of the cylinder and the other intersecting the first along a diameter of the circular plane section at an angle of π3\frac { \pi } { 3 } radian. Then V is

A) 13π\frac { 1 } { \sqrt { 3 } } \pi
B) 23π\frac { 2 } { \sqrt { 3 } } \pi
C) 3π\sqrt { 3 } \pi
D) 43π\frac { 4 } { \sqrt { 3 } } \pi
E) 53π\frac { 5 } { \sqrt { 3 } } \pi
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 4. The cross-sections of this solid perpendicular to the x-axis run from y=x28y = \frac { x ^ { 2 } } { 8 } to y=xy = \sqrt { x } and they are semicircles with diameters in the xy-plane. Then V is

A) π3\frac { \pi } { 3 }
B) 47π3\frac { 47 \pi } { 3 }
C) 25π3\frac { 25 \pi } { 3 }
D) 7π3\frac { 7 \pi } { 3 }
E) 9π35\frac { 9 \pi } { 35 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x29y = \frac { x ^ { 2 } } { 9 } to y=x3y = \sqrt { \frac { x } { 3 } } and they are semicircles with diameters in the xy-plane. Then V is

A) 27π560\frac { 27 \pi } { 560 }
B) 47π3\frac { 47 \pi } { 3 }
C) 25π3\frac { 25 \pi } { 3 }
D) 7π3\frac { 7 \pi } { 3 }
E) 9π35\frac { 9 \pi } { 35 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y = 0 to y = x2 and they are semicircles with bases in the xy-plane. Then V is

A) 47π3\frac { 47 \pi } { 3 }
B) 25π3\frac { 25 \pi } { 3 }
C) 7π3\frac { 7 \pi } { 3 }
D) 9π35\frac { 9 \pi } { 35 }
E) 4π5\frac { 4 \pi } { 5 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x2y = x ^ { 2 } to y=33xy = 3 \sqrt { 3 x } and they are semicircles with diameters in the xy-plane. Then V is

A) 2187π560\frac { 2187 \pi } { 560 }
B) 25π3\frac { 25 \pi } { 3 }
C) 7π3\frac { 7 \pi } { 3 }
D) 9π35\frac { 9 \pi } { 35 }
E) 4π5\frac { 4 \pi } { 5 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y = 0 to y = x2 and they are semicircles with bases in the xy-plane. Then V is

A) 2187π560\frac { 2187 \pi } { 560 }
B) 25π3\frac { 25 \pi } { 3 }
C) 7π3\frac { 7 \pi } { 3 }
D) 9π35\frac { 9 \pi } { 35 }
E) 4π5\frac { 4 \pi } { 5 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=0y = 0 to y=3xy = 3 - x and they are semicircles with diameters in the xy-plane. Then V is

A) 25π3\frac { 25 \pi } { 3 }
B) 7π3\frac { 7 \pi } { 3 }
C) 9π35\frac { 9 \pi } { 35 }
D) 9π8\frac { 9 \pi } { 8 }
E) 4π5\frac { 4 \pi } { 5 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -3 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=9x2y = - \sqrt { 9 - x ^ { 2 } } to y=9x2y = \sqrt { 9 - x ^ { 2 } } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 18218 \sqrt { 2 }
B) 36336 \sqrt { 3 }
C)36
D) 18518 \sqrt { 5 }
E)9
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -1 to x = 1. The cross-sections of this solid perpendicular to the x-axis run from y=41x2y = - 4 \sqrt { 1 - x ^ { 2 } } to y=41x2y = 4 \sqrt { 1 - x ^ { 2 } } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 2563\frac { 256 } { \sqrt { 3 } }
B) 1283\frac { 128 } { \sqrt { 3 } }
C) 643\frac { 64 } { \sqrt { 3 } }
D) 323\frac { 32 } { \sqrt { 3 } }
E) 163\frac { 16 } { \sqrt { 3 } }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 4. The cross-sections of this solid perpendicular to the x-axis run from y=x28y = \frac { x ^ { 2 } } { 8 } to y=xy = \sqrt { x } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 72335\frac { 72 \sqrt { 3 } } { 35 }
B) 36333\frac { 36 \sqrt { 3 } } { 33 }
C) 18333\frac { 18 \sqrt { 3 } } { 33 }
D) 18335\frac { 18 \sqrt { 3 } } { 35 }
E) 12335\frac { 12 \sqrt { 3 } } { 35 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x29y = \frac { x ^ { 2 } } { 9 } to y=x3y = \sqrt { \frac { x } { 3 } } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 273280\frac { 27 \sqrt { 3 } } { 280 }
B) 273140\frac { 27 \sqrt { 3 } } { 140 }
C) 27370\frac { 27 \sqrt { 3 } } { 70 }
D) 27335\frac { 27 \sqrt { 3 } } { 35 }
E) 273350\frac { 27 \sqrt { 3 } } { 350 }
Question
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y=0y = 0 to y=x2y = x ^ { 2 } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 6435\frac { 64 \sqrt { 3 } } { 5 }
B) 5635\frac { 56 \sqrt { 3 } } { 5 }
C) 4835\frac { 48 \sqrt { 3 } } { 5 }
D) 3235\frac { 32 \sqrt { 3 } } { 5 }
E) 835\frac { 8 \sqrt { 3 } } { 5 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/163
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Applications of the Integral
1
Let A denote the area enclosed by the equation y=x24x+3y = x ^ { 2 } - 4 x + 3 and the x-axis. Then A is

A) 49\frac { 4 } { 9 }
B) 45\frac { 4 } { 5 }
C) 43\frac { 4 } { 3 }
D) 83\frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
43\frac { 4 } { 3 }
2
Let A denote the area enclosed by the equation y=sinxy = \sin x and the x-axis with x[0,π]x \in [ 0 , \pi ] Then A is

A) 12\frac { 1 } { 2 }
B)1
C) 32\frac { 3 } { 2 }
D)2
E) 52\frac { 5 } { 2 }
2
3
Let A denote the area enclosed by the equation y=4xy = 4 - | x | and the x-axis. Then A is

A)8
B)10
C)12
D)14
E)16
16
4
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=2xy = 2 x Then A is

A) 49\frac { 4 } { 9 }
B) 45\frac { 4 } { 5 }
C) 43\frac { 4 } { 3 }
D) 83\frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
5
Let A denote the area enclosed by the equations y=x2+1y = x ^ { 2 } + 1 and y=4x2y = - 4 x - 2 Then A is

A) 49\frac { 4 } { 9 }
B) 45\frac { 4 } { 5 }
C) 43\frac { 4 } { 3 }
D) 83\frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
6
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=8x2y = 8 - x ^ { 2 } Then A is

A) 43\frac { 4 } { 3 }
B) 83\frac { 8 } { 3 }
C) 163\frac { 16 } { 3 }
D) 323\frac { 32 } { 3 }
E) 643\frac { 64 } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
7
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=6xx2y = 6 x - x ^ { 2 } Then A is

A)3
B)6
C)9
D)12
E)18
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
8
Let A denote the area enclosed by the y-axis and the equations y = sin x and y = cos x for 0xπ40 \leq x \leq \frac { \pi } { 4 } Then A is

A) 22\frac { \sqrt { 2 } } { 2 }
B) 21\sqrt { 2 } - 1
C) 2\sqrt { 2 }
D)1
E) 2+1\sqrt { 2 } + 1
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
9
Let A denote the area enclosed by the equations y = x3 and y = x. Then A is

A) 12\frac { 1 } { 2 }
B)1
C) 32\frac { 3 } { 2 }
D)2
E) 52\frac { 5 } { 2 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
10
Let A denote the area enclosed by the equations y=2x33x25xy = 2 x ^ { 3 } - 3 x ^ { 2 } - 5 x and y=x32x23xy = x ^ { 3 } - 2 x ^ { 2 } - 3 x Then A is

A)2
B) 2712\frac { 27 } { 12 }
C)3
D) 3712\frac { 37 } { 12 }
E) 3912\frac { 39 } { 12 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
11
Let A denote the area enclosed by the equations y=32xy = 3 - 2 | x | and y=xy = | x | \text {. } Then A is

A)2
B) 94\frac { 9 } { 4 }
C) 114\frac { 11 } { 4 }
D)3
E) 134\frac { 13 } { 4 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
12
Let A denote the area enclosed by the equations y=3xy = \frac { 3 } { x } and y=4xy = 4 - x Then A is

A)2
B) 2+ln32 + \ln 3
C)3
D) 43ln34 - 3 \ln 3
E) 3+ln33 + \ln 3
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
13
Let A denote the area enclosed by the equations y=2xy = 2 | x | and y=3xy = 3 - x Then A is

A)15
B)12
C)9
D)6
E)3
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
14
Let A denote the area enclosed by the equations y=x2y = x ^ { 2 } and y=2xy = 2 - | x | Then A is

A) 113\frac { 11 } { 3 }
B)3
C) 73\frac { 7 } { 3 }
D) 53\frac { 5 } { 3 }
E) 43\frac { 4 } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
15
Let A denote the area enclosed by the equations y=x3y = \sqrt [ 3 ] { x } and y=4xy = 4 x Then A is

A) 164\frac { 1 } { 64 }
B) 132\frac { 1 } { 32 }
C) 116\frac { 1 } { 16 }
D) 18\frac { 1 } { 8 }
E) 14\frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
16
Let A denote the area enclosed by the equations y2=x2y ^ { 2 } = x - 2 and x=4x = 4 Then A is

A) 643\frac { 64 } { 3 }
B) 323\frac { 32 } { 3 }
C) 163\frac { 16 } { 3 }
D) 823\frac { 8 \sqrt { 2 } } { 3 }
E) 43\frac { 4 } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
17
Let A denote the area enclosed by the equations y2=xy ^ { 2 } = x and y=2xy = 2 - x Then A is

A) 112\frac { 11 } { 2 }
B) 92\frac { 9 } { 2 }
C) 72\frac { 7 } { 2 }
D) 52\frac { 5 } { 2 }
E) 32\frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
18
Let A denote the area enclosed by the equations x=y32yx = y ^ { 3 } - 2 y and x=7y.x = 7 y . Then A is

A) 812\frac { 81 } { 2 }
B) 632\frac { 63 } { 2 }
C) 452\frac { 45 } { 2 }
D) 272\frac { 27 } { 2 }
E) 92\frac { 9 } { 2 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
19
Let A denote the area enclosed by the equations x=y2x = y ^ { 2 } and x=y+6x = y + 6 Then A is

A) 6256\frac { 625 } { 6 }
B) 2256\frac { 225 } { 6 }
C) 1256\frac { 125 } { 6 }
D) 256\frac { 25 } { 6 }
E) 56\frac { 5 } { 6 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
20
Let A denote the area enclosed by the equations x=3yy2x = 3 y - y ^ { 2 } and x = y. Then A is

A) 403\frac { 40 } { 3 }
B) 353\frac { 35 } { 3 }
C) 253\frac { 25 } { 3 }
D)10
E) 43\frac { 4 } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
21
Let V be the volume of the solid generated by revolving the region enclosed by y=2x2,y = 2 x ^ { 2 }, the x-axis, x=1;x = 1 ; about the x-axis. Then V is

A) 4π3\frac { 4 \pi } { 3 }
B) 4π5\frac { 4 \pi } { 5 }
C) 8π3\frac { 8 \pi } { 3 }
D) 8π5\frac { 8 \pi } { 5 }
E) π5\frac { \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
22
Let V be the volume of the solid generated by revolving the region enclosed by y=2xy = 2 | x | \text {, } the x-axis, x=1;x = - 1 ; about the x-axis. Then V is

A) 13π3\frac { 13 \pi } { 3 }
B) 11π3\frac { 11 \pi } { 3 }
C) 10π3\frac { 10 \pi } { 3 }
D) 4π3\frac { 4 \pi } { 3 }
E) 7π3\frac { 7 \pi } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
23
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x=4;x = 4; about the x-axis. Then V is

A) 8π8 \pi
B) 7π7 \pi
C) 6π6 \pi
D) 5π5 \pi
E) 4π4 \pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
24
Let V be the volume of the solid generated by revolving the region enclosed by y=3x2,y = 3 x ^ { 2 }, the x-axis, x=1;x = 1 ; about the x-axis. Then V is

A) 12π5\frac { 12 \pi } { 5 }
B) 11π5\frac { 11 \pi } { 5 }
C) 9π5\frac { 9 \pi } { 5 }
D) 8π5\frac { 8 \pi } { 5 }
E) 7π5\frac { 7 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
25
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the y-axis, y=2;y = 2; about the y-axis. Then V is

A) 52π5\frac { 52 \pi } { 5 }
B) 42π5\frac { 42 \pi } { 5 }
C) 32π5\frac { 32 \pi } { 5 }
D) 22π5\frac { 22 \pi } { 5 }
E) 12π5\frac { 12 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
26
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x=1;x = 1; about the y-axis. Then V is

A) 4π5\frac { 4 \pi } { 5 }
B) 8π5\frac { 8 \pi } { 5 }
C) 16π5\frac { 16 \pi } { 5 }
D) 32π5\frac { 32 \pi } { 5 }
E) 64π5\frac { 64 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
27
Let V be the volume of the solid generated by revolving the region enclosed by y=sinx,y = \sqrt { \sin x }, the y-axis, about the x-axis. Then V is

A) π\pi
B) 3π2\frac { 3 \pi } { 2 }
C) 2π2 \pi
D) 5π2\frac { 5 \pi } { 2 }
E) 3π3 \pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
28
Let V be the volume of the solid generated by revolving the region bounded above by y=cosxy = \sqrt { \cos x } and bounded below by the x-axis from x = 0 to x=π2;x = \frac { \pi } { 2 }; about the x-axis. Then V is

A) π\pi
B) 3π2\frac { 3 \pi } { 2 }
C) 2π2 \pi
D) 5π2\frac { 5 \pi } { 2 }
E) 3π3 \pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
29
Let V be the volume of the solid generated by revolving the region enclosed by y=x2,y = x ^ { 2 }, the x-axis, x=2;x = 2; about x=2x = 2 Then V is

A) 10π3\frac { 10 \pi } { 3 }
B) 11π5\frac { 11 \pi } { 5 }
C) 9π5\frac { 9 \pi } { 5 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
30
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the y-axis, y = 4; about y = 4. Then V is

A) π\pi
B) 128π3\frac { 128 \pi } { 3 }
C) 128π5\frac { 128 \pi } { 5 }
D) 128π3\frac { 128 \pi } { 3 } .
E) 64π5\frac { 64 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
31
Let V be the volume of the solid generated by revolving the region bounded above by y=2x2y = 2 x ^ { 2 } and bounded below the x-axis, x[0,2];x \in [ 0 , \sqrt { 2 } ]; about the y-axis. Then V is

A) 4π4 \pi
B) 128π3\frac { 128 \pi } { 3 }
C) 32π5\frac { 32 \pi } { 5 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
32
Let V be the volume of the solid generated by revolving the region enclosed by y = sec x, the x-axis, x=π3;x = \frac { \pi } { 3 }; about the x-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 128π3\frac { 128 \pi } { 3 }
C) 32π5\frac { 32 \pi } { 5 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
33
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x=4;x = 4; about the y-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 128π5\frac { 128 \pi } { 5 }
C) 88π5\frac { 88 \pi } { 5 }
D) 8π5\frac { 8 \pi } { 5 }
E) 8π3\frac { 8 \pi } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
34
Let V be the volume of the solid generated by revolving the region enclosed by y=2x2,y = 2 x ^ { 2 }, the x-axis, x=1;x = 1; about the y-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 128π3\frac { 128 \pi } { 3 }
C) 88π3\frac { 88 \pi } { 3 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
35
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the y-axis, y=2;y = 2; about the x-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 8π8 \pi
C) 88π3\frac { 88 \pi } { 3 }
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
36
Let V be the volume of the solid generated by revolving the region enclosed by y=x,y = \sqrt { x }, the x-axis, x = 4; about y=3y = 3 . Then V is

A) 3π\sqrt { 3 } \pi
B) 8π8 \pi
C) 24π24 \pi
D) 8π3\frac { 8 \pi } { 3 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
37
Let V be the volume of the solid generated by revolving the region enclosed by about the x-axis. Then V is

A) 3π\sqrt { 3 } \pi
B) 8π8 \pi
C) 24π24 \pi
D) 1408π15\frac { 1408 \pi } { 15 }
E) 8π15\frac { 8 \pi } { 15 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
38
Let V be the volume of the solid generated by revolving the region enclosed by x=y2+1,x=2y+1;x = y ^ { 2 } + 1 , x = 2 y + 1; about x=1x = - 1 Then V is

A) 48π5\frac { 48 \pi } { 5 }
B) 8π8 \pi
C) 24π24 \pi
D) 1408π5\frac { 1408 \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
39
Let V be the volume of the solid generated by revolving the region enclosed by about x = 1. Then V is

A) 48π5\frac { 48 \pi } { 5 }
B) 8π8 \pi
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
40
Let V be the volume of the solid generated by revolving the region enclosed by about x = 2. Then V is

A) 48π5\frac { 48 \pi } { 5 }
B) 8π8 \pi
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
41
Let V be the volume of the solid generated by revolving the region enclosed by y = x2, y = x - x2; about the x-axis. Then V is

A) π96\frac { \pi } { 96 }
B) 8π8 \pi
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
42
Let V be the volume of the solid generated by revolving the region enclosed by x = y2, x = 2y - y2; about the x-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 8π8 \pi
C) π3\frac { \pi } { 3 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
43
Let V be the volume of the solid generated by revolving the region enclosed by y = x2, y = x + 2; about the x-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 64π5\frac { 64 \pi } { 5 }
C) 24π24 \pi
D) 72π5\frac { 72 \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
44
Let V be the volume of the solid generated by revolving the region enclosed by x = y2, x = y + 2; about the y-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 8π8 \pi
C) π3\frac { \pi } { 3 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 72π5\frac { 72 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
45
Let V be the volume of the solid generated by revolving the region enclosed by y = x3, y = 2x2 - x3; about the y-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 64π5\frac { 64 \pi } { 5 }
C) π5\frac { \pi } { 5 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
46
Let V be the volume of the solid generated by revolving the region enclosed by x = y3, x = 2y2 - y3; about the x-axis. Then V is

A) π48\frac { \pi } { 48 }
B) 8π8 \pi
C) π3\frac { \pi } { 3 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) π5\frac { \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
47
Let V be the volume of the solid generated by revolving the region enclosed by y = -x2, y = x2 - 2x; about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
48
Let V be the volume of the solid generated by revolving the region enclosed by x = -y2, x = y2 - 2y; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
49
Let V be the volume of the solid generated by revolving the region enclosed by y = x2, y = 2 - x; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 72π5\frac { 72 \pi } { 5 }
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
50
Let V be the volume of the solid generated by revolving the region enclosed by x = -y2, x = y - 2; about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 72π5\frac { 72 \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
51
Let V be the volume of the solid generated by revolving the region enclosed by y = -x3, y = x3 - 2x2; about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 72π5\frac { 72 \pi } { 5 }
D) π5\frac { \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
52
Let V be the volume of the solid generated by revolving the region enclosed by x = -y3, x = y3 - 2y2; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) π5\frac { \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
53
Let V be the volume of the solid generated by revolving the region enclosed by y = 5 - x2, y = 4; about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) π5\frac { \pi } { 5 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
54
Let V be the volume of the solid generated by revolving the region enclosed byabout the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 64π5\frac { 64 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) π5\frac { \pi } { 5 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
55
Let V be the volume of the solid generated by revolving the region enclosed by about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) π5\frac { \pi } { 5 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
56
Let V be the volume of the solid generated by revolving the region enclosed by about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
57
Let V be the volume of the solid generated by revolving the region enclosed by about the y-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 2π(1π2)12\frac { 2 \pi \left( 1 - \pi ^ { 2 } \right) } { 12 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
58
Let V be the volume of the solid generated by revolving the region enclosed by about the x-axis. Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) π(4π)2\frac { \pi ( 4 - \pi ) } { 2 }
D) 8π3\frac { 8 \pi } { 3 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
59
Let V be the volume of the solid generated by revolving the region enclosed by about x=y2,x = - y ^ { 2 }, Then V is

A) 5π3\frac { 5 \pi } { 3 }
B) π5\frac { \pi } { 5 }
C) 24π24 \pi
D) 1088π15\frac { 1088 \pi } { 15 }
E) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
60
Let V be the volume of the solid generated by revolving the region enclosed by about y=x2,y = - x ^ { 2 }, Then V is

A) π3\frac { \pi } { 3 }
B) 704π5\frac { 704 \pi } { 5 }
C) 176π15\frac { 176 \pi } { 15 }
D) 7π3\frac { 7 \pi } { 3 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
61
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -1 to x = 1. The cross-sections of this solid perpendicular to the x-axis run from y=41x2y = - 4 \sqrt { 1 - x ^ { 2 } } to y=41x2y = 4 \sqrt { 1 - x ^ { 2 } } and they are squares with bases in the xy-plane. Then V is

A) 253\frac { 25 } { 3 }
B) 2745\frac { 274 } { 5 }
C) 2563\frac { 256 } { 3 }
D) 73\frac { 7 } { 3 }
E)42
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
62
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -3 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=9x2y = - \sqrt { 9 - x ^ { 2 } } to y=9x2y = \sqrt { 9 - x ^ { 2 } } and they are squares with bases in the xy-plane. Then V is

A) 253\frac { 25 } { 3 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7272
E) 5555
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
63
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 4. The cross-sections of this solid perpendicular to the x-axis run from y=x28y = \frac { x ^ { 2 } } { 8 } to y=xy = \sqrt { x } and they are squares with bases in the xy-plane. Then V is

A) 253\frac { 25 } { 3 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E)55
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
64
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x29y = \frac { x ^ { 2 } } { 9 } to y=x3y = \sqrt { \frac { x } { 3 } } and they are squares with bases in the xy-plane. Then V is

A) 2770\frac { 27 } { 70 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E) 253\frac { 25 } { 3 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
65
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y = 0 to y = x2 and they are squares with bases in the xy-plane. Then V is

A) 2770\frac { 27 } { 70 }
B) 253\frac { 25 } { 3 }
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E) 325\frac { 32 } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
66
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x2y = x ^ { 2 } to y=33xy = 3 \sqrt { 3 x } and they are squares with bases in the xy-plane. Then V is

A) 218770\frac { 2187 } { 70 }
B)144
C) 2563\frac { 256 } { 3 }
D) 7235\frac { 72 } { 35 }
E) 325\frac { 32 } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
67
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=0y = 0 to y=3xy = 3 - x and they are squares with bases in the xy-plane. Then V is

A) 7235\frac { 72 } { 35 }
B)14
C) 563\frac { 56 } { 3 }
D)9
E) 325\frac { 32 } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
68
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -3 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=9x2y = - \sqrt { 9 - x ^ { 2 } } to y=9x2y = \sqrt { 9 - x ^ { 2 } } and they are semicircles with diameters in the xy-plane. Then V is

A) π3\frac { \pi } { 3 }
B) 14π14 \pi
C) 18π18 \pi
D) 7π3\frac { 7 \pi } { 3 }
E) π\pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
69
Let V be the volume of a wedge cut from a right-circular cylinder with a radius of 1 inch by two planes, one perpendicular to the axis of the cylinder and the other intersecting the first along a diameter of the circular plane section at an angle of π3\frac { \pi } { 3 } radian. Then V is

A) 13π\frac { 1 } { \sqrt { 3 } } \pi
B) 23π\frac { 2 } { \sqrt { 3 } } \pi
C) 3π\sqrt { 3 } \pi
D) 43π\frac { 4 } { \sqrt { 3 } } \pi
E) 53π\frac { 5 } { \sqrt { 3 } } \pi
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
70
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 4. The cross-sections of this solid perpendicular to the x-axis run from y=x28y = \frac { x ^ { 2 } } { 8 } to y=xy = \sqrt { x } and they are semicircles with diameters in the xy-plane. Then V is

A) π3\frac { \pi } { 3 }
B) 47π3\frac { 47 \pi } { 3 }
C) 25π3\frac { 25 \pi } { 3 }
D) 7π3\frac { 7 \pi } { 3 }
E) 9π35\frac { 9 \pi } { 35 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
71
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x29y = \frac { x ^ { 2 } } { 9 } to y=x3y = \sqrt { \frac { x } { 3 } } and they are semicircles with diameters in the xy-plane. Then V is

A) 27π560\frac { 27 \pi } { 560 }
B) 47π3\frac { 47 \pi } { 3 }
C) 25π3\frac { 25 \pi } { 3 }
D) 7π3\frac { 7 \pi } { 3 }
E) 9π35\frac { 9 \pi } { 35 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
72
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y = 0 to y = x2 and they are semicircles with bases in the xy-plane. Then V is

A) 47π3\frac { 47 \pi } { 3 }
B) 25π3\frac { 25 \pi } { 3 }
C) 7π3\frac { 7 \pi } { 3 }
D) 9π35\frac { 9 \pi } { 35 }
E) 4π5\frac { 4 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
73
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x2y = x ^ { 2 } to y=33xy = 3 \sqrt { 3 x } and they are semicircles with diameters in the xy-plane. Then V is

A) 2187π560\frac { 2187 \pi } { 560 }
B) 25π3\frac { 25 \pi } { 3 }
C) 7π3\frac { 7 \pi } { 3 }
D) 9π35\frac { 9 \pi } { 35 }
E) 4π5\frac { 4 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
74
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y = 0 to y = x2 and they are semicircles with bases in the xy-plane. Then V is

A) 2187π560\frac { 2187 \pi } { 560 }
B) 25π3\frac { 25 \pi } { 3 }
C) 7π3\frac { 7 \pi } { 3 }
D) 9π35\frac { 9 \pi } { 35 }
E) 4π5\frac { 4 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
75
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=0y = 0 to y=3xy = 3 - x and they are semicircles with diameters in the xy-plane. Then V is

A) 25π3\frac { 25 \pi } { 3 }
B) 7π3\frac { 7 \pi } { 3 }
C) 9π35\frac { 9 \pi } { 35 }
D) 9π8\frac { 9 \pi } { 8 }
E) 4π5\frac { 4 \pi } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
76
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -3 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=9x2y = - \sqrt { 9 - x ^ { 2 } } to y=9x2y = \sqrt { 9 - x ^ { 2 } } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 18218 \sqrt { 2 }
B) 36336 \sqrt { 3 }
C)36
D) 18518 \sqrt { 5 }
E)9
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
77
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = -1 to x = 1. The cross-sections of this solid perpendicular to the x-axis run from y=41x2y = - 4 \sqrt { 1 - x ^ { 2 } } to y=41x2y = 4 \sqrt { 1 - x ^ { 2 } } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 2563\frac { 256 } { \sqrt { 3 } }
B) 1283\frac { 128 } { \sqrt { 3 } }
C) 643\frac { 64 } { \sqrt { 3 } }
D) 323\frac { 32 } { \sqrt { 3 } }
E) 163\frac { 16 } { \sqrt { 3 } }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
78
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 4. The cross-sections of this solid perpendicular to the x-axis run from y=x28y = \frac { x ^ { 2 } } { 8 } to y=xy = \sqrt { x } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 72335\frac { 72 \sqrt { 3 } } { 35 }
B) 36333\frac { 36 \sqrt { 3 } } { 33 }
C) 18333\frac { 18 \sqrt { 3 } } { 33 }
D) 18335\frac { 18 \sqrt { 3 } } { 35 }
E) 12335\frac { 12 \sqrt { 3 } } { 35 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
79
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 3. The cross-sections of this solid perpendicular to the x-axis run from y=x29y = \frac { x ^ { 2 } } { 9 } to y=x3y = \sqrt { \frac { x } { 3 } } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 273280\frac { 27 \sqrt { 3 } } { 280 }
B) 273140\frac { 27 \sqrt { 3 } } { 140 }
C) 27370\frac { 27 \sqrt { 3 } } { 70 }
D) 27335\frac { 27 \sqrt { 3 } } { 35 }
E) 273350\frac { 27 \sqrt { 3 } } { 350 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
80
Let V be the volume of the solid that lies between planes perpendicular to the x-axis from x = 0 to x = 2. The cross-sections of this solid perpendicular to the x-axis run from y=0y = 0 to y=x2y = x ^ { 2 } and they are equilateral triangles with bases in the xy-plane. Then V is

A) 6435\frac { 64 \sqrt { 3 } } { 5 }
B) 5635\frac { 56 \sqrt { 3 } } { 5 }
C) 4835\frac { 48 \sqrt { 3 } } { 5 }
D) 3235\frac { 32 \sqrt { 3 } } { 5 }
E) 835\frac { 8 \sqrt { 3 } } { 5 }
Unlock Deck
Unlock for access to all 163 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 163 flashcards in this deck.