Deck 6: The Integral

Full screen (f)
exit full mode
Question
Let A denote the area enclosed by the graph f(x)=10x,f ( x ) = 10 - x, the x-axis, and the lines x=3x = 3 and x=5x = 5 . Graphing the region and using plane geometry, we can find that A is

A)8
B)10
C)11
D)12
E)14
Use Space or
up arrow
down arrow
to flip the card.
Question
Let A denote the area enclosed by the graph f(x)=x,f ( x ) = | x |, the x-axis, and the lines x=2x = - 2 and x=0x = 0 . Graphing the region and using plane geometry, we can find that A is

A)1
B)1.5
C)2
D)2.5
E)3
Question
Let A denote the area enclosed by the graph f(x)=xf ( x ) = | x | \text {, } the x-axis, and the lines x=1x = - 1 and x=1x = 1 . Graphing the region and using plane geometry, we can find that A is

A)0.5
B)1
C)1.5
D)2
E)2.5
Question
Let A denote the area enclosed by the graph f(x)=1x2,f ( x ) = \sqrt { 1 - x ^ { 2 } }, the x-axis, and the lines x=0x = 0 and x=1x = 1 . Graphing the region and using plane geometry, we can find that A is

A) π4\frac { \pi } { 4 }
B) π3\frac { \pi } { 3 }
C) π2\frac { \pi } { 2 }
D) π\pi
E) 2π2 \pi
Question
Let A denote the area enclosed by the graph f(x)=3+4x2,f ( x ) = 3 + \sqrt { 4 - x ^ { 2 } }, the lines y = 3, x = 0, and x = 2. Graphing the region and using plane geometry, we can find that A is

A) 2π32 \pi - 3
B) 2π+32 \pi + 3
C) π3\pi - 3
D) π+3\pi + 3
E) π\pi
Question
Let A denote the area enclosed by the graph f(x)=4x,f ( x ) = 4 - | x |, the x-axis, and the lines x = -2 and x = 0. Graphing the region and using plane geometry, we can find that A is

A)2
B)3
C)4
D)5
E)6
Question
Let A denote the area enclosed by the graph f(x)=(x1)2,f ( x ) = ( x - 1 ) ^ { 2 }, the x-axis, and the lines x = 2 and x = 9. Graphing the region and using plane geometry, we can find that A is

A)
limnk=1n(7kn1)2(7n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } - 1 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
B) limnk=1n(7kn+1)2(7n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } + 1 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
C) limnk=1n(7kn+2)2(7n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } + 2 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
D) limnk=1n(9kn+2)2(9n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 9 k } { n } + 2 \right) ^ { 2 } \left( \frac { 9 } { n } \right)
E) limnk=1n(9kn+1)2(9n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 9 k } { n } + 1 \right) ^ { 2 } \left( \frac { 9 } { n } \right)
Question
Let A denote the area enclosed by the graph (x)=1x+1( x ) = \frac { 1 } { x + 1 } , the x-axis, and the lines x = 1 and x = 5. Graphing the region and using plane geometry, we can find that A is

A) limnk=0n(14kn+1)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n } \left( \frac { 1 } { \frac { 4 k } { n } + 1 } \right) \left( \frac { 4 } { n } \right)
B) limnk=0n1(14kn+1)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n - 1 } \left( \frac { 1 } { \frac { 4 k } { n } + 1 } \right) \left( \frac { 4 } { n } \right)
C) limnk=1n(15kn+1)(5n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 1 } { \frac { 5 k } { n } + 1 } \right) \left( \frac { 5 } { n } \right)
D) limnk=0n1(14k+2)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n - 1 } \left( \frac { 1 } { 4 k } + 2 \right) \left( \frac { 4 } { n } \right)
E) limnk=0n1(15kn+1)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n - 1 } \left( \frac { 1 } { \frac { 5 k } { n } + 1 } \right) \left( \frac { 4 } { n } \right)
Question
Let A denote the area enclosed by the graph f(x)=12x3,f ( x ) = \frac { 1 } { 2 } x ^ { 3 }, the x-axis, and the lines x = 0 and x = 2. Graphing the region and using plane geometry, we can find that A is

A) limnk=1n(2k+1n)3(2n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k + 1 } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
B) limnk=1n(2k1n)3(2n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k - 1 } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
C) limnk=1n(2k+2n)3(1n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k + 2 } { n } \right) ^ { 3 } \left( \frac { 1 } { n } \right)
D) limnk=1n(2kn)3(2n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
E) limnk=1n(2kn)3(1n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k } { n } \right) ^ { 3 } \left( \frac { 1 } { n } \right)
Question
Let A denote the area enclosed by the graph f(x)=x3,f ( x ) = \frac { \sqrt { x } } { 3 }, the x-axis, and the lines x = 0 and x = 9. Graphing the region and using plane geometry, we can find that A is

A) limnk=1n3nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 3 } { n } \sqrt { \frac { k - 1 } { n } }
B) limnk=1n27nkn\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 27 } { n } \sqrt { \frac { k } { n } }
C) limnk=1n3nkn\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 3 } { n } \sqrt { \frac { k } { n } }
D) limnk=1n9nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 9 } { n } \sqrt { \frac { k - 1 } { n } }
E) limnk=1n27nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 27 } { n } \sqrt { \frac { k - 1 } { n } }
Question
Suppose S4 is the lower sum of the area enclosed by the graph f(x)=2x2,f ( x ) = 2 x ^ { 2 }, the x-axis, and the lines x = 0 and x = 4 by partitioning [0, 4] into four subintervals [0, 1], [1, 2], [2, 3], and [3, 4]. Then S4 is

A)26
B)28
C)32
D)48
E)60
Question
Suppose S4 is the upper sum of the area enclosed by the graph f(x)=2x2,f ( x ) = 2 x ^ { 2 }, the x-axis, and the lines x = 0 and x = 4 by partitioning [0, 4] into four subintervals [0, 1], [1, 2], [2, 3], and [3, 4]. Then S4 is

A)26
B)28
C)32
D)48
E)60
Question
Suppose S4 is the upper sum of the area enclosed by the graph (x)=1x( x ) = \frac { 1 } { x } , the x-axis, and the lines x = 1 and x = 4 by partitioning [1, 4] into three subintervals [1, 2], [2, 3], and [3, 4]. Then S4 is

A)6
B) 98\frac { 9 } { 8 }
C) 116\frac { 11 } { 6 }
D)2
E) 136\frac { 13 } { 6 }
Question
Suppose S3 is the lower sum of the area enclosed by the graph (x)=1x( x ) = \frac { 1 } { x } , the x-axis, and the lines x = 1 and x = 4 by partitioning [1, 4] into three subintervals [1, 2], [2, 3], and [3, 4]. Then S3 is

A) 1312\frac { 13 } { 12 }
B) 98\frac { 9 } { 8 }
C) 116\frac { 11 } { 6 }
D)2
E) 136\frac { 13 } { 6 }
Question
Suppose S4 is the upper sum of the area enclosed by the graph f(x)=x2+2,f ( x ) = x ^ { 2 } + 2, the x-axis, and the lines x = 0 and x = 2 by partitioning [0, 2] into four subintervals [0, 1/2], [1/2, 1], [1, 3/2], and [3/2, 2]. Then S4 is

A)8.5
B)8.25
C)8.125
D)7.825
E)7.75
Question
Suppose S4 is the lower sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 2] into four subintervals [0, 1/2], [1/2, 1], [1, 3/2], and [3/2, 2]. Then S4 is

A)5.35
B)5.45
C)5.55
D)5.65
E)5.75
Question
Suppose S5 is the upper sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 10] into five subintervals [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10]. Then S5 is

A)260
B)340
C)420
D)480
E)500
Question
Suppose S5 is the lower sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 10] into five subintervals [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10]. Then S5 is

A)240
B)260
C)280
D)300
E)320
Question
Suppose S6 is the upper sum of the area enclosed by the graph f(x)=10x2,f ( x ) = 10 - x ^ { 2 }, the x-axis, and the lines x = 0 and x = 3 by partitioning [0, 3] into six subintervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], and [2.5, 3]. Then S6 is

A)23.125
B)23.225
C)23.235
D)23.245
E)23.255
Question
Suppose S6 is the lower sum of the area enclosed by the graph f(x)=10x2,f ( x ) = 10 - x ^ { 2 }, the x-axis, and the lines x = 0 and x = 3 by partitioning [0, 3] into six subintervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], and [2.5, 3]. Then S6 is

A)18.625
B)18.635
C)18.645
D)18.655
E)18.665
Question
The value of the definite integral 12π2dx\int _ { - 1 } ^ { 2 } \pi ^ { 2 } d x is

A) 3π23 \pi ^ { 2 }
B) 5π25 \pi ^ { 2 }
C) 7π27 \pi ^ { 2 }
D) 9π29 \pi ^ { 2 }
E) 11π211 \pi ^ { 2 }
Question
The value of the definite integral 461edx\int _ { - 4 } ^ { 6 } \frac { 1 } { e } d x is

A) 2e\frac { 2 } { e }
B) 4e\frac { 4 } { e }
C) 6e\frac { 6 } { e }
D) 8e\frac { 8 } { e }
E) 10e\frac { 10 } { e }
Question
The value of the definite integral 02log232dx\int _ { 0 } ^ { 2 } \log _ { 2 } 32 d x is

A)8
B)10
C)16
D)32
E)64
Question
The value of the definite integral ππe3e32dx\int _ { - \pi } ^ { \pi } \frac { e ^ { 3 } - e ^ { - 3 } } { 2 } d x is

A)
(e48e24)π\left( \frac { e ^ { 4 } } { 8 } - \frac { e ^ { - 2 } } { 4 } \right) \pi
B) (e44e22)π\left( \frac { e ^ { 4 } } { 4 } - \frac { e ^ { - 2 } } { 2 } \right) \pi
C) e3e3)π\left. e ^ { 3 } - e ^ { - 3 } \right) \pi
D) (e32e32)π\left( \frac { e ^ { 3 } } { 2 } - \frac { e ^ { - 3 } } { 2 } \right) \pi
E) 2π(e3e3)2 \pi \left( e ^ { 3 } - e ^ { - 3 } \right)
Question
The value of the definite integral e1eeπdx\int _ { e ^ { - 1 } } ^ { e } e ^ { \pi } d x is

A) eπeπe ^ { \pi } - e ^ { - \pi }
B) eπeeπθ1e ^ { \pi e } - e ^ { - \pi \theta ^ { - 1 } }
C) e1+πe1πe ^ { 1 + \pi } - e ^ { 1 - \pi }
D) eπ+1eπ1e ^ { \pi + 1 } - e ^ { \pi - 1 }
E) eπ+1π+1(ee1)\frac { \mathrm { e } ^ { \pi + 1 } } { \pi + 1 } \left( e - e ^ { - 1 } \right)
Question
The value of the definite integral 22lnedx\int _ { - 2 } ^ { 2 } \ln e d x is

A)2
B) 4e\frac { 4 } { e }
C)ln 4
D) ln2ln12\ln 2 - \ln \frac { 1 } { 2 }
E)4
Question
If 23f(x)dx=32,\int _ { - 2 } ^ { 3 } f ( x ) d x = \frac { 3 } { 2 }, then 328f(x)dx\int _ { - 3 } ^ { 2 } 8 f ( x ) d x is

A)-12
B)12
C) 16/316 / 3
D)-16/3
E)Impossible to determine
Question
If 11f(x)dx=6,\int _ { - 1 } ^ { 1 } f ( x ) d x = 6, then 012f(x)dx\int _ { 0 } ^ { 1 } 2 f ( x ) d x is

A)-12
B)-6
C)6
D)12
E)Impossible to determine
Question
If 215f(x)dx=5,\int _ { 2 } ^ { 1 } 5 f ( x ) d x = 5, then 122f(x)dx\int _ { 1 } ^ { 2 } 2 f ( x ) d x is

A)-5
B)-2
C)2
D)5
E)Impossible to determine
Question
If 01f(x)dx=π,\int _ { 0 } ^ { 1 } f ( x ) d x = \pi, then π210f(x)dx\frac { \pi ^ { 2 } } { \int _ { 1 } ^ { 0 } f ( x ) d x } is

A) π2- \pi ^ { 2 }
B) π- \pi
C) π\pi
D) π2\pi ^ { 2 }
E)Impossible to determine
Question
In a regular partition of the interval [2, 8] into 10 subintervals, then the length of each subintervals Δx is

A)1/5
B)3/5
C)4/5
D)1
E)6/5
Question
In a regular partition of the interval [-4, 12] into 8 subintervals, then the length of each subinterval Δx is

A)1/2
B)3/2
C)1
D)5/2
E)2
Question
Compute this definite integral using geometric methods: 044(x2)2dx\int _ { 0 } ^ { 4 } \sqrt { 4 - ( x - 2 ) ^ { 2 } } d x ?

A) π\pi
B) 2π2 \pi
C) 4π4 \pi
D) 6π6 \pi
E) 8π8 \pi
Question
Compute this definite integral using geometric methods: 749(x+4)2dx\int _ { - 7 } ^ { - 4 } \sqrt { 9 - ( x + 4 ) ^ { 2 } } d x .

A) 9π/49 \pi / 4
B) 9π/29 \pi / 2
C) 9π9 \pi
D) 9π/2- 9 \pi / 2
E) 9π/4- 9 \pi / 4
Question
Compute this definite integral using geometric methods: 5525x2dx\int _ { - 5 } ^ { 5 } - \sqrt { 25 - x ^ { 2 } } d x .

A) 25π/225 \pi / 2
B) 25π25 \pi
C) 25π/2- 25 \pi / 2
D) 25π- 25 \pi
E) 50π50 \pi
Question
A sufficient condition for a function ƒ on [a,b] to be integrable is

A)ƒ is non-negative.
B)ƒ is positive.
C)ƒ is bounded above.
D)ƒ is bounded below.
E)ƒ is continuous.
Question
Let ƒ be an integrable function on [a,b]. Which of the following is always true?

A)The upper and lower sums of ƒ on [a,b] are equal.
B)ƒ is non-negative.
C)ƒ is positive.
D)ƒ is continuous.
E) abf(x)dx\int _ { a } ^ { b } f ( x ) d x is bounded.
Question
Let ƒ be an integrable function on [a,b]. Which of the following is always true?

A) abf(x)dx=f(x)(ba)\int _ { a } ^ { b } f ( x ) d x = f ( x ) ( b - a )
B) abf(x)dx=a/2b/22f(x)dx\int _ { a } ^ { b } f ( x ) d x = \int _ { a / 2 } ^ { b / 2 } 2 f ( x ) d x
C) abf(x)dx=122a2bf(x)dx\int _ { a } ^ { b } f ( x ) d x = \frac { 1 } { 2 } \int _ { 2 a } ^ { 2 b } f ( x ) d x
D) abf(x)dx>0\int _ { a } ^ { b } f ( x ) d x > 0
E)is bounded. abf(x)dx\int _ { a } ^ { b } f ( x ) d x
Question
Let ƒ be an integrable function on [a, b]. Which of the following is always true?

A) abf(x)dx>ba\int _ { a } ^ { b } f ( x ) d x > b - a
B)
abf(x)dx<2abf(x)dx\int _ { a } ^ { b } f ( x ) d x < 2 \int _ { a } ^ { b } f ( x ) d x
C)
abf(x)dx>12abf(x)dx\int _ { a } ^ { b } f ( x ) d x > \frac { 1 } { 2 } \int _ { a } ^ { b } f ( x ) d x
D)
[abf(x)dx]2>abf(x)dx\left[ \int _ { a } ^ { b } f ( x ) d x \right] ^ { 2 } > \int _ { a } ^ { b } f ( x ) d x
E)
abf(x)dxabf(x)dx\int _ { a } ^ { b } f ( x ) d x \leq \left| \int _ { a } ^ { b } f ( x ) d x \right|
Question
Let ƒ be an integrable function on [a,b], and sns _ { n } and sns _ { n } be the lower and upper sum of a partition of [a,b], respectively. Which of the following is always true?

A) sn=Sns _ { n } = S _ { n }
B) limnsn=limnSn\lim _ { n \rightarrow \infty } s _ { n } = \lim _ { n \rightarrow \infty } S _ { n }
C) abf(x)dx0\int _ { a } ^ { b } f ( x ) d x \neq 0
D)ƒ is continuous on [a,b].
E) abf(x)dx0\int _ { a } ^ { b } f ( x ) d x \geq 0
Question
Let ƒ be an integrable function on [a,b]. Which of the following is always true?

A) abf(x)dx<abf(b)dx\int _ { a } ^ { b } f ( x ) d x < \int _ { a } ^ { b } f ( b ) d x
B) abf(x)dx>abf(a)dx\int _ { a } ^ { b } f ( x ) d x > \int _ { a } ^ { b } f ( a ) d x
C) abf(x)dx>12abf(x)dx\int _ { a } ^ { b } f ( x ) d x > \frac { 1 } { 2 } \int _ { a } ^ { b } f ( x ) d x
D)is a real number. abf(x)dx\int _ { a } ^ { b } f ( x ) d x
E) abf(x)dx<af(b)\int _ { a } ^ { b } f ( x ) d x < a f ( b )
Question
Let ƒ be an integrable function on [a,b]. Which of the following is not always true?

A) bbf(x)dx=0\int _ { b } ^ { b } f ( x ) d x = 0
B)ƒ is a continuous function on [a,b].
C) abf(x)dx\int _ { a } ^ { b } f ( x ) d x is a real number.
D) abf(x)dx0\left| \int _ { a } ^ { b } f ( x ) d x \right| \geq 0
E) abf(x)dx=baf(x)dx\int _ { a } ^ { b } f ( x ) d x = - \int _ { b } ^ { a } f ( x ) d x
Question
Let ƒ be an integrable function on [a,b]. Which of the following is not always true?

A) aaf(x)dx=bbf(x)dx\int _ { a } ^ { a } f ( x ) d x = \int _ { b } ^ { b } f ( x ) d x
B) abkdx=k(ba)\int _ { a } ^ { b } k d x = k ( b - a )
C) abf(x)dx\int _ { a } ^ { b } f ( x ) d x is bounded.
D) abkdx=k(ab)\int _ { a } ^ { b } k d x = - k ( a - b )
E) 2abf(x)dx>12abf(x)dx2 \int _ { a } ^ { b } f ( x ) d x > \frac { 1 } { 2 } \int _ { a } ^ { b } f ( x ) d x
Question
The derivative ddx[2xtt2+1dt]\frac { d } { d x } \left[ \int _ { 2 } ^ { x } \frac { \sqrt { t } } { t ^ { 2 } + 1 } d t \right] is

A) x2+1x\frac { x ^ { 2 } + 1 } { \sqrt { x } }
B) xx2+1\frac { \sqrt { x } } { x ^ { 2 } + 1 }
C) tt2+1\frac { \sqrt { t } } { t ^ { 2 } + 1 }
D) t2+1t\frac { t ^ { 2 } + 1 } { \sqrt { t } }
E) 29x\frac { 2 } { 9 \sqrt { x } }
Question
The derivative ddx[1xlntdt]\frac { d } { d x } \left[ \int _ { 1 } ^ { x } \ln t d t \right] is

A) 1x\frac { 1 } { x }
B) 1lnx\frac { 1 } { \ln x }
C) lnx\ln x
D) lnt\ln t
E) 1t\frac { 1 } { t }
Question
The derivative ddx[0xet2dt]\frac { d } { d x } \left[ \int _ { 0 } ^ { x } e ^ { t ^ { 2 } } d t \right] is

A) ex21e ^ { x ^ { 2 } } - 1
B) ex2e ^ { x ^ { 2 } }
C) ex22x\frac { e ^ { x ^ { 2 } } } { 2 x }
D) 2xex22 x e ^ { x ^ { 2 } }
E) 2xex212 x e ^ { x ^ { 2 } } - 1
Question
The derivative ddx[0xcos2tdt]\frac { d } { d x } \left[ \int _ { 0 } ^ { x } \cos ^ { 2 } t d t \right] is

A) cos2x\cos ^ { 2 } x
B) cos2x1\cos ^ { 2 } x - 1
C) sin2x1\sin ^ { 2 } x - 1
D) sin2x\sin ^ { 2 } x
E) cos3x31\frac { \cos ^ { 3 } x } { 3 } - 1
Question
The derivative ddx[x32tdt]\frac { d } { d x } \left[ \int _ { x } ^ { 3 } 2 ^ { t } d t \right] is

A) 2x+282 ^ { x + 2 } - 8
B) 82x+18 - 2 ^ { x + 1 }
C) 2x+1- 2 ^ { x + 1 }
D) 82x+1x+18 - \frac { 2 ^ { x + 1 } } { x + 1 }
E) 2x- 2 ^ { x }
Question
The derivative ddx[x1sin1tdt]\frac { d } { d x } \left[ \int _ { x } ^ { 1 } \sin ^ { - 1 } t d t \right] is

A) sin1x- \sin ^ { - 1 } x
B) sin1xπ2- \sin ^ { - 1 } x - \frac { \pi } { 2 }
C) sin1x+π2- \sin ^ { - 1 } x + \frac { \pi } { 2 }
D) sin1xπ2\sin ^ { - 1 } x - \frac { \pi } { 2 }
E) sin1x+π2\sin ^ { - 1 } x + \frac { \pi } { 2 }
Question
The derivative ddx[3x2+12tdt]\frac { d } { d x } \left[ \int _ { 3 } ^ { x ^ { 2 } + 1 } 2 ^ { t } d t \right] is

A) 2x2+12 ^ { x ^ { 2 } + 1 }
B) 2x2+1(x2+1)2 ^ { x ^ { 2 } + 1 } \left( x ^ { 2 } + 1 \right)
C) x(2x2+2)x \left( 2 ^ { x ^ { 2 } + 2 } \right)
D) x(2x2+1)3x \left( 2 ^ { x ^ { 2 } + 1 } \right) - 3
E) 2x2+132 ^ { x ^ { 2 } + 1 } - 3
Question
The derivative ddx[0sinx1t2dt]\frac { d } { d x } \left[ \int _ { 0 } ^ { \sin x } \sqrt { 1 - t ^ { 2 } } d t \right] is

A)cos x
B)cos2 x
C)sec x
D)sec2 x
E)csc2 x
Question
The derivative ddx[x205tdt]\frac { d } { d x } \left[ \int _ { x ^ { 2 } } ^ { 0 } 5 ^ { t } d t \right] is

A) x2(5x2)x ^ { 2 } \left( 5 ^ { x ^ { 2 } } \right)
B) x2(5x2)- x ^ { 2 } \left( 5 ^ { x ^ { 2 } } \right)
C) 2x(5x2)2 x \left( 5 ^ { x ^ { 2 } } \right)
D) 2x(5x2)- 2 x \left( 5 ^ { x ^ { 2 } } \right)
E) 2x(5x2)+1- 2 x \left( 5 ^ { x ^ { 2 } } \right) + 1
Question
The derivative ddx[x2+14ln(1t)dt]\frac { d } { d x } \left[ \int _ { x ^ { 2 } + 1 } ^ { 4 } \ln \left( \frac { 1 } { t } \right) d t \right] is

A) 2xln(x2+1)2 x \ln \left( x ^ { 2 } + 1 \right)
B) 2xln(1x2+1)2 x \ln \left( \frac { 1 } { x ^ { 2 } + 1 } \right)
C) 2xln(x2+1)ln(14)2 x \ln \left( x ^ { 2 } + 1 \right) - \ln \left( \frac { 1 } { 4 } \right)
D) 2xln(1x2+1)ln(14)2 x \ln \left( \frac { 1 } { x ^ { 2 } + 1 } \right) - \ln \left( \frac { 1 } { 4 } \right)
E) 2xln(x2+1)ln42 x \ln \left( x ^ { 2 } + 1 \right) - \ln 4
Question
If F(x)=x3(12t)dtF ( x ) = \int _ { x } ^ { - 3 } ( 1 - 2 t ) d t , what is F(0)?

A)-12
B)12
C)9
D)-6
E)6
Question
If F(x)=1x(t+1)dtF ( x ) = \int _ { 1 } ^ { x } ( \sqrt { t } + 1 ) d t , what is F(4)?

A)1
B) 313\frac { 31 } { 3 }
C)12
D) 233\frac { 23 } { 3 }
E) 283\frac { 28 } { 3 }
Question
By part 2 of the Fundamental Theorem of Calculus, π6π4sec2xdx\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } \sec ^ { 2 } x d x is

A) 1131 - \frac { 1 } { \sqrt { 3 } }
B) 131 - \sqrt { 3 }
C) 31\sqrt { 3 } - 1
D) 131\frac { 1 } { \sqrt { 3 } } - 1
E) 12\frac { 1 } { 2 }
Question
By part 2 of the Fundamental Theorem of Calculus, 01exdx\int _ { 0 } ^ { 1 } e ^ { x } d x is

A) e21e ^ { 2 } - 1
B) e2e ^ { 2 }
C) e+1e + 1
D) ee
E) e1e - 1
Question
By part 2 of the Fundamental Theorem of Calculus, 22dx\int _ { - 2 } ^ { 2 } d x is

A)0
B)1
C)2
D)3
E)4
Question
By part 2 of the Fundamental Theorem of Calculus, 0π2(2x+cosx)dx\int _ { 0 } ^ { \frac { \pi } { 2 } } ( 2 x + \cos x ) d x is

A) π2+44\frac { \pi ^ { 2 } + 4 } { 4 }
B) π244\frac { \pi ^ { 2 } - 4 } { 4 }
C) π2+24\frac { \pi ^ { 2 } + 2 } { 4 }
D) π224\frac { \pi ^ { 2 } - 2 } { 4 }
E) π2\pi ^ { 2 }
Question
By part 2 of the Fundamental Theorem of Calculus, 01211x2dx\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } d x is

A) π6\frac { \pi } { 6 }
B) π4\frac { \pi } { 4 }
C) π2\frac { \pi } { 2 }
D) π\pi
E) 7π6\frac { 7 \pi } { 6 }
Question
By part 2 of the Fundamental Theorem of Calculus, π4π3secxtanxdx\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 3 } } \sec x \tan x d x is

A) 222 - \sqrt { 2 }
B) 22\sqrt { 2 } - 2
C) 2+22 + \sqrt { 2 }
D) 222\frac { \sqrt { 2 } - 2 } { 2 }
E) 222\frac { 2 - \sqrt { 2 } } { 2 }
Question
Let A denote the area enclosed by the graph f(x)=3x2,f ( x ) = 3 x ^ { 2 }, the x-axis, and the lines x=1x = 1 and x=3x = 3 . By part 2 of the Fundamental Theorem of Calculus, A is

A)20
B)22
C)24
D)26
E)28
Question
Let A denote the area enclosed by the graph f(x)=cosx,f ( x ) = \cos x, the x-axis, and the lines x=0x = 0 and x=π2x = \frac { \pi } { 2 } . By part 2 of the Fundamental Theorem of Calculus, A is

A) 12\frac { 1 } { 2 }
B)1
C) 32\frac { 3 } { 2 }
D) π2\frac { \pi } { 2 }
E) π\pi
Question
Let A denote the area enclosed by the graph f(x)=x,f ( x ) = \sqrt { x }, the x-axis, and the lines x=1x = 1 and x=9x = 9 . By part 2 of the Fundamental Theorem of Calculus, A is

A) 503\frac { 50 } { 3 }
B) 523\frac { 52 } { 3 }
C) 543\frac { 54 } { 3 }
D) 563\frac { 56 } { 3 }
E) 583\frac { 58 } { 3 }
Question
Let A denote the area enclosed by the graph f(x)=1xf ( x ) = \frac { 1 } { x } , the x-axis, and the lines x = 1 and x = e. By part 2 of the Fundamental Theorem of Calculus, A is

A) 11e1 - \frac { 1 } { \mathrm { e } }
B) 11e21 - \frac { 1 } { \mathrm { e } ^ { 2 } }
C) 12\frac { 1 } { 2 }
D)1
E) 1e2\frac { 1 } { \mathrm { e } ^ { 2 } }
Question
The rate of water consumption (in hundreds of gallons per year) in an office building since its opening in 1995 is modeled by the function w=14tw = \frac { 1 } { 4 } t , where tis the number of years after 1995. Which integral represents the total number of gallons consumed between 1996 and 2001?

A) 0614tdt\int _ { 0 } ^ { 6 } \frac { 1 } { 4 } t d t
B) 0514tdt\int _ { 0 } ^ { 5 } \frac { 1 } { 4 } t d t
C) 1614tdt\int _ { 1 } ^ { 6 } \frac { 1 } { 4 } t d t
D) 1614dt\int _ { 1 } ^ { 6 } \frac { 1 } { 4 } d t
E) 0514dt\int _ { 0 } ^ { 5 } \frac { 1 } { 4 } d t
Question
Following a massive rainstorm, water flows into a storm water drainage pond for 6 hours. If V(t) denotes the volume of water in the pond t minutes after the start of flow into the pond, which integral represents the net change of water entering the pond between 2 and 3 hours?

A) 23V(t)dt\int _ { 2 } ^ { 3 } V ^ { \prime } ( t ) d t
B) 01V(t)dt\int _ { 0 } ^ { 1 } V ^ { \prime } ( t ) d t
C) 120180V(t)dt\int _ { 120 } ^ { 180 } V ^ { \prime } ( t ) d t
D) 23V(t)dt\int _ { 2 } ^ { 3 } V ( t ) d t
E) 120180V(t)dt\int _ { 120 } ^ { 180 } V ( t ) d t
Question
Let 15f(x)dx=4\int _ { 1 } ^ { 5 } f ( x ) d x = 4 and 12f(x)dx=2\int _ { 1 } ^ { 2 } f ( x ) d x = 2 Then 25f(x)dx\int _ { 2 } ^ { 5 } f ( x ) d x is

A)-2
B)2
C)4
D)6
E)8
Question
Let 24f(x)dx=12\int _ { - 2 } ^ { 4 } f ( x ) d x = 12 and 20f(x)dx=7\int _ { - 2 } ^ { 0 } f ( x ) d x = 7 Then 04f(x)dx\int _ { 0 } ^ { 4 } f ( x ) d x is

A)-7
B)-5
C)5
D)7
E)19
Question
Let 610f(x)dx=15\int _ { 6 } ^ { 10 } f ( x ) d x = 15 and 46f(x)dx=6\int _ { 4 } ^ { 6 } f ( x ) d x = - 6 Then 104f(x)dx\int _ { 10 } ^ { 4 } f ( x ) d x is

A) 21- 21
B) 9- 9
C)9
D)10
E)21
Question
Let 13f(x)dx=14\int _ { 1 } ^ { 3 } f ( x ) d x = 14 and 83f(x)dx=5\int _ { 8 } ^ { 3 } f ( x ) d x = - 5 Then 18f(x)dx\int _ { 1 } ^ { 8 } f ( x ) d x is

A) 19- 19
B) 9- 9
C)9
D)14
E)19
Question
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A)3
B)6
C)11
D)15
E)31
Question
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A)-60
B)-38
C)38
D)49
E)60
Question
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A) 4911- \frac { 49 } { 11 }
B) 496- \frac { 49 } { 6 }
C) 496\frac { 49 } { 6 }
D) 4911\frac { 49 } { 11 }
E)7
Question
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A)1
B)2
C)3
D)4
E)5
Question
The bounds m and M used in the Bounds on an Integral Theorem for π4π3sin2xdx\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 3 } } \sin ^ { 2 } x d x are

A) 12,1\frac { 1 } { 2 } , 1
B) 34,1\frac { 3 } { 4 } , 1
C) 12,34\frac { 1 } { 2 } , \frac { 3 } { 4 }
D) 0,120 , \frac { 1 } { 2 }
E) 0,340 , \frac { 3 } { 4 }
Question
The bounds m and M used in the Bounds on an Integral Theorem for 1elnxdx\int _ { 1 } ^ { e } \ln x d x are

A) 0,10,1
B) 0,e0 , e
C) 1,e1 , e
D) 1e,1\frac { 1 } { \mathrm { e } } , 1
E) 0,1e0 , \frac { 1 } { \mathrm { e } }
Question
The bounds m and M used in the Bounds on an Integral Theorem for 121x2dx\int _ { 1 } ^ { 2 } \frac { 1 } { x ^ { 2 } } d x are

A) 1,21,2
B) 1,41,4
C) 2,42,4
D) 12,1\frac { 1 } { 2 } , 1
E) 14,1\frac { 1 } { 4 } , 1
Question
The bounds m and M used in the Bounds on an Integral Theorem for 12[2(x1)2]dx\int _ { - 1 } ^ { 2 } \left[ 2 - ( x - 1 ) ^ { 2 } \right] d x are

A) 1,2- 1,2
B) 2,1- 2,1
C) 2,1- 2 , - 1
D) 2,2- 2,2
E) 2,3- 2,3
Question
Let f(x)=x3f ( x ) = x ^ { 3 } If c(1,1)c \in ( - 1,1 ) such that 11x3dx2=f(c),\frac { \int _ { - 1 } ^ { 1 } x ^ { 3 } d x } { 2 } = f ( c ), then c is

A) 14- \frac { 1 } { 4 }
B) 12- \frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 12\frac { 1 } { 2 }
E)0
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/129
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: The Integral
1
Let A denote the area enclosed by the graph f(x)=10x,f ( x ) = 10 - x, the x-axis, and the lines x=3x = 3 and x=5x = 5 . Graphing the region and using plane geometry, we can find that A is

A)8
B)10
C)11
D)12
E)14
12
2
Let A denote the area enclosed by the graph f(x)=x,f ( x ) = | x |, the x-axis, and the lines x=2x = - 2 and x=0x = 0 . Graphing the region and using plane geometry, we can find that A is

A)1
B)1.5
C)2
D)2.5
E)3
2
3
Let A denote the area enclosed by the graph f(x)=xf ( x ) = | x | \text {, } the x-axis, and the lines x=1x = - 1 and x=1x = 1 . Graphing the region and using plane geometry, we can find that A is

A)0.5
B)1
C)1.5
D)2
E)2.5
1
4
Let A denote the area enclosed by the graph f(x)=1x2,f ( x ) = \sqrt { 1 - x ^ { 2 } }, the x-axis, and the lines x=0x = 0 and x=1x = 1 . Graphing the region and using plane geometry, we can find that A is

A) π4\frac { \pi } { 4 }
B) π3\frac { \pi } { 3 }
C) π2\frac { \pi } { 2 }
D) π\pi
E) 2π2 \pi
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
5
Let A denote the area enclosed by the graph f(x)=3+4x2,f ( x ) = 3 + \sqrt { 4 - x ^ { 2 } }, the lines y = 3, x = 0, and x = 2. Graphing the region and using plane geometry, we can find that A is

A) 2π32 \pi - 3
B) 2π+32 \pi + 3
C) π3\pi - 3
D) π+3\pi + 3
E) π\pi
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
6
Let A denote the area enclosed by the graph f(x)=4x,f ( x ) = 4 - | x |, the x-axis, and the lines x = -2 and x = 0. Graphing the region and using plane geometry, we can find that A is

A)2
B)3
C)4
D)5
E)6
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
7
Let A denote the area enclosed by the graph f(x)=(x1)2,f ( x ) = ( x - 1 ) ^ { 2 }, the x-axis, and the lines x = 2 and x = 9. Graphing the region and using plane geometry, we can find that A is

A)
limnk=1n(7kn1)2(7n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } - 1 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
B) limnk=1n(7kn+1)2(7n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } + 1 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
C) limnk=1n(7kn+2)2(7n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } + 2 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
D) limnk=1n(9kn+2)2(9n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 9 k } { n } + 2 \right) ^ { 2 } \left( \frac { 9 } { n } \right)
E) limnk=1n(9kn+1)2(9n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 9 k } { n } + 1 \right) ^ { 2 } \left( \frac { 9 } { n } \right)
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
8
Let A denote the area enclosed by the graph (x)=1x+1( x ) = \frac { 1 } { x + 1 } , the x-axis, and the lines x = 1 and x = 5. Graphing the region and using plane geometry, we can find that A is

A) limnk=0n(14kn+1)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n } \left( \frac { 1 } { \frac { 4 k } { n } + 1 } \right) \left( \frac { 4 } { n } \right)
B) limnk=0n1(14kn+1)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n - 1 } \left( \frac { 1 } { \frac { 4 k } { n } + 1 } \right) \left( \frac { 4 } { n } \right)
C) limnk=1n(15kn+1)(5n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 1 } { \frac { 5 k } { n } + 1 } \right) \left( \frac { 5 } { n } \right)
D) limnk=0n1(14k+2)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n - 1 } \left( \frac { 1 } { 4 k } + 2 \right) \left( \frac { 4 } { n } \right)
E) limnk=0n1(15kn+1)(4n)\lim _ { n \rightarrow \infty } \sum _ { k = 0 } ^ { n - 1 } \left( \frac { 1 } { \frac { 5 k } { n } + 1 } \right) \left( \frac { 4 } { n } \right)
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
9
Let A denote the area enclosed by the graph f(x)=12x3,f ( x ) = \frac { 1 } { 2 } x ^ { 3 }, the x-axis, and the lines x = 0 and x = 2. Graphing the region and using plane geometry, we can find that A is

A) limnk=1n(2k+1n)3(2n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k + 1 } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
B) limnk=1n(2k1n)3(2n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k - 1 } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
C) limnk=1n(2k+2n)3(1n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k + 2 } { n } \right) ^ { 3 } \left( \frac { 1 } { n } \right)
D) limnk=1n(2kn)3(2n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
E) limnk=1n(2kn)3(1n)\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k } { n } \right) ^ { 3 } \left( \frac { 1 } { n } \right)
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
10
Let A denote the area enclosed by the graph f(x)=x3,f ( x ) = \frac { \sqrt { x } } { 3 }, the x-axis, and the lines x = 0 and x = 9. Graphing the region and using plane geometry, we can find that A is

A) limnk=1n3nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 3 } { n } \sqrt { \frac { k - 1 } { n } }
B) limnk=1n27nkn\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 27 } { n } \sqrt { \frac { k } { n } }
C) limnk=1n3nkn\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 3 } { n } \sqrt { \frac { k } { n } }
D) limnk=1n9nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 9 } { n } \sqrt { \frac { k - 1 } { n } }
E) limnk=1n27nk1n\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { 27 } { n } \sqrt { \frac { k - 1 } { n } }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
11
Suppose S4 is the lower sum of the area enclosed by the graph f(x)=2x2,f ( x ) = 2 x ^ { 2 }, the x-axis, and the lines x = 0 and x = 4 by partitioning [0, 4] into four subintervals [0, 1], [1, 2], [2, 3], and [3, 4]. Then S4 is

A)26
B)28
C)32
D)48
E)60
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
12
Suppose S4 is the upper sum of the area enclosed by the graph f(x)=2x2,f ( x ) = 2 x ^ { 2 }, the x-axis, and the lines x = 0 and x = 4 by partitioning [0, 4] into four subintervals [0, 1], [1, 2], [2, 3], and [3, 4]. Then S4 is

A)26
B)28
C)32
D)48
E)60
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
13
Suppose S4 is the upper sum of the area enclosed by the graph (x)=1x( x ) = \frac { 1 } { x } , the x-axis, and the lines x = 1 and x = 4 by partitioning [1, 4] into three subintervals [1, 2], [2, 3], and [3, 4]. Then S4 is

A)6
B) 98\frac { 9 } { 8 }
C) 116\frac { 11 } { 6 }
D)2
E) 136\frac { 13 } { 6 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
14
Suppose S3 is the lower sum of the area enclosed by the graph (x)=1x( x ) = \frac { 1 } { x } , the x-axis, and the lines x = 1 and x = 4 by partitioning [1, 4] into three subintervals [1, 2], [2, 3], and [3, 4]. Then S3 is

A) 1312\frac { 13 } { 12 }
B) 98\frac { 9 } { 8 }
C) 116\frac { 11 } { 6 }
D)2
E) 136\frac { 13 } { 6 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
15
Suppose S4 is the upper sum of the area enclosed by the graph f(x)=x2+2,f ( x ) = x ^ { 2 } + 2, the x-axis, and the lines x = 0 and x = 2 by partitioning [0, 2] into four subintervals [0, 1/2], [1/2, 1], [1, 3/2], and [3/2, 2]. Then S4 is

A)8.5
B)8.25
C)8.125
D)7.825
E)7.75
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
16
Suppose S4 is the lower sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 2] into four subintervals [0, 1/2], [1/2, 1], [1, 3/2], and [3/2, 2]. Then S4 is

A)5.35
B)5.45
C)5.55
D)5.65
E)5.75
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
17
Suppose S5 is the upper sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 10] into five subintervals [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10]. Then S5 is

A)260
B)340
C)420
D)480
E)500
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
18
Suppose S5 is the lower sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 10] into five subintervals [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10]. Then S5 is

A)240
B)260
C)280
D)300
E)320
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
19
Suppose S6 is the upper sum of the area enclosed by the graph f(x)=10x2,f ( x ) = 10 - x ^ { 2 }, the x-axis, and the lines x = 0 and x = 3 by partitioning [0, 3] into six subintervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], and [2.5, 3]. Then S6 is

A)23.125
B)23.225
C)23.235
D)23.245
E)23.255
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
20
Suppose S6 is the lower sum of the area enclosed by the graph f(x)=10x2,f ( x ) = 10 - x ^ { 2 }, the x-axis, and the lines x = 0 and x = 3 by partitioning [0, 3] into six subintervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], and [2.5, 3]. Then S6 is

A)18.625
B)18.635
C)18.645
D)18.655
E)18.665
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
21
The value of the definite integral 12π2dx\int _ { - 1 } ^ { 2 } \pi ^ { 2 } d x is

A) 3π23 \pi ^ { 2 }
B) 5π25 \pi ^ { 2 }
C) 7π27 \pi ^ { 2 }
D) 9π29 \pi ^ { 2 }
E) 11π211 \pi ^ { 2 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
22
The value of the definite integral 461edx\int _ { - 4 } ^ { 6 } \frac { 1 } { e } d x is

A) 2e\frac { 2 } { e }
B) 4e\frac { 4 } { e }
C) 6e\frac { 6 } { e }
D) 8e\frac { 8 } { e }
E) 10e\frac { 10 } { e }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
23
The value of the definite integral 02log232dx\int _ { 0 } ^ { 2 } \log _ { 2 } 32 d x is

A)8
B)10
C)16
D)32
E)64
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
24
The value of the definite integral ππe3e32dx\int _ { - \pi } ^ { \pi } \frac { e ^ { 3 } - e ^ { - 3 } } { 2 } d x is

A)
(e48e24)π\left( \frac { e ^ { 4 } } { 8 } - \frac { e ^ { - 2 } } { 4 } \right) \pi
B) (e44e22)π\left( \frac { e ^ { 4 } } { 4 } - \frac { e ^ { - 2 } } { 2 } \right) \pi
C) e3e3)π\left. e ^ { 3 } - e ^ { - 3 } \right) \pi
D) (e32e32)π\left( \frac { e ^ { 3 } } { 2 } - \frac { e ^ { - 3 } } { 2 } \right) \pi
E) 2π(e3e3)2 \pi \left( e ^ { 3 } - e ^ { - 3 } \right)
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
25
The value of the definite integral e1eeπdx\int _ { e ^ { - 1 } } ^ { e } e ^ { \pi } d x is

A) eπeπe ^ { \pi } - e ^ { - \pi }
B) eπeeπθ1e ^ { \pi e } - e ^ { - \pi \theta ^ { - 1 } }
C) e1+πe1πe ^ { 1 + \pi } - e ^ { 1 - \pi }
D) eπ+1eπ1e ^ { \pi + 1 } - e ^ { \pi - 1 }
E) eπ+1π+1(ee1)\frac { \mathrm { e } ^ { \pi + 1 } } { \pi + 1 } \left( e - e ^ { - 1 } \right)
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
26
The value of the definite integral 22lnedx\int _ { - 2 } ^ { 2 } \ln e d x is

A)2
B) 4e\frac { 4 } { e }
C)ln 4
D) ln2ln12\ln 2 - \ln \frac { 1 } { 2 }
E)4
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
27
If 23f(x)dx=32,\int _ { - 2 } ^ { 3 } f ( x ) d x = \frac { 3 } { 2 }, then 328f(x)dx\int _ { - 3 } ^ { 2 } 8 f ( x ) d x is

A)-12
B)12
C) 16/316 / 3
D)-16/3
E)Impossible to determine
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
28
If 11f(x)dx=6,\int _ { - 1 } ^ { 1 } f ( x ) d x = 6, then 012f(x)dx\int _ { 0 } ^ { 1 } 2 f ( x ) d x is

A)-12
B)-6
C)6
D)12
E)Impossible to determine
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
29
If 215f(x)dx=5,\int _ { 2 } ^ { 1 } 5 f ( x ) d x = 5, then 122f(x)dx\int _ { 1 } ^ { 2 } 2 f ( x ) d x is

A)-5
B)-2
C)2
D)5
E)Impossible to determine
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
30
If 01f(x)dx=π,\int _ { 0 } ^ { 1 } f ( x ) d x = \pi, then π210f(x)dx\frac { \pi ^ { 2 } } { \int _ { 1 } ^ { 0 } f ( x ) d x } is

A) π2- \pi ^ { 2 }
B) π- \pi
C) π\pi
D) π2\pi ^ { 2 }
E)Impossible to determine
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
31
In a regular partition of the interval [2, 8] into 10 subintervals, then the length of each subintervals Δx is

A)1/5
B)3/5
C)4/5
D)1
E)6/5
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
32
In a regular partition of the interval [-4, 12] into 8 subintervals, then the length of each subinterval Δx is

A)1/2
B)3/2
C)1
D)5/2
E)2
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
33
Compute this definite integral using geometric methods: 044(x2)2dx\int _ { 0 } ^ { 4 } \sqrt { 4 - ( x - 2 ) ^ { 2 } } d x ?

A) π\pi
B) 2π2 \pi
C) 4π4 \pi
D) 6π6 \pi
E) 8π8 \pi
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
34
Compute this definite integral using geometric methods: 749(x+4)2dx\int _ { - 7 } ^ { - 4 } \sqrt { 9 - ( x + 4 ) ^ { 2 } } d x .

A) 9π/49 \pi / 4
B) 9π/29 \pi / 2
C) 9π9 \pi
D) 9π/2- 9 \pi / 2
E) 9π/4- 9 \pi / 4
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
35
Compute this definite integral using geometric methods: 5525x2dx\int _ { - 5 } ^ { 5 } - \sqrt { 25 - x ^ { 2 } } d x .

A) 25π/225 \pi / 2
B) 25π25 \pi
C) 25π/2- 25 \pi / 2
D) 25π- 25 \pi
E) 50π50 \pi
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
36
A sufficient condition for a function ƒ on [a,b] to be integrable is

A)ƒ is non-negative.
B)ƒ is positive.
C)ƒ is bounded above.
D)ƒ is bounded below.
E)ƒ is continuous.
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
37
Let ƒ be an integrable function on [a,b]. Which of the following is always true?

A)The upper and lower sums of ƒ on [a,b] are equal.
B)ƒ is non-negative.
C)ƒ is positive.
D)ƒ is continuous.
E) abf(x)dx\int _ { a } ^ { b } f ( x ) d x is bounded.
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
38
Let ƒ be an integrable function on [a,b]. Which of the following is always true?

A) abf(x)dx=f(x)(ba)\int _ { a } ^ { b } f ( x ) d x = f ( x ) ( b - a )
B) abf(x)dx=a/2b/22f(x)dx\int _ { a } ^ { b } f ( x ) d x = \int _ { a / 2 } ^ { b / 2 } 2 f ( x ) d x
C) abf(x)dx=122a2bf(x)dx\int _ { a } ^ { b } f ( x ) d x = \frac { 1 } { 2 } \int _ { 2 a } ^ { 2 b } f ( x ) d x
D) abf(x)dx>0\int _ { a } ^ { b } f ( x ) d x > 0
E)is bounded. abf(x)dx\int _ { a } ^ { b } f ( x ) d x
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
39
Let ƒ be an integrable function on [a, b]. Which of the following is always true?

A) abf(x)dx>ba\int _ { a } ^ { b } f ( x ) d x > b - a
B)
abf(x)dx<2abf(x)dx\int _ { a } ^ { b } f ( x ) d x < 2 \int _ { a } ^ { b } f ( x ) d x
C)
abf(x)dx>12abf(x)dx\int _ { a } ^ { b } f ( x ) d x > \frac { 1 } { 2 } \int _ { a } ^ { b } f ( x ) d x
D)
[abf(x)dx]2>abf(x)dx\left[ \int _ { a } ^ { b } f ( x ) d x \right] ^ { 2 } > \int _ { a } ^ { b } f ( x ) d x
E)
abf(x)dxabf(x)dx\int _ { a } ^ { b } f ( x ) d x \leq \left| \int _ { a } ^ { b } f ( x ) d x \right|
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
40
Let ƒ be an integrable function on [a,b], and sns _ { n } and sns _ { n } be the lower and upper sum of a partition of [a,b], respectively. Which of the following is always true?

A) sn=Sns _ { n } = S _ { n }
B) limnsn=limnSn\lim _ { n \rightarrow \infty } s _ { n } = \lim _ { n \rightarrow \infty } S _ { n }
C) abf(x)dx0\int _ { a } ^ { b } f ( x ) d x \neq 0
D)ƒ is continuous on [a,b].
E) abf(x)dx0\int _ { a } ^ { b } f ( x ) d x \geq 0
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
41
Let ƒ be an integrable function on [a,b]. Which of the following is always true?

A) abf(x)dx<abf(b)dx\int _ { a } ^ { b } f ( x ) d x < \int _ { a } ^ { b } f ( b ) d x
B) abf(x)dx>abf(a)dx\int _ { a } ^ { b } f ( x ) d x > \int _ { a } ^ { b } f ( a ) d x
C) abf(x)dx>12abf(x)dx\int _ { a } ^ { b } f ( x ) d x > \frac { 1 } { 2 } \int _ { a } ^ { b } f ( x ) d x
D)is a real number. abf(x)dx\int _ { a } ^ { b } f ( x ) d x
E) abf(x)dx<af(b)\int _ { a } ^ { b } f ( x ) d x < a f ( b )
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
42
Let ƒ be an integrable function on [a,b]. Which of the following is not always true?

A) bbf(x)dx=0\int _ { b } ^ { b } f ( x ) d x = 0
B)ƒ is a continuous function on [a,b].
C) abf(x)dx\int _ { a } ^ { b } f ( x ) d x is a real number.
D) abf(x)dx0\left| \int _ { a } ^ { b } f ( x ) d x \right| \geq 0
E) abf(x)dx=baf(x)dx\int _ { a } ^ { b } f ( x ) d x = - \int _ { b } ^ { a } f ( x ) d x
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
43
Let ƒ be an integrable function on [a,b]. Which of the following is not always true?

A) aaf(x)dx=bbf(x)dx\int _ { a } ^ { a } f ( x ) d x = \int _ { b } ^ { b } f ( x ) d x
B) abkdx=k(ba)\int _ { a } ^ { b } k d x = k ( b - a )
C) abf(x)dx\int _ { a } ^ { b } f ( x ) d x is bounded.
D) abkdx=k(ab)\int _ { a } ^ { b } k d x = - k ( a - b )
E) 2abf(x)dx>12abf(x)dx2 \int _ { a } ^ { b } f ( x ) d x > \frac { 1 } { 2 } \int _ { a } ^ { b } f ( x ) d x
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
44
The derivative ddx[2xtt2+1dt]\frac { d } { d x } \left[ \int _ { 2 } ^ { x } \frac { \sqrt { t } } { t ^ { 2 } + 1 } d t \right] is

A) x2+1x\frac { x ^ { 2 } + 1 } { \sqrt { x } }
B) xx2+1\frac { \sqrt { x } } { x ^ { 2 } + 1 }
C) tt2+1\frac { \sqrt { t } } { t ^ { 2 } + 1 }
D) t2+1t\frac { t ^ { 2 } + 1 } { \sqrt { t } }
E) 29x\frac { 2 } { 9 \sqrt { x } }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
45
The derivative ddx[1xlntdt]\frac { d } { d x } \left[ \int _ { 1 } ^ { x } \ln t d t \right] is

A) 1x\frac { 1 } { x }
B) 1lnx\frac { 1 } { \ln x }
C) lnx\ln x
D) lnt\ln t
E) 1t\frac { 1 } { t }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
46
The derivative ddx[0xet2dt]\frac { d } { d x } \left[ \int _ { 0 } ^ { x } e ^ { t ^ { 2 } } d t \right] is

A) ex21e ^ { x ^ { 2 } } - 1
B) ex2e ^ { x ^ { 2 } }
C) ex22x\frac { e ^ { x ^ { 2 } } } { 2 x }
D) 2xex22 x e ^ { x ^ { 2 } }
E) 2xex212 x e ^ { x ^ { 2 } } - 1
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
47
The derivative ddx[0xcos2tdt]\frac { d } { d x } \left[ \int _ { 0 } ^ { x } \cos ^ { 2 } t d t \right] is

A) cos2x\cos ^ { 2 } x
B) cos2x1\cos ^ { 2 } x - 1
C) sin2x1\sin ^ { 2 } x - 1
D) sin2x\sin ^ { 2 } x
E) cos3x31\frac { \cos ^ { 3 } x } { 3 } - 1
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
48
The derivative ddx[x32tdt]\frac { d } { d x } \left[ \int _ { x } ^ { 3 } 2 ^ { t } d t \right] is

A) 2x+282 ^ { x + 2 } - 8
B) 82x+18 - 2 ^ { x + 1 }
C) 2x+1- 2 ^ { x + 1 }
D) 82x+1x+18 - \frac { 2 ^ { x + 1 } } { x + 1 }
E) 2x- 2 ^ { x }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
49
The derivative ddx[x1sin1tdt]\frac { d } { d x } \left[ \int _ { x } ^ { 1 } \sin ^ { - 1 } t d t \right] is

A) sin1x- \sin ^ { - 1 } x
B) sin1xπ2- \sin ^ { - 1 } x - \frac { \pi } { 2 }
C) sin1x+π2- \sin ^ { - 1 } x + \frac { \pi } { 2 }
D) sin1xπ2\sin ^ { - 1 } x - \frac { \pi } { 2 }
E) sin1x+π2\sin ^ { - 1 } x + \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
50
The derivative ddx[3x2+12tdt]\frac { d } { d x } \left[ \int _ { 3 } ^ { x ^ { 2 } + 1 } 2 ^ { t } d t \right] is

A) 2x2+12 ^ { x ^ { 2 } + 1 }
B) 2x2+1(x2+1)2 ^ { x ^ { 2 } + 1 } \left( x ^ { 2 } + 1 \right)
C) x(2x2+2)x \left( 2 ^ { x ^ { 2 } + 2 } \right)
D) x(2x2+1)3x \left( 2 ^ { x ^ { 2 } + 1 } \right) - 3
E) 2x2+132 ^ { x ^ { 2 } + 1 } - 3
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
51
The derivative ddx[0sinx1t2dt]\frac { d } { d x } \left[ \int _ { 0 } ^ { \sin x } \sqrt { 1 - t ^ { 2 } } d t \right] is

A)cos x
B)cos2 x
C)sec x
D)sec2 x
E)csc2 x
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
52
The derivative ddx[x205tdt]\frac { d } { d x } \left[ \int _ { x ^ { 2 } } ^ { 0 } 5 ^ { t } d t \right] is

A) x2(5x2)x ^ { 2 } \left( 5 ^ { x ^ { 2 } } \right)
B) x2(5x2)- x ^ { 2 } \left( 5 ^ { x ^ { 2 } } \right)
C) 2x(5x2)2 x \left( 5 ^ { x ^ { 2 } } \right)
D) 2x(5x2)- 2 x \left( 5 ^ { x ^ { 2 } } \right)
E) 2x(5x2)+1- 2 x \left( 5 ^ { x ^ { 2 } } \right) + 1
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
53
The derivative ddx[x2+14ln(1t)dt]\frac { d } { d x } \left[ \int _ { x ^ { 2 } + 1 } ^ { 4 } \ln \left( \frac { 1 } { t } \right) d t \right] is

A) 2xln(x2+1)2 x \ln \left( x ^ { 2 } + 1 \right)
B) 2xln(1x2+1)2 x \ln \left( \frac { 1 } { x ^ { 2 } + 1 } \right)
C) 2xln(x2+1)ln(14)2 x \ln \left( x ^ { 2 } + 1 \right) - \ln \left( \frac { 1 } { 4 } \right)
D) 2xln(1x2+1)ln(14)2 x \ln \left( \frac { 1 } { x ^ { 2 } + 1 } \right) - \ln \left( \frac { 1 } { 4 } \right)
E) 2xln(x2+1)ln42 x \ln \left( x ^ { 2 } + 1 \right) - \ln 4
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
54
If F(x)=x3(12t)dtF ( x ) = \int _ { x } ^ { - 3 } ( 1 - 2 t ) d t , what is F(0)?

A)-12
B)12
C)9
D)-6
E)6
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
55
If F(x)=1x(t+1)dtF ( x ) = \int _ { 1 } ^ { x } ( \sqrt { t } + 1 ) d t , what is F(4)?

A)1
B) 313\frac { 31 } { 3 }
C)12
D) 233\frac { 23 } { 3 }
E) 283\frac { 28 } { 3 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
56
By part 2 of the Fundamental Theorem of Calculus, π6π4sec2xdx\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } \sec ^ { 2 } x d x is

A) 1131 - \frac { 1 } { \sqrt { 3 } }
B) 131 - \sqrt { 3 }
C) 31\sqrt { 3 } - 1
D) 131\frac { 1 } { \sqrt { 3 } } - 1
E) 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
57
By part 2 of the Fundamental Theorem of Calculus, 01exdx\int _ { 0 } ^ { 1 } e ^ { x } d x is

A) e21e ^ { 2 } - 1
B) e2e ^ { 2 }
C) e+1e + 1
D) ee
E) e1e - 1
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
58
By part 2 of the Fundamental Theorem of Calculus, 22dx\int _ { - 2 } ^ { 2 } d x is

A)0
B)1
C)2
D)3
E)4
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
59
By part 2 of the Fundamental Theorem of Calculus, 0π2(2x+cosx)dx\int _ { 0 } ^ { \frac { \pi } { 2 } } ( 2 x + \cos x ) d x is

A) π2+44\frac { \pi ^ { 2 } + 4 } { 4 }
B) π244\frac { \pi ^ { 2 } - 4 } { 4 }
C) π2+24\frac { \pi ^ { 2 } + 2 } { 4 }
D) π224\frac { \pi ^ { 2 } - 2 } { 4 }
E) π2\pi ^ { 2 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
60
By part 2 of the Fundamental Theorem of Calculus, 01211x2dx\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } d x is

A) π6\frac { \pi } { 6 }
B) π4\frac { \pi } { 4 }
C) π2\frac { \pi } { 2 }
D) π\pi
E) 7π6\frac { 7 \pi } { 6 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
61
By part 2 of the Fundamental Theorem of Calculus, π4π3secxtanxdx\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 3 } } \sec x \tan x d x is

A) 222 - \sqrt { 2 }
B) 22\sqrt { 2 } - 2
C) 2+22 + \sqrt { 2 }
D) 222\frac { \sqrt { 2 } - 2 } { 2 }
E) 222\frac { 2 - \sqrt { 2 } } { 2 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
62
Let A denote the area enclosed by the graph f(x)=3x2,f ( x ) = 3 x ^ { 2 }, the x-axis, and the lines x=1x = 1 and x=3x = 3 . By part 2 of the Fundamental Theorem of Calculus, A is

A)20
B)22
C)24
D)26
E)28
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
63
Let A denote the area enclosed by the graph f(x)=cosx,f ( x ) = \cos x, the x-axis, and the lines x=0x = 0 and x=π2x = \frac { \pi } { 2 } . By part 2 of the Fundamental Theorem of Calculus, A is

A) 12\frac { 1 } { 2 }
B)1
C) 32\frac { 3 } { 2 }
D) π2\frac { \pi } { 2 }
E) π\pi
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
64
Let A denote the area enclosed by the graph f(x)=x,f ( x ) = \sqrt { x }, the x-axis, and the lines x=1x = 1 and x=9x = 9 . By part 2 of the Fundamental Theorem of Calculus, A is

A) 503\frac { 50 } { 3 }
B) 523\frac { 52 } { 3 }
C) 543\frac { 54 } { 3 }
D) 563\frac { 56 } { 3 }
E) 583\frac { 58 } { 3 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
65
Let A denote the area enclosed by the graph f(x)=1xf ( x ) = \frac { 1 } { x } , the x-axis, and the lines x = 1 and x = e. By part 2 of the Fundamental Theorem of Calculus, A is

A) 11e1 - \frac { 1 } { \mathrm { e } }
B) 11e21 - \frac { 1 } { \mathrm { e } ^ { 2 } }
C) 12\frac { 1 } { 2 }
D)1
E) 1e2\frac { 1 } { \mathrm { e } ^ { 2 } }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
66
The rate of water consumption (in hundreds of gallons per year) in an office building since its opening in 1995 is modeled by the function w=14tw = \frac { 1 } { 4 } t , where tis the number of years after 1995. Which integral represents the total number of gallons consumed between 1996 and 2001?

A) 0614tdt\int _ { 0 } ^ { 6 } \frac { 1 } { 4 } t d t
B) 0514tdt\int _ { 0 } ^ { 5 } \frac { 1 } { 4 } t d t
C) 1614tdt\int _ { 1 } ^ { 6 } \frac { 1 } { 4 } t d t
D) 1614dt\int _ { 1 } ^ { 6 } \frac { 1 } { 4 } d t
E) 0514dt\int _ { 0 } ^ { 5 } \frac { 1 } { 4 } d t
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
67
Following a massive rainstorm, water flows into a storm water drainage pond for 6 hours. If V(t) denotes the volume of water in the pond t minutes after the start of flow into the pond, which integral represents the net change of water entering the pond between 2 and 3 hours?

A) 23V(t)dt\int _ { 2 } ^ { 3 } V ^ { \prime } ( t ) d t
B) 01V(t)dt\int _ { 0 } ^ { 1 } V ^ { \prime } ( t ) d t
C) 120180V(t)dt\int _ { 120 } ^ { 180 } V ^ { \prime } ( t ) d t
D) 23V(t)dt\int _ { 2 } ^ { 3 } V ( t ) d t
E) 120180V(t)dt\int _ { 120 } ^ { 180 } V ( t ) d t
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
68
Let 15f(x)dx=4\int _ { 1 } ^ { 5 } f ( x ) d x = 4 and 12f(x)dx=2\int _ { 1 } ^ { 2 } f ( x ) d x = 2 Then 25f(x)dx\int _ { 2 } ^ { 5 } f ( x ) d x is

A)-2
B)2
C)4
D)6
E)8
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
69
Let 24f(x)dx=12\int _ { - 2 } ^ { 4 } f ( x ) d x = 12 and 20f(x)dx=7\int _ { - 2 } ^ { 0 } f ( x ) d x = 7 Then 04f(x)dx\int _ { 0 } ^ { 4 } f ( x ) d x is

A)-7
B)-5
C)5
D)7
E)19
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
70
Let 610f(x)dx=15\int _ { 6 } ^ { 10 } f ( x ) d x = 15 and 46f(x)dx=6\int _ { 4 } ^ { 6 } f ( x ) d x = - 6 Then 104f(x)dx\int _ { 10 } ^ { 4 } f ( x ) d x is

A) 21- 21
B) 9- 9
C)9
D)10
E)21
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
71
Let 13f(x)dx=14\int _ { 1 } ^ { 3 } f ( x ) d x = 14 and 83f(x)dx=5\int _ { 8 } ^ { 3 } f ( x ) d x = - 5 Then 18f(x)dx\int _ { 1 } ^ { 8 } f ( x ) d x is

A) 19- 19
B) 9- 9
C)9
D)14
E)19
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
72
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A)3
B)6
C)11
D)15
E)31
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
73
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A)-60
B)-38
C)38
D)49
E)60
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
74
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A) 4911- \frac { 49 } { 11 }
B) 496- \frac { 49 } { 6 }
C) 496\frac { 49 } { 6 }
D) 4911\frac { 49 } { 11 }
E)7
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
75
Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

A)1
B)2
C)3
D)4
E)5
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
76
The bounds m and M used in the Bounds on an Integral Theorem for π4π3sin2xdx\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 3 } } \sin ^ { 2 } x d x are

A) 12,1\frac { 1 } { 2 } , 1
B) 34,1\frac { 3 } { 4 } , 1
C) 12,34\frac { 1 } { 2 } , \frac { 3 } { 4 }
D) 0,120 , \frac { 1 } { 2 }
E) 0,340 , \frac { 3 } { 4 }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
77
The bounds m and M used in the Bounds on an Integral Theorem for 1elnxdx\int _ { 1 } ^ { e } \ln x d x are

A) 0,10,1
B) 0,e0 , e
C) 1,e1 , e
D) 1e,1\frac { 1 } { \mathrm { e } } , 1
E) 0,1e0 , \frac { 1 } { \mathrm { e } }
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
78
The bounds m and M used in the Bounds on an Integral Theorem for 121x2dx\int _ { 1 } ^ { 2 } \frac { 1 } { x ^ { 2 } } d x are

A) 1,21,2
B) 1,41,4
C) 2,42,4
D) 12,1\frac { 1 } { 2 } , 1
E) 14,1\frac { 1 } { 4 } , 1
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
79
The bounds m and M used in the Bounds on an Integral Theorem for 12[2(x1)2]dx\int _ { - 1 } ^ { 2 } \left[ 2 - ( x - 1 ) ^ { 2 } \right] d x are

A) 1,2- 1,2
B) 2,1- 2,1
C) 2,1- 2 , - 1
D) 2,2- 2,2
E) 2,3- 2,3
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
80
Let f(x)=x3f ( x ) = x ^ { 3 } If c(1,1)c \in ( - 1,1 ) such that 11x3dx2=f(c),\frac { \int _ { - 1 } ^ { 1 } x ^ { 3 } d x } { 2 } = f ( c ), then c is

A) 14- \frac { 1 } { 4 }
B) 12- \frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 12\frac { 1 } { 2 }
E)0
Unlock Deck
Unlock for access to all 129 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 129 flashcards in this deck.