Deck 5: Applications of the Derivative

Full screen (f)
exit full mode
Question
Let V=43πr3V = \frac { 4 } { 3 } \pi r ^ { 3 } If drdt=2\frac { d r } { d t } = 2 when r=1r = 1 \text {, } then dVdt\frac { d V } { d t } is

A) 16π16 \pi
B) 12π12 \pi
C) 8π8 \pi
D) 4π4 \pi
E) 2π2 \pi
Use Space or
up arrow
down arrow
to flip the card.
Question
Let A=πr2A = \pi r ^ { 2 } If drdt=1.5\frac { d r } { d t } = 1.5 when then r=6,r = 6, is

A) 18π18 \pi
B) 16π16 \pi
C) 12π12 \pi
D) 8π8 \pi
E) 4π4 \pi
Question
Let s2=200+x2s ^ { 2 } = 200 + x ^ { 2 } If dxdt=6\frac { d x } { d t } = - 6 when x=5x = 5 \text {, } then dsdt\frac { d s } { d t } is

A)-6
B)-4
C)-2
D)2
E)4
Question
Let xy=1x y = 1 If dxdt=12\frac { d x } { d t } = 12 when x=2x = 2 and y=12,y = \frac { 1 } { 2 } , then dydt\frac { d y } { d t } is

A)-8
B)-6
C)-4
D)-3
E)-2
Question
Let A=12bh.A = \frac { 1 } { 2 } b h . If dhdt=4,dbdt=6,\frac { d h } { d t } = - 4 , \frac { d b } { d t } = 6, when and h=6,h = 6, then dAdt\frac { d A } { d t } is

A)12
B)10
C)8
D)6
E)4
Question
Let x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 If dydt=4\frac { d y } { d t } = - 4 when x=4x = 4 and y=3y = 3 \text {, } then dxdt\frac { d x } { d t } is

A)5
B)3
C) 32\frac { 3 } { 2 }
D)1
E) 12\frac { 1 } { 2 }
Question
Let V=316πh3V = \frac { 3 } { 16 } \pi h ^ { 3 } If dVdt=72\frac { d V } { d t } = - 72 when h=12h = 12 then dhdt\frac { d h } { d t } is

A) 43π\frac { 4 } { 3 \pi }
B) 83π\frac { 8 } { 3 \pi }
C) 83π- \frac { 8 } { 3 \pi }
D) 89π\frac { 8 } { 9 \pi }
E) 89π- \frac { 8 } { 9 \pi }
Question
Let s2=x2+9s ^ { 2 } = x ^ { 2 } + 9 If dxdt=4\frac { d x } { d t } = 4 when x=4,x = 4 , then dsdt\frac { d s } { d t } is

A) 516\frac { 5 } { 16 }
B) 15\frac { 1 } { 5 }
C)5
D) 165\frac { 16 } { 5 }
E)16
Question
Let A=(10+x)2A = ( 10 + x ) ^ { 2 } If dxdt=215\frac { d x } { d t } = \frac { 2 } { 15 } when then dAdt\frac { d A } { d t } is

A)8
B)6
C)4
D)2
E) 12\frac { 1 } { 2 }
Question
Let xcosy=5x \cos y = 5 If dxdt=4\frac { d x } { d t } = - 4 when y=π3,y = - \frac { \pi } { 3 } , then dydt\frac { d y } { d t } is

A) 2153- \frac { 2 } { 15 } \sqrt { 3 }
B) 215- \frac { 2 } { 15 }
C) 215\frac { 2 } { 15 }
D) 2153\frac { 2 } { 15 } \sqrt { 3 }
E) 253\frac { 2 } { 5 } \sqrt { 3 }
Question
Let z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and assume that z>0z > 0 If dxdt=25\frac { d x } { d t } = - 25 and dydt=503\frac { d y } { d t } = - \frac { 50 } { 3 } when x=200x = 200 and y=150y = 150 \text {, } then dzdt\frac { d z } { d t } is

A)-40
B)-30
C)30
D)40
E)50
Question
Let sin2x+cos2y=54\sin ^ { 2 } x + \cos ^ { 2 } y = \frac { 5 } { 4 } If dydt=32\frac { d y } { d t } = - \frac { \sqrt { 3 } } { 2 } when x=2π3x = \frac { 2 \pi } { 3 } and y=3π4,y = \frac { 3 \pi } { 4 }, then dxdt\frac { d x } { d t } is

A)-1
B) 12- \frac { 1 } { 2 }
C)1
D) 12\frac { 1 } { 2 }
E) 32\frac { 3 } { 2 }
Question
Let x+y=5\sqrt { x } + \sqrt { y } = 5 If dxdt=34\frac { d x } { d t } = - \frac { 3 } { 4 } when x=1,x = 1 , then dydt\frac { d y } { d t } is

A)4
B)3
C)2
D)-2
E)-3
Question
Let 2x+3y=82 x + 3 y = 8 If dydt=4,\frac { d y } { d t } = 4, then dxdt\frac { d x } { d t } is

A)-6
B)-4
C)-2
D)2
E)6
Question
Let yx=12\frac { y } { x } = 12 If dxdt=12,\frac { d x } { d t } = - \frac { 1 } { 2 }, then dydt\frac { d y } { d t } is

A)-6
B)-4
C)-2
D)2
E)6
Question
If each edge of a cube is increasing at the rate of 3 cm/s when the length of an edge is 2 cm long, then the rate of increase of its volume is

A) 6 cm3/s6 \mathrm {~cm} ^ { 3 } / \mathrm { s }
B) 12 cm3/s12 \mathrm {~cm} ^ { 3 } / \mathrm { s }
C) 24 cm3/s24 \mathrm {~cm} ^ { 3 } / \mathrm { s }
D) 36 cm3/s36 \mathrm {~cm} ^ { 3 } / \mathrm { s }
E) 72 cm3/s72 \mathrm {~cm} ^ { 3 } / \mathrm { s }
Question
If the surface area of a sphere is shrinking at the rate of 0.1 sq cm/h when the radius is 20πcm\frac { 20 } { \pi } \mathrm { cm } \text {, } the rate of change of the radius in cm/s is

A) 1400- \frac { 1 } { 400 }
B) 1800- \frac { 1 } { 800 }
C) 11600- \frac { 1 } { 1600 }
D) 13200- \frac { 1 } { 3200 }
E) 16400- \frac { 1 } { 6400 }
Question
An isosceles triangle has equal sides 4 cm long and the included angle ?. If dθdt=2rad/min\frac { d \theta } { d t } = 2 \mathrm { rad } / \mathrm { min } when θ=π3,\theta = \frac { \pi } { 3 }, then the rate of change of the area in cm2/min is

A)-4
B)-8
C)-16
D)-32
E)-64
Question
Water is flowing into a vertical cylindrical tank at the rate of 5 m3/min. If the radius of the tank is 3 m, then the rate at which the height of the water is rising is

A) 95π\frac { 9 } { 5 \pi }
B) 35π\frac { 3 } { 5 \pi }
C) 56π\frac { 5 } { 6 \pi }
D) 59π\frac { 5 } { 9 \pi }
E) 53π\frac { 5 } { 3 \pi }
Question
A spherical balloon is inflated at the rate of 10 m3/min when the radius is 3 m. The rate of increase of the surface area of the balloon is

A) 803\frac { 80 } { 3 }
B) 403\frac { 40 } { 3 }
C) 203\frac { 20 } { 3 }
D) 203\frac { 20 } { 3 } .
E) 53\frac { 5 } { 3 }
Question
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 The set of all critical numbers of ƒ is

A) {1,13}\left\{ - 1 , - \frac { 1 } { 3 } \right\}
B) {1,13}\left\{ - 1 , \frac { 1 } { 3 } \right\}
C) {1,13}\left\{ 1 , \frac { 1 } { 3 } \right\}
D) {1,13}\left\{ 1 , - \frac { 1 } { 3 } \right\}
E) {1}\{ 1 \}
Question
Let f(x)=2x315x2+36x+5f ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } + 36 x + 5 The set of all critical numbers of ƒ is

A) {2,3}\{ - 2 , - 3 \}
B) {2,3}\{ - 2,3 \}
C) {2,3}\{ 2 , - 3 \}
D) {2,3}\{ 2,3 \}
E) {1,3}\{ 1,3 \}
Question
Let f(x)=x42x3+1f ( x ) = x ^ { 4 } - 2 x ^ { 3 } + 1 The set of all critical numbers of ƒ is

A) {0,32}\left\{ 0 , - \frac { 3 } { 2 } \right\}
B) {0,32}\left\{ 0 , \frac { 3 } { 2 } \right\}
C) {1,32}\left\{ 1 , - \frac { 3 } { 2 } \right\}
D) {1,32}\left\{ 1 , \frac { 3 } { 2 } \right\}
E) {0,2}\{ 0,2 \}
Question
Let f(x)=x4432x2+1f ( x ) = \frac { x ^ { 4 } } { 4 } - \frac { 3 } { 2 } x ^ { 2 } + 1 The set of all critical numbers of ƒ is

A) {3,3}\{ - \sqrt { 3 } , \sqrt { 3 } \}
B) {3,0}\{ - \sqrt { 3 } , 0 \}
C) {0,3}\{ 0 , \sqrt { 3 } \}
D) {0}\{ 0 \}
E) {3,0,3}\{ - \sqrt { 3 } , 0 , \sqrt { 3 } \}
Question
Let f(x)=x312x+1f ( x ) = x ^ { 3 } - 12 x + 1 The set of all critical numbers of ƒ is

A) {2}\{ - 2 \}
B) {2}\{ 2 \}
C) {2,2}\{ - 2,2 \}
D) {0,2}\{ 0 , - 2 \}
E) {0,2}\{ 0,2 \}
Question
Let f(x)={x22x<1x31x2f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & - 2 \leq x < 1 \\x ^ { 3 } & 1 \leq x \leq 2\end{array} \right. The set of all critical numbers of ƒ is

A) {2}\{ - 2 \}
B) {2}\{ 2 \}
C) {2,2}\{ - 2,2 \}
D) {0,2}\{ 0,2 \}
E) {0,1}\{ 0,1 \}
Question
Let f(x)=12x33x2+6x4f ( x ) = \frac { 1 } { 2 } x ^ { 3 } - 3 x ^ { 2 } + 6 x - 4 The set of all critical numbers of ƒ is

A) {2}\{ - 2 \}
B) {2}\{ 2 \}
C) {2,2}\{ - 2,2 \}
D) {0,2}\{ 0 , - 2 \}
E) \varnothing
Question
Let f(x)=15x395x2+3x15f ( x ) = \frac { 1 } { 5 } x ^ { 3 } - \frac { 9 } { 5 } x ^ { 2 } + 3 x - \frac { 1 } { 5 } The set of all critical numbers of ƒ is

A) {1}\{ - 1 \}
B) {5}\{ - 5 \}
C) {1,5}\{ - 1 , - 5 \}
D) {1,5}\{ 1,5 \}
E) \varnothing
Question
Let f(x)=14x413x33x2+1f ( x ) = \frac { 1 } { 4 } x ^ { 4 } - \frac { 1 } { 3 } x ^ { 3 } - 3 x ^ { 2 } + 1 The set of all critical numbers of ƒ is

A) {2,0}\{ - 2,0 \}
B) {2,3}\{ 2,3 \}
C) {0,3}\{ 0 , - 3 \}
D) {2,0,3}\{ - 2,0,3 \}
E) {2,0}\{ - 2,0 \} .
Question
Let f(x)=xsinxf ( x ) = x - \sin x on [0,2π][ 0,2 \pi ] The set of all critical numbers of ƒ is

A) {0,2π}\{ 0,2 \pi \}
B) {π2}\left\{ \frac { \pi } { 2 } \right\}
C) {π}\{ \pi \}
D) {3π2}\left\{ \frac { 3 \pi } { 2 } \right\}
E) {2π}\{ 2 \pi \}
Question
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 on [2,2][ - 2,2 ] The absolute minimum and maximum of ƒare located respectively at x =

A)-2,2
B)-1,2
C) 13,2- \frac { 1 } { 3 } , 2
D) 2,1- 2,1
E) 13,1- \frac { 1 } { 3 } , 1
Question
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 on [2,2][ - 2,2 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)1,4
B)1,2
C)1,3
D)2,3
E)3,4
Question
Let f(x)=x42x3+1f ( x ) = x ^ { 4 } - 2 x ^ { 3 } + 1 on [1,2][ - 1,2 ] The absolute minimum and maximum of ƒ are located respectively at x =

A) 32,1\frac { 3 } { 2 } , - 1
B) 1,32- 1 , \frac { 3 } { 2 }
C) 32,2\frac { 3 } { 2 } , 2
D) 2,322 , \frac { 3 } { 2 }
E)0,2
Question
Let f(x)=x443x22+1f ( x ) = \frac { x ^ { 4 } } { 4 } - \frac { 3 x ^ { 2 } } { 2 } + 1 on [0,2][ 0,2 ] . The absolute minimum and maximum of ƒ are located respectively at x =

A)0,2
B)0,1
C) 3,0\sqrt { 3 } , 0
D) 3,2\sqrt { 3 } , 2
E)1,2
Question
Let f(x)=x312x+1f ( x ) = x ^ { 3 } - 12 x + 1 on [3,0][ - 3,0 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)-3,0
B)-2,0
C)0,-3
D)0,-2
E)-3,-2
Question
Let f(x)={x22x<1x31x2f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & - 2 \leq x < 1 \\x ^ { 3 } & 1 \leq x \leq 2\end{array} \right. on [2,2][ - 2,2 ] The absolute minimum and maximum of ƒ are located respectively at x =

A) 2,0- 2,0
B) 0,20 , - 2
C) 0,20,2
D) 2,2- 2,2
E) 3,2- 3 , - 2
Question
Let f(x)=12x33x2+6x4f ( x ) = \frac { 1 } { 2 } x ^ { 3 } - 3 x ^ { 2 } + 6 x - 4 on [1,3][ 1,3 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)1,3
B)3,1
C)1,2
D)2,3
E)3,2
Question
Let f(x)=15x395x23x15f ( x ) = \frac { 1 } { 5 } x ^ { 3 } - \frac { 9 } { 5 } x ^ { 2 } - 3 x - \frac { 1 } { 5 } on [1,3][ 1,3 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)0,3
B)3,0
C)1,3
D)3,1
E)2,3
Question
Let f(x)=14x413x3x2+1f ( x ) = \frac { 1 } { 4 } x ^ { 4 } - \frac { 1 } { 3 } x ^ { 3 } - x ^ { 2 } + 1 on [2,3][ - 2,3 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)0,-2
B)0,2
C)1,2
D)2,-2
E)3,0
Question
Let f(x)=xsinxf ( x ) = x - \sin x on [0,2π][ 0,2 \pi ] The absolute minimum and maximum of ƒ are located respectively at x =

A) 0,π20 , \frac { \pi } { 2 }
B) 0,π0 , \pi
C) 3π2,π2\frac { 3 \pi } { 2 } , \frac { \pi } { 2 }
D) π2,2π\frac { \pi } { 2 } , 2 \pi
E) 0,2π0,2 \pi
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ' is given below:
On what interval(s) is the graph of ƒ increasing?

A) (,0)( - \infty , 0 )
B) (3,3)( - 3,3 )
C) (0,)( 0 , \infty )
D) (,3)(3,)( - \infty , - 3 ) \cup ( 3 , \infty )
E) (,)( - \infty , \infty )
Question
Let y = ƒ(x) be a differentiable function for which the graph of its derivative, ƒ', is given below:
At what x-value(s), if any, does the graph of ƒ have a horizontal tangent?

A)x = 0 only
B)x = -3 only
C)x = 3 only
D)x = -3 and x = 3
E)None
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of ƒ have a vertical tangent?

A)x = 0 only
B)x = -3 only
C)x = 3 only
D)x = -3 and x = 3
E)None
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
On what interval(s) is the graph of f decreasing?

A) (,1)( - \infty , 1 )
B) (,2)(0,)( - \infty , - 2 ) \cup ( 0 , \infty )
C)(-2, 0)
D) (1,)( 1 , \infty )
E)(-2, 1)
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a horizontal tangent?

A)x = -1 and x = 0
B)x = -2
C)x = -2, x = 1, and x = 0
D)x = -2 and x = 1
E)None
Question
Let f(x)=x23x on [0,3]f ( x ) = x ^ { 2 } - 3 x \text { on } [ 0,3 ] on [0,3][ 0,3 ] . Then the set of all c in (0,3) guaranteed by Rolle's Theorem is

A) {3}\{ - 3 \}
B) {32}\left\{ - \frac { 3 } { 2 } \right\}
C) {12}\left\{ - \frac { 1 } { 2 } \right\}
D) {12}\left\{ \frac { 1 } { 2 } \right\}
E) {32}\left\{ \frac { 3 } { 2 } \right\}
Question
Let f(x)=x22x2f ( x ) = x ^ { 2 } - 2 x - 2 on [0,2][ 0,2 ] . Then the set of all c in (0,2) guaranteed by Rolle's Theorem is

A) {2}\{ - 2 \}
B) {1}\{ - 1 \}
C) {0}\{ 0 \}
D) {1}\{ 1 \}
E) {2}\{ 2 \}
Question
Let f(x)=x34xf ( x ) = x ^ { 3 } - 4 x on [2,2][ - 2,2 ] Then the set of all c in (-2,2) guaranteed by Rolle's Theorem is

A) {233}\left\{ \frac { - 2 \sqrt { 3 } } { 3 } \right\}
B) {233}\left\{ \frac { 2 \sqrt { 3 } } { 3 } \right\}
C) {233,233}\left\{ \frac { - 2 \sqrt { 3 } } { 3 } , \frac { 2 \sqrt { 3 } } { 3 } \right\}
D) {1,1}\{ - 1,1 \}
E) {1}\{ 1 \}
Question
Let f(x)=x3x+2f ( x ) = x ^ { 3 } - x + 2 on [1,1][ - 1,1 ] Then the set of all c in (-1,1) guaranteed by Rolle's Theorem is

A) {33}\left\{ \frac { - \sqrt { 3 } } { 3 } \right\}
B) {33}\left\{ \frac { \sqrt { 3 } } { 3 } \right\}
C) {33,33}\left\{ \frac { - \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } \right\}
D) {1,1}\{ - 1,1 \}
E) {1}\{ 1 \}
Question
Let f(x)=x43f ( x ) = x ^ { 4 } - 3 on [2,2][ - 2,2 ] Then the set of all c in (2,2)( - 2,2 ) guaranteed by Rolle's Theorem is

A) {1}\{ - 1 \}
B) {33}\left\{ - \frac { \sqrt { 3 } } { 3 } \right\}
C) {33}\left\{ \frac { \sqrt { 3 } } { 3 } \right\}
D) {0}\{ 0 \}
E) {1}\{ 1 \}
Question
Let f(x)=x42x2+1f ( x ) = x ^ { 4 } - 2 x ^ { 2 } + 1 on [2,2][ - 2,2 ] Then the set of all c in (-2,2) guaranteed by Rolle's Theorem is

A) {1}\{ - 1 \}
B) {0}\{ 0 \}
C) {1}\{ 1 \}
D) {0,1}\{ 0,1 \}
E) {1,0,1}\{ - 1,0,1 \}
Question
Let f(x)=x4+x2f ( x ) = x ^ { 4 } + x ^ { 2 } on [2,2][ - 2,2 ] Then the set of all c in (-2,2) guaranteed by Rolle's Theorem is

A) {1}\{ - 1 \}
B) {0}\{ 0 \}
C) {1}\{ 1 \}
D) {0,1}\{ 0,1 \}
E) {1,0,1}\{ - 1,0,1 \}
Question
Let f(x)=sinx+cosxf ( x ) = \sin x + \cos x on [0,2π][ 0,2 \pi ] Then the set of all in c guaranteed by Rolle's Theorem is

A) {3π4}\left\{ \frac { 3 \pi } { 4 } \right\}
B) {7π4}\left\{ \frac { 7 \pi } { 4 } \right\}
C) {π4,5π4}\left\{ \frac { \pi } { 4 } , \frac { 5 \pi } { 4 } \right\}
D) {π4,7π4}\left\{ \frac { \pi } { 4 } , \frac { 7 \pi } { 4 } \right\}
E) {π4,3π4}\left\{ \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right\}
Question
Let f(x)=x3+1f ( x ) = x ^ { 3 } + 1 on [0,2][ 0,2 ] Then the set of all c in (0,2) guaranteed by the Mean Value Theorem is

A) {34}\left\{ \frac { \sqrt { 3 } } { 4 } \right\}
B) {34}\left\{ \frac { 3 } { 4 } \right\}
C) {233}\left\{ \frac { 2 \sqrt { 3 } } { 3 } \right\}
D) {54}\left\{ \frac { 5 } { 4 } \right\}
E) {1}\{ 1 \}
Question
Let f(x)=x+2+3x1f ( x ) = x + 2 + \frac { 3 } { x - 1 } on [2,7][ 2,7 ] Then the set of all c in (2,7) guaranteed by the Mean Value Theorem is

A) {16}\{ 1 - \sqrt { 6 } \}
B) {1+6}\{ 1 + \sqrt { 6 } \}
C) {0}\{ 0 \}
D) {16,1+6}\{ 1 - \sqrt { 6 } , 1 + \sqrt { 6 } \}
E) {13,0,1+3}\{ 1 - \sqrt { 3 } , 0,1 + \sqrt { 3 } \}
Question
Let f(x)=lnxf ( x ) = \ln x on [1,e][ 1 , e ] Then the set of all c in (1,e) guaranteed by the Mean Value Theorem is

A) {1.5}\{ 1.5 \}
B) {e1}\{ e - 1 \}
C) {2}\{ 2 \}
D) {2.5}\{ 2.5 \}
E) {1.5,e1}\{ 1.5 , e - 1 \}
Question
Let f(x)=(x4)21f ( x ) = ( x - 4 ) ^ { 2 } - 1 on [3,6][ 3,6 ] Then the set of all c in (3,6) guaranteed by the Mean Value Theorem is

A) {4}\{ 4 \}
B) {72}\left\{ \frac { 7 } { 2 } \right\}
C) {2}\{ 2 \}
D) {92}\left\{ \frac { 9 } { 2 } \right\}
E) {5}\{ 5 \}
Question
Let f(x)=x2+2x1f ( x ) = x ^ { 2 } + 2 x - 1 on [0,1][ 0,1 ] . Then the set of all c in (0,1) guaranteed by the Mean Value Theorem is

A) {14}\left\{ \frac { 1 } { 4 } \right\}
B) {13}\left\{ \frac { 1 } { 3 } \right\}
C) {12}\left\{ \frac { 1 } { 2 } \right\}
D) {23}\left\{ \frac { 2 } { 3 } \right\}
E) {34}\left\{ \frac { 3 } { 4 } \right\}
Question
Let f(x)=x23f ( x ) = x ^ { \frac { 2 } { 3 } } on [0,1][ 0,1 ] Then the set of all c in (0,1) guaranteed by the Mean Value Theorem is

A) {29}\left\{ \frac { 2 } { 9 } \right\}
B) {13}\left\{ \frac { 1 } { 3 } \right\}
C) {49}\left\{ \frac { 4 } { 9 } \right\}
D) {827}\left\{ \frac { 8 } { 27 } \right\}
E) {1127}\left\{ \frac { 11 } { 27 } \right\}
Question
Let f(x)=x+1xff ( x ) = x + \frac { 1 } { x } f on [12,2].\left[ \frac { 1 } { 2 } , 2 \right] . Then the set of all c in (12,2)\left( \frac { 1 } { 2 } , 2 \right) guaranteed by the Mean Value Theorem is

A) {34}\left\{ \frac { 3 } { 4 } \right\}
B) {1}\{ 1 \}
C) {54}\left\{ \frac { 5 } { 4 } \right\}
D) {32}\left\{ \frac { 3 } { 2 } \right\}
E) {74}\left\{ \frac { 7 } { 4 } \right\}
Question
Let f(x)=x1f ( x ) = \sqrt { x - 1 } on [1,3][ 1,3 ] Then the set of all c in (1,3) guaranteed by the Mean Value Theorem is

A) {54}\left\{ \frac { 5 } { 4 } \right\}
B) {98}\left\{ \frac { 9 } { 8 } \right\}
C) {32}\left\{ \frac { 3 } { 2 } \right\}
D) {2}\{ 2 \}
E) {52}\left\{ \frac { 5 } { 2 } \right\}
Question
The largest set on which the function f(x)=xexf ( x ) = x e ^ { x } is increasing is

A) (,)( - \infty , \infty )
B) (,)( - \infty , \infty ) .
C) (0,)( 0 , \infty )
D) (,1)( - \infty , 1 )
E) (1,)( - 1 , \infty )
Question
The largest set on which the function f(x)=3sinxf ( x ) = 3 \sin x on [0,2π][ 0,2 \pi ] is increasing is

A) (0,π2)\left( 0 , \frac { \pi } { 2 } \right)
B) (π2,π)\left( \frac { \pi } { 2 } , \pi \right)
C) (π,3π2)\left( \pi , \frac { 3 \pi } { 2 } \right)
D) (0,π2)(3π2,2π)\left( 0 , \frac { \pi } { 2 } \right) \cup \left( \frac { 3 \pi } { 2 } , 2 \pi \right)
E) (0,2π)( 0,2 \pi )
Question
The largest set on which the function f(x)=5xf ( x ) = 5 ^ { - x } is decreasing is

A) (2,)( - 2 , \infty )
B) (,2)( - \infty , 2 )
C) (2,e)( 2 , e )
D) (e,)( e , \infty )
E) (2,e)(e,)( 2 , e ) \cup ( e , \infty )
Question
The largest set on which the function f(x)=5xf ( x ) = 5 ^ { - x } is decreasing is

A) (,)( - \infty , \infty )
B) (,5)( - \infty , - 5 )
C) (5,)( - 5 , \infty )
D) (5,5)( - 5,5 )
E) (5,)( 5 , \infty )
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a local maximum?

A)x = 0 only
B)x = -3 only
C)x = 3 only
D)x = -3 and x = 3
E)None
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
On what interval(s) is the graph of f concave up?

A) (,0)( - \infty , 0 )
B)(-3, 3)
C) (0,)( 0 , \infty )
D) (,3)(3,)( - \infty , - 3 ) \cup ( 3 , \infty )
E) (,)( - \infty , \infty )
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a local minimum?

A) x = 3 only
B)x = -3 only
C)x =0 only
D)x = -3 and x = 3
E)None
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a local minimum?

A)x = 0
B)x = -2
C)x = -2, x = 1, and x = 0
D)x = 1
E)None
Question
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
On what interval(s) is the graph of f concave down?

A) (,1)( - \infty , 1 )
B) (,2)(0,)( - \infty , - 2 ) \cup ( 0 , \infty )
C)(-2, 0)
D) (1,)( 1 , \infty )
E)(-2, 1)
Question
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 Then ƒ has a relative maximum at x =

A) 13- \frac { 1 } { 3 }
B)1
C) 13\frac { 1 } { 3 }
D)-1
E)2
Question
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 Then ƒ has a relative minimum at x =

A) 13- \frac { 1 } { 3 }
B)1
C) 13\frac { 1 } { 3 }
D)-1
E)2
Question
Let f(x)=2x315x236x2f ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } - 36 x - 2 Then ƒ has a relative maximum at x =

A)0
B)1
C)-1
D)2
E)-2
Question
Let f(x)=2x315x236x2f ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } - 36 x - 2 Then ƒ has a relative minimum at x =

A)2
B)4
C)6
D)8
E)10
Question
Let f(x)=x42x3+3f ( x ) = x ^ { 4 } - 2 x ^ { 3 } + 3 Then ƒ has a relative minimum at x =

A)0
B)1
C) 23\frac { 2 } { 3 }
D) 32\frac { 3 } { 2 }
E)2
Question
Let f(x)=x39x2+15xf ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 15 x Then ƒ has a relative maximum at x =

A)0
B)1
C) 23\frac { 2 } { 3 }
D) 32\frac { 3 } { 2 }
E)2
Question
Let f(x)=x39x2+15xf ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 15 x Then ƒ has a relative minimum at x =

A)0
B)1
C)2
D)4
E)5
Question
Let f(x)=x44x3+16xf ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 16 x Then ƒ has a relative minimum at x =

A) -2
B)-1
C)0
D)1
E)2
Question
Let f(x)=x36x29x+1f ( x ) = - x ^ { 3 } - 6 x ^ { 2 } - 9 x + 1 Then ƒ has a relative maximum at x =

A)-3
B)-2
C)-1
D)0
E)2
Question
Let f(x)=x36x29x+1f ( x ) = - x ^ { 3 } - 6 x ^ { 2 } - 9 x + 1 Then ƒ has a relative minimum at x =

A)-3
B)-2
C)-1
D)0
E)2
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/170
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Applications of the Derivative
1
Let V=43πr3V = \frac { 4 } { 3 } \pi r ^ { 3 } If drdt=2\frac { d r } { d t } = 2 when r=1r = 1 \text {, } then dVdt\frac { d V } { d t } is

A) 16π16 \pi
B) 12π12 \pi
C) 8π8 \pi
D) 4π4 \pi
E) 2π2 \pi
8π8 \pi
2
Let A=πr2A = \pi r ^ { 2 } If drdt=1.5\frac { d r } { d t } = 1.5 when then r=6,r = 6, is

A) 18π18 \pi
B) 16π16 \pi
C) 12π12 \pi
D) 8π8 \pi
E) 4π4 \pi
18π18 \pi
3
Let s2=200+x2s ^ { 2 } = 200 + x ^ { 2 } If dxdt=6\frac { d x } { d t } = - 6 when x=5x = 5 \text {, } then dsdt\frac { d s } { d t } is

A)-6
B)-4
C)-2
D)2
E)4
-2
4
Let xy=1x y = 1 If dxdt=12\frac { d x } { d t } = 12 when x=2x = 2 and y=12,y = \frac { 1 } { 2 } , then dydt\frac { d y } { d t } is

A)-8
B)-6
C)-4
D)-3
E)-2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
5
Let A=12bh.A = \frac { 1 } { 2 } b h . If dhdt=4,dbdt=6,\frac { d h } { d t } = - 4 , \frac { d b } { d t } = 6, when and h=6,h = 6, then dAdt\frac { d A } { d t } is

A)12
B)10
C)8
D)6
E)4
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
6
Let x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 If dydt=4\frac { d y } { d t } = - 4 when x=4x = 4 and y=3y = 3 \text {, } then dxdt\frac { d x } { d t } is

A)5
B)3
C) 32\frac { 3 } { 2 }
D)1
E) 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
7
Let V=316πh3V = \frac { 3 } { 16 } \pi h ^ { 3 } If dVdt=72\frac { d V } { d t } = - 72 when h=12h = 12 then dhdt\frac { d h } { d t } is

A) 43π\frac { 4 } { 3 \pi }
B) 83π\frac { 8 } { 3 \pi }
C) 83π- \frac { 8 } { 3 \pi }
D) 89π\frac { 8 } { 9 \pi }
E) 89π- \frac { 8 } { 9 \pi }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
8
Let s2=x2+9s ^ { 2 } = x ^ { 2 } + 9 If dxdt=4\frac { d x } { d t } = 4 when x=4,x = 4 , then dsdt\frac { d s } { d t } is

A) 516\frac { 5 } { 16 }
B) 15\frac { 1 } { 5 }
C)5
D) 165\frac { 16 } { 5 }
E)16
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
9
Let A=(10+x)2A = ( 10 + x ) ^ { 2 } If dxdt=215\frac { d x } { d t } = \frac { 2 } { 15 } when then dAdt\frac { d A } { d t } is

A)8
B)6
C)4
D)2
E) 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
10
Let xcosy=5x \cos y = 5 If dxdt=4\frac { d x } { d t } = - 4 when y=π3,y = - \frac { \pi } { 3 } , then dydt\frac { d y } { d t } is

A) 2153- \frac { 2 } { 15 } \sqrt { 3 }
B) 215- \frac { 2 } { 15 }
C) 215\frac { 2 } { 15 }
D) 2153\frac { 2 } { 15 } \sqrt { 3 }
E) 253\frac { 2 } { 5 } \sqrt { 3 }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
11
Let z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and assume that z>0z > 0 If dxdt=25\frac { d x } { d t } = - 25 and dydt=503\frac { d y } { d t } = - \frac { 50 } { 3 } when x=200x = 200 and y=150y = 150 \text {, } then dzdt\frac { d z } { d t } is

A)-40
B)-30
C)30
D)40
E)50
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
12
Let sin2x+cos2y=54\sin ^ { 2 } x + \cos ^ { 2 } y = \frac { 5 } { 4 } If dydt=32\frac { d y } { d t } = - \frac { \sqrt { 3 } } { 2 } when x=2π3x = \frac { 2 \pi } { 3 } and y=3π4,y = \frac { 3 \pi } { 4 }, then dxdt\frac { d x } { d t } is

A)-1
B) 12- \frac { 1 } { 2 }
C)1
D) 12\frac { 1 } { 2 }
E) 32\frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
13
Let x+y=5\sqrt { x } + \sqrt { y } = 5 If dxdt=34\frac { d x } { d t } = - \frac { 3 } { 4 } when x=1,x = 1 , then dydt\frac { d y } { d t } is

A)4
B)3
C)2
D)-2
E)-3
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
14
Let 2x+3y=82 x + 3 y = 8 If dydt=4,\frac { d y } { d t } = 4, then dxdt\frac { d x } { d t } is

A)-6
B)-4
C)-2
D)2
E)6
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
15
Let yx=12\frac { y } { x } = 12 If dxdt=12,\frac { d x } { d t } = - \frac { 1 } { 2 }, then dydt\frac { d y } { d t } is

A)-6
B)-4
C)-2
D)2
E)6
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
16
If each edge of a cube is increasing at the rate of 3 cm/s when the length of an edge is 2 cm long, then the rate of increase of its volume is

A) 6 cm3/s6 \mathrm {~cm} ^ { 3 } / \mathrm { s }
B) 12 cm3/s12 \mathrm {~cm} ^ { 3 } / \mathrm { s }
C) 24 cm3/s24 \mathrm {~cm} ^ { 3 } / \mathrm { s }
D) 36 cm3/s36 \mathrm {~cm} ^ { 3 } / \mathrm { s }
E) 72 cm3/s72 \mathrm {~cm} ^ { 3 } / \mathrm { s }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
17
If the surface area of a sphere is shrinking at the rate of 0.1 sq cm/h when the radius is 20πcm\frac { 20 } { \pi } \mathrm { cm } \text {, } the rate of change of the radius in cm/s is

A) 1400- \frac { 1 } { 400 }
B) 1800- \frac { 1 } { 800 }
C) 11600- \frac { 1 } { 1600 }
D) 13200- \frac { 1 } { 3200 }
E) 16400- \frac { 1 } { 6400 }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
18
An isosceles triangle has equal sides 4 cm long and the included angle ?. If dθdt=2rad/min\frac { d \theta } { d t } = 2 \mathrm { rad } / \mathrm { min } when θ=π3,\theta = \frac { \pi } { 3 }, then the rate of change of the area in cm2/min is

A)-4
B)-8
C)-16
D)-32
E)-64
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
19
Water is flowing into a vertical cylindrical tank at the rate of 5 m3/min. If the radius of the tank is 3 m, then the rate at which the height of the water is rising is

A) 95π\frac { 9 } { 5 \pi }
B) 35π\frac { 3 } { 5 \pi }
C) 56π\frac { 5 } { 6 \pi }
D) 59π\frac { 5 } { 9 \pi }
E) 53π\frac { 5 } { 3 \pi }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
20
A spherical balloon is inflated at the rate of 10 m3/min when the radius is 3 m. The rate of increase of the surface area of the balloon is

A) 803\frac { 80 } { 3 }
B) 403\frac { 40 } { 3 }
C) 203\frac { 20 } { 3 }
D) 203\frac { 20 } { 3 } .
E) 53\frac { 5 } { 3 }
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
21
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 The set of all critical numbers of ƒ is

A) {1,13}\left\{ - 1 , - \frac { 1 } { 3 } \right\}
B) {1,13}\left\{ - 1 , \frac { 1 } { 3 } \right\}
C) {1,13}\left\{ 1 , \frac { 1 } { 3 } \right\}
D) {1,13}\left\{ 1 , - \frac { 1 } { 3 } \right\}
E) {1}\{ 1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
22
Let f(x)=2x315x2+36x+5f ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } + 36 x + 5 The set of all critical numbers of ƒ is

A) {2,3}\{ - 2 , - 3 \}
B) {2,3}\{ - 2,3 \}
C) {2,3}\{ 2 , - 3 \}
D) {2,3}\{ 2,3 \}
E) {1,3}\{ 1,3 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
23
Let f(x)=x42x3+1f ( x ) = x ^ { 4 } - 2 x ^ { 3 } + 1 The set of all critical numbers of ƒ is

A) {0,32}\left\{ 0 , - \frac { 3 } { 2 } \right\}
B) {0,32}\left\{ 0 , \frac { 3 } { 2 } \right\}
C) {1,32}\left\{ 1 , - \frac { 3 } { 2 } \right\}
D) {1,32}\left\{ 1 , \frac { 3 } { 2 } \right\}
E) {0,2}\{ 0,2 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
24
Let f(x)=x4432x2+1f ( x ) = \frac { x ^ { 4 } } { 4 } - \frac { 3 } { 2 } x ^ { 2 } + 1 The set of all critical numbers of ƒ is

A) {3,3}\{ - \sqrt { 3 } , \sqrt { 3 } \}
B) {3,0}\{ - \sqrt { 3 } , 0 \}
C) {0,3}\{ 0 , \sqrt { 3 } \}
D) {0}\{ 0 \}
E) {3,0,3}\{ - \sqrt { 3 } , 0 , \sqrt { 3 } \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
25
Let f(x)=x312x+1f ( x ) = x ^ { 3 } - 12 x + 1 The set of all critical numbers of ƒ is

A) {2}\{ - 2 \}
B) {2}\{ 2 \}
C) {2,2}\{ - 2,2 \}
D) {0,2}\{ 0 , - 2 \}
E) {0,2}\{ 0,2 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
26
Let f(x)={x22x<1x31x2f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & - 2 \leq x < 1 \\x ^ { 3 } & 1 \leq x \leq 2\end{array} \right. The set of all critical numbers of ƒ is

A) {2}\{ - 2 \}
B) {2}\{ 2 \}
C) {2,2}\{ - 2,2 \}
D) {0,2}\{ 0,2 \}
E) {0,1}\{ 0,1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
27
Let f(x)=12x33x2+6x4f ( x ) = \frac { 1 } { 2 } x ^ { 3 } - 3 x ^ { 2 } + 6 x - 4 The set of all critical numbers of ƒ is

A) {2}\{ - 2 \}
B) {2}\{ 2 \}
C) {2,2}\{ - 2,2 \}
D) {0,2}\{ 0 , - 2 \}
E) \varnothing
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
28
Let f(x)=15x395x2+3x15f ( x ) = \frac { 1 } { 5 } x ^ { 3 } - \frac { 9 } { 5 } x ^ { 2 } + 3 x - \frac { 1 } { 5 } The set of all critical numbers of ƒ is

A) {1}\{ - 1 \}
B) {5}\{ - 5 \}
C) {1,5}\{ - 1 , - 5 \}
D) {1,5}\{ 1,5 \}
E) \varnothing
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
29
Let f(x)=14x413x33x2+1f ( x ) = \frac { 1 } { 4 } x ^ { 4 } - \frac { 1 } { 3 } x ^ { 3 } - 3 x ^ { 2 } + 1 The set of all critical numbers of ƒ is

A) {2,0}\{ - 2,0 \}
B) {2,3}\{ 2,3 \}
C) {0,3}\{ 0 , - 3 \}
D) {2,0,3}\{ - 2,0,3 \}
E) {2,0}\{ - 2,0 \} .
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
30
Let f(x)=xsinxf ( x ) = x - \sin x on [0,2π][ 0,2 \pi ] The set of all critical numbers of ƒ is

A) {0,2π}\{ 0,2 \pi \}
B) {π2}\left\{ \frac { \pi } { 2 } \right\}
C) {π}\{ \pi \}
D) {3π2}\left\{ \frac { 3 \pi } { 2 } \right\}
E) {2π}\{ 2 \pi \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
31
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 on [2,2][ - 2,2 ] The absolute minimum and maximum of ƒare located respectively at x =

A)-2,2
B)-1,2
C) 13,2- \frac { 1 } { 3 } , 2
D) 2,1- 2,1
E) 13,1- \frac { 1 } { 3 } , 1
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
32
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 on [2,2][ - 2,2 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)1,4
B)1,2
C)1,3
D)2,3
E)3,4
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
33
Let f(x)=x42x3+1f ( x ) = x ^ { 4 } - 2 x ^ { 3 } + 1 on [1,2][ - 1,2 ] The absolute minimum and maximum of ƒ are located respectively at x =

A) 32,1\frac { 3 } { 2 } , - 1
B) 1,32- 1 , \frac { 3 } { 2 }
C) 32,2\frac { 3 } { 2 } , 2
D) 2,322 , \frac { 3 } { 2 }
E)0,2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
34
Let f(x)=x443x22+1f ( x ) = \frac { x ^ { 4 } } { 4 } - \frac { 3 x ^ { 2 } } { 2 } + 1 on [0,2][ 0,2 ] . The absolute minimum and maximum of ƒ are located respectively at x =

A)0,2
B)0,1
C) 3,0\sqrt { 3 } , 0
D) 3,2\sqrt { 3 } , 2
E)1,2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
35
Let f(x)=x312x+1f ( x ) = x ^ { 3 } - 12 x + 1 on [3,0][ - 3,0 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)-3,0
B)-2,0
C)0,-3
D)0,-2
E)-3,-2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
36
Let f(x)={x22x<1x31x2f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & - 2 \leq x < 1 \\x ^ { 3 } & 1 \leq x \leq 2\end{array} \right. on [2,2][ - 2,2 ] The absolute minimum and maximum of ƒ are located respectively at x =

A) 2,0- 2,0
B) 0,20 , - 2
C) 0,20,2
D) 2,2- 2,2
E) 3,2- 3 , - 2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
37
Let f(x)=12x33x2+6x4f ( x ) = \frac { 1 } { 2 } x ^ { 3 } - 3 x ^ { 2 } + 6 x - 4 on [1,3][ 1,3 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)1,3
B)3,1
C)1,2
D)2,3
E)3,2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
38
Let f(x)=15x395x23x15f ( x ) = \frac { 1 } { 5 } x ^ { 3 } - \frac { 9 } { 5 } x ^ { 2 } - 3 x - \frac { 1 } { 5 } on [1,3][ 1,3 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)0,3
B)3,0
C)1,3
D)3,1
E)2,3
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
39
Let f(x)=14x413x3x2+1f ( x ) = \frac { 1 } { 4 } x ^ { 4 } - \frac { 1 } { 3 } x ^ { 3 } - x ^ { 2 } + 1 on [2,3][ - 2,3 ] The absolute minimum and maximum of ƒ are located respectively at x =

A)0,-2
B)0,2
C)1,2
D)2,-2
E)3,0
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
40
Let f(x)=xsinxf ( x ) = x - \sin x on [0,2π][ 0,2 \pi ] The absolute minimum and maximum of ƒ are located respectively at x =

A) 0,π20 , \frac { \pi } { 2 }
B) 0,π0 , \pi
C) 3π2,π2\frac { 3 \pi } { 2 } , \frac { \pi } { 2 }
D) π2,2π\frac { \pi } { 2 } , 2 \pi
E) 0,2π0,2 \pi
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
41
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ' is given below:
On what interval(s) is the graph of ƒ increasing?

A) (,0)( - \infty , 0 )
B) (3,3)( - 3,3 )
C) (0,)( 0 , \infty )
D) (,3)(3,)( - \infty , - 3 ) \cup ( 3 , \infty )
E) (,)( - \infty , \infty )
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
42
Let y = ƒ(x) be a differentiable function for which the graph of its derivative, ƒ', is given below:
At what x-value(s), if any, does the graph of ƒ have a horizontal tangent?

A)x = 0 only
B)x = -3 only
C)x = 3 only
D)x = -3 and x = 3
E)None
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
43
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of ƒ have a vertical tangent?

A)x = 0 only
B)x = -3 only
C)x = 3 only
D)x = -3 and x = 3
E)None
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
44
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
On what interval(s) is the graph of f decreasing?

A) (,1)( - \infty , 1 )
B) (,2)(0,)( - \infty , - 2 ) \cup ( 0 , \infty )
C)(-2, 0)
D) (1,)( 1 , \infty )
E)(-2, 1)
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
45
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a horizontal tangent?

A)x = -1 and x = 0
B)x = -2
C)x = -2, x = 1, and x = 0
D)x = -2 and x = 1
E)None
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
46
Let f(x)=x23x on [0,3]f ( x ) = x ^ { 2 } - 3 x \text { on } [ 0,3 ] on [0,3][ 0,3 ] . Then the set of all c in (0,3) guaranteed by Rolle's Theorem is

A) {3}\{ - 3 \}
B) {32}\left\{ - \frac { 3 } { 2 } \right\}
C) {12}\left\{ - \frac { 1 } { 2 } \right\}
D) {12}\left\{ \frac { 1 } { 2 } \right\}
E) {32}\left\{ \frac { 3 } { 2 } \right\}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
47
Let f(x)=x22x2f ( x ) = x ^ { 2 } - 2 x - 2 on [0,2][ 0,2 ] . Then the set of all c in (0,2) guaranteed by Rolle's Theorem is

A) {2}\{ - 2 \}
B) {1}\{ - 1 \}
C) {0}\{ 0 \}
D) {1}\{ 1 \}
E) {2}\{ 2 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
48
Let f(x)=x34xf ( x ) = x ^ { 3 } - 4 x on [2,2][ - 2,2 ] Then the set of all c in (-2,2) guaranteed by Rolle's Theorem is

A) {233}\left\{ \frac { - 2 \sqrt { 3 } } { 3 } \right\}
B) {233}\left\{ \frac { 2 \sqrt { 3 } } { 3 } \right\}
C) {233,233}\left\{ \frac { - 2 \sqrt { 3 } } { 3 } , \frac { 2 \sqrt { 3 } } { 3 } \right\}
D) {1,1}\{ - 1,1 \}
E) {1}\{ 1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
49
Let f(x)=x3x+2f ( x ) = x ^ { 3 } - x + 2 on [1,1][ - 1,1 ] Then the set of all c in (-1,1) guaranteed by Rolle's Theorem is

A) {33}\left\{ \frac { - \sqrt { 3 } } { 3 } \right\}
B) {33}\left\{ \frac { \sqrt { 3 } } { 3 } \right\}
C) {33,33}\left\{ \frac { - \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } \right\}
D) {1,1}\{ - 1,1 \}
E) {1}\{ 1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
50
Let f(x)=x43f ( x ) = x ^ { 4 } - 3 on [2,2][ - 2,2 ] Then the set of all c in (2,2)( - 2,2 ) guaranteed by Rolle's Theorem is

A) {1}\{ - 1 \}
B) {33}\left\{ - \frac { \sqrt { 3 } } { 3 } \right\}
C) {33}\left\{ \frac { \sqrt { 3 } } { 3 } \right\}
D) {0}\{ 0 \}
E) {1}\{ 1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
51
Let f(x)=x42x2+1f ( x ) = x ^ { 4 } - 2 x ^ { 2 } + 1 on [2,2][ - 2,2 ] Then the set of all c in (-2,2) guaranteed by Rolle's Theorem is

A) {1}\{ - 1 \}
B) {0}\{ 0 \}
C) {1}\{ 1 \}
D) {0,1}\{ 0,1 \}
E) {1,0,1}\{ - 1,0,1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
52
Let f(x)=x4+x2f ( x ) = x ^ { 4 } + x ^ { 2 } on [2,2][ - 2,2 ] Then the set of all c in (-2,2) guaranteed by Rolle's Theorem is

A) {1}\{ - 1 \}
B) {0}\{ 0 \}
C) {1}\{ 1 \}
D) {0,1}\{ 0,1 \}
E) {1,0,1}\{ - 1,0,1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
53
Let f(x)=sinx+cosxf ( x ) = \sin x + \cos x on [0,2π][ 0,2 \pi ] Then the set of all in c guaranteed by Rolle's Theorem is

A) {3π4}\left\{ \frac { 3 \pi } { 4 } \right\}
B) {7π4}\left\{ \frac { 7 \pi } { 4 } \right\}
C) {π4,5π4}\left\{ \frac { \pi } { 4 } , \frac { 5 \pi } { 4 } \right\}
D) {π4,7π4}\left\{ \frac { \pi } { 4 } , \frac { 7 \pi } { 4 } \right\}
E) {π4,3π4}\left\{ \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right\}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
54
Let f(x)=x3+1f ( x ) = x ^ { 3 } + 1 on [0,2][ 0,2 ] Then the set of all c in (0,2) guaranteed by the Mean Value Theorem is

A) {34}\left\{ \frac { \sqrt { 3 } } { 4 } \right\}
B) {34}\left\{ \frac { 3 } { 4 } \right\}
C) {233}\left\{ \frac { 2 \sqrt { 3 } } { 3 } \right\}
D) {54}\left\{ \frac { 5 } { 4 } \right\}
E) {1}\{ 1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
55
Let f(x)=x+2+3x1f ( x ) = x + 2 + \frac { 3 } { x - 1 } on [2,7][ 2,7 ] Then the set of all c in (2,7) guaranteed by the Mean Value Theorem is

A) {16}\{ 1 - \sqrt { 6 } \}
B) {1+6}\{ 1 + \sqrt { 6 } \}
C) {0}\{ 0 \}
D) {16,1+6}\{ 1 - \sqrt { 6 } , 1 + \sqrt { 6 } \}
E) {13,0,1+3}\{ 1 - \sqrt { 3 } , 0,1 + \sqrt { 3 } \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
56
Let f(x)=lnxf ( x ) = \ln x on [1,e][ 1 , e ] Then the set of all c in (1,e) guaranteed by the Mean Value Theorem is

A) {1.5}\{ 1.5 \}
B) {e1}\{ e - 1 \}
C) {2}\{ 2 \}
D) {2.5}\{ 2.5 \}
E) {1.5,e1}\{ 1.5 , e - 1 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
57
Let f(x)=(x4)21f ( x ) = ( x - 4 ) ^ { 2 } - 1 on [3,6][ 3,6 ] Then the set of all c in (3,6) guaranteed by the Mean Value Theorem is

A) {4}\{ 4 \}
B) {72}\left\{ \frac { 7 } { 2 } \right\}
C) {2}\{ 2 \}
D) {92}\left\{ \frac { 9 } { 2 } \right\}
E) {5}\{ 5 \}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
58
Let f(x)=x2+2x1f ( x ) = x ^ { 2 } + 2 x - 1 on [0,1][ 0,1 ] . Then the set of all c in (0,1) guaranteed by the Mean Value Theorem is

A) {14}\left\{ \frac { 1 } { 4 } \right\}
B) {13}\left\{ \frac { 1 } { 3 } \right\}
C) {12}\left\{ \frac { 1 } { 2 } \right\}
D) {23}\left\{ \frac { 2 } { 3 } \right\}
E) {34}\left\{ \frac { 3 } { 4 } \right\}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
59
Let f(x)=x23f ( x ) = x ^ { \frac { 2 } { 3 } } on [0,1][ 0,1 ] Then the set of all c in (0,1) guaranteed by the Mean Value Theorem is

A) {29}\left\{ \frac { 2 } { 9 } \right\}
B) {13}\left\{ \frac { 1 } { 3 } \right\}
C) {49}\left\{ \frac { 4 } { 9 } \right\}
D) {827}\left\{ \frac { 8 } { 27 } \right\}
E) {1127}\left\{ \frac { 11 } { 27 } \right\}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
60
Let f(x)=x+1xff ( x ) = x + \frac { 1 } { x } f on [12,2].\left[ \frac { 1 } { 2 } , 2 \right] . Then the set of all c in (12,2)\left( \frac { 1 } { 2 } , 2 \right) guaranteed by the Mean Value Theorem is

A) {34}\left\{ \frac { 3 } { 4 } \right\}
B) {1}\{ 1 \}
C) {54}\left\{ \frac { 5 } { 4 } \right\}
D) {32}\left\{ \frac { 3 } { 2 } \right\}
E) {74}\left\{ \frac { 7 } { 4 } \right\}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
61
Let f(x)=x1f ( x ) = \sqrt { x - 1 } on [1,3][ 1,3 ] Then the set of all c in (1,3) guaranteed by the Mean Value Theorem is

A) {54}\left\{ \frac { 5 } { 4 } \right\}
B) {98}\left\{ \frac { 9 } { 8 } \right\}
C) {32}\left\{ \frac { 3 } { 2 } \right\}
D) {2}\{ 2 \}
E) {52}\left\{ \frac { 5 } { 2 } \right\}
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
62
The largest set on which the function f(x)=xexf ( x ) = x e ^ { x } is increasing is

A) (,)( - \infty , \infty )
B) (,)( - \infty , \infty ) .
C) (0,)( 0 , \infty )
D) (,1)( - \infty , 1 )
E) (1,)( - 1 , \infty )
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
63
The largest set on which the function f(x)=3sinxf ( x ) = 3 \sin x on [0,2π][ 0,2 \pi ] is increasing is

A) (0,π2)\left( 0 , \frac { \pi } { 2 } \right)
B) (π2,π)\left( \frac { \pi } { 2 } , \pi \right)
C) (π,3π2)\left( \pi , \frac { 3 \pi } { 2 } \right)
D) (0,π2)(3π2,2π)\left( 0 , \frac { \pi } { 2 } \right) \cup \left( \frac { 3 \pi } { 2 } , 2 \pi \right)
E) (0,2π)( 0,2 \pi )
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
64
The largest set on which the function f(x)=5xf ( x ) = 5 ^ { - x } is decreasing is

A) (2,)( - 2 , \infty )
B) (,2)( - \infty , 2 )
C) (2,e)( 2 , e )
D) (e,)( e , \infty )
E) (2,e)(e,)( 2 , e ) \cup ( e , \infty )
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
65
The largest set on which the function f(x)=5xf ( x ) = 5 ^ { - x } is decreasing is

A) (,)( - \infty , \infty )
B) (,5)( - \infty , - 5 )
C) (5,)( - 5 , \infty )
D) (5,5)( - 5,5 )
E) (5,)( 5 , \infty )
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
66
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a local maximum?

A)x = 0 only
B)x = -3 only
C)x = 3 only
D)x = -3 and x = 3
E)None
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
67
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
On what interval(s) is the graph of f concave up?

A) (,0)( - \infty , 0 )
B)(-3, 3)
C) (0,)( 0 , \infty )
D) (,3)(3,)( - \infty , - 3 ) \cup ( 3 , \infty )
E) (,)( - \infty , \infty )
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
68
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a local minimum?

A) x = 3 only
B)x = -3 only
C)x =0 only
D)x = -3 and x = 3
E)None
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
69
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
At what x-value(s), if any, does the graph of f have a local minimum?

A)x = 0
B)x = -2
C)x = -2, x = 1, and x = 0
D)x = 1
E)None
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
70
Let y=f(x)y = f ( x ) be a differentiable function for which the graph of its derivative, ƒ ', is given below:
On what interval(s) is the graph of f concave down?

A) (,1)( - \infty , 1 )
B) (,2)(0,)( - \infty , - 2 ) \cup ( 0 , \infty )
C)(-2, 0)
D) (1,)( 1 , \infty )
E)(-2, 1)
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
71
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 Then ƒ has a relative maximum at x =

A) 13- \frac { 1 } { 3 }
B)1
C) 13\frac { 1 } { 3 }
D)-1
E)2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
72
Let f(x)=x3x2x+8f ( x ) = x ^ { 3 } - x ^ { 2 } - x + 8 Then ƒ has a relative minimum at x =

A) 13- \frac { 1 } { 3 }
B)1
C) 13\frac { 1 } { 3 }
D)-1
E)2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
73
Let f(x)=2x315x236x2f ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } - 36 x - 2 Then ƒ has a relative maximum at x =

A)0
B)1
C)-1
D)2
E)-2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
74
Let f(x)=2x315x236x2f ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } - 36 x - 2 Then ƒ has a relative minimum at x =

A)2
B)4
C)6
D)8
E)10
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
75
Let f(x)=x42x3+3f ( x ) = x ^ { 4 } - 2 x ^ { 3 } + 3 Then ƒ has a relative minimum at x =

A)0
B)1
C) 23\frac { 2 } { 3 }
D) 32\frac { 3 } { 2 }
E)2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
76
Let f(x)=x39x2+15xf ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 15 x Then ƒ has a relative maximum at x =

A)0
B)1
C) 23\frac { 2 } { 3 }
D) 32\frac { 3 } { 2 }
E)2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
77
Let f(x)=x39x2+15xf ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 15 x Then ƒ has a relative minimum at x =

A)0
B)1
C)2
D)4
E)5
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
78
Let f(x)=x44x3+16xf ( x ) = x ^ { 4 } - 4 x ^ { 3 } + 16 x Then ƒ has a relative minimum at x =

A) -2
B)-1
C)0
D)1
E)2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
79
Let f(x)=x36x29x+1f ( x ) = - x ^ { 3 } - 6 x ^ { 2 } - 9 x + 1 Then ƒ has a relative maximum at x =

A)-3
B)-2
C)-1
D)0
E)2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
80
Let f(x)=x36x29x+1f ( x ) = - x ^ { 3 } - 6 x ^ { 2 } - 9 x + 1 Then ƒ has a relative minimum at x =

A)-3
B)-2
C)-1
D)0
E)2
Unlock Deck
Unlock for access to all 170 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 170 flashcards in this deck.