Deck 13: Functions of Several Variables

Full screen (f)
exit full mode
Question
The domain of the function f(x,y)=2xyx2+y2f ( x , y ) = \frac { 2 x y } { x ^ { 2 } + y ^ { 2 } } is

A) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
D) {(x,y):x0}\{ ( x , y ) : x \neq 0 \}
E) {(x,y):y0}\{ ( x , y ) : y \neq 0 \}
Use Space or
up arrow
down arrow
to flip the card.
Question
The domain of the function f(x,y)=x2x+3yf ( x , y ) = \frac { x } { \sqrt { 2 x + 3 y } } is

A) {(x,y):x0}\{ ( x , y ) : x \neq 0 \}
B) {(x,y):3x+2y0}\{ ( x , y ) : 3 x + 2 y \neq 0 \}
C) {(x,y):2x+3y0}\{ ( x , y ) : - 2 x + 3 y \neq 0 \}
D) {(x,y):2x3y0}\{ ( x , y ) : 2 x - 3 y \neq 0 \}
E) {(x,y):2x+3y>0}\{ ( x , y ) : 2 x + 3 y > 0 \}
Question
The domain of the function f(x,y)=x2y2x22xy+y2f ( x , y ) = \frac { x ^ { 2 } - y ^ { 2 } } { x ^ { 2 } - 2 x y + y ^ { 2 } } is

A) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):2xy}\{ ( x , y ) : 2 x \neq y \}
D) {(x,y):x2y}\{ ( x , y ) : x \neq 2 y \}
E) {(x,y):x2y2}\left\{ ( x , y ) : x ^ { 2 } \neq y ^ { 2 } \right\}
Question
The domain of the function f(x,y)=2x+y1x2y2f ( x , y ) = \frac { 2 x + y } { \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } is

A) {(x,y):x2+y21}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \neq 1 \right\}
B) {(x,y):x2+y2>1}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } > 1 \right\}
C) {(x,y):x2+y21}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \geq 1 \right\}
D) {(x,y):x2+y2<1}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } < 1 \right\}
E) {(x,y):x2+y21}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 1 \right\}
Question
The domain of the function f(x,y)=ln(2x2+y2)f ( x , y ) = \ln \left( 2 x ^ { 2 } + y ^ { 2 } \right) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):y2x}\{ ( x , y ) : y \neq \sqrt { 2 } x \}
D) {(x,y):2x2+y20}\left\{ ( x , y ) : 2 x ^ { 2 } + y ^ { 2 } \leq 0 \right\}
E) {(x,y):2x2+y20}\left\{ ( x , y ) : 2 x ^ { 2 } + y ^ { 2 } \geq 0 \right\}
Question
The domain of the function f(x,y)=sin(x+y)f ( x , y ) = \sin ( x + y ) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
D) {(x,y):yx}\{ ( x , y ) : y \geq x \}
E) {(x,y):<x<,<y<}\{ ( x , y ) : - \infty < x < \infty , - \infty < y < \infty \}
Question
The domain of the function f(x,y)=cos(x+y)f ( x , y ) = \cos ( x + y ) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
D) {(x,y):yx}\{ ( x , y ) : y \geq x \}
E) {(x,y):<x<,<y<}\{ ( x , y ) : - \infty < x < \infty , - \infty < y < \infty \}
Question
The domain of the function f(x,y)=ln(2x2y2)f ( x , y ) = \ln \left( 2 x ^ { 2 } - y ^ { 2 } \right) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):2xy}\{ ( x , y ) : 2 x \neq y \}
C) {(x,y):y2<2x2}\left\{ ( x , y ) : y ^ { 2 } < 2 x ^ { 2 } \right\}
D) {(x,y):y2x}\{ ( x , y ) : y \neq \sqrt { 2 } x \}
E) {(x,y):<x<,<y<}\{ ( x , y ) : - \infty < x < \infty , - \infty < y < \infty \}
Question
Let f(x,y)=x+2yf ( x , y ) = x + 2 y . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δx+2y\Delta x + 2 y
B) Δx\Delta x
C) Δx+2Δy\Delta x + 2 \Delta y
D) Δx2y\Delta x - 2 y
E) Δx2Δy\Delta x - 2 \Delta y
Question
Let f(x,y)=xy+3f ( x , y ) = x y + 3 . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δx+3Δy\Delta x + 3 \Delta y
B) yΔxy - \Delta x
C) y+Δxy + \Delta x
D) yΔxy \Delta x
E) ΔxΔy\Delta x \Delta y
Question
Let f(x,y)=xyf ( x , y ) = \frac { x } { y } . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δyx\frac { \Delta y } { x }
B) Δyx- \frac { \Delta y } { x }
C) ΔxΔy\frac { \Delta x } { \Delta y }
D) Δxy- \frac { \Delta x } { y }
E) Δxy\frac { \Delta x } { y }
Question
Let f(x,y)=x22xyf ( x , y ) = x ^ { 2 } - 2 x y . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) 2(xy)Δx+(Δx)22 ( x - y ) \Delta x + ( \Delta x ) ^ { 2 }
B) 2(xy)(Δx)22 ( x - y ) ( \Delta x ) ^ { 2 }
C) 2(xy)(Δx)2+Δx2 ( x - y ) ( \Delta x ) ^ { 2 } + \Delta x
D) 2(xy)(Δx)2+(Δx)22 ( x - y ) ( \Delta x ) ^ { 2 } + ( \Delta x ) ^ { 2 }
E) 2(xy)Δx+y(Δx)22 ( x - y ) \Delta x + y ( \Delta x ) ^ { 2 }
Question
Let f(x,y)=x+2yf ( x , y ) = x + 2 y . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) Δx2Δy\Delta x - 2 \Delta y
B) Δy\Delta y
C) 2Δy2 \Delta y
D) x+2Δyx + 2 \Delta y
E) Δx+2Δy\Delta x + 2 \Delta y
Question
Let f(x,y)=xy+3f ( x , y ) = x y + 3 . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) ΔxΔy\Delta x \Delta y
B) x3Δyx - 3 \Delta y
C) x+3Δyx + 3 \Delta y
D) xΔyx \Delta y
E) x(Δy)2x ( \Delta y ) ^ { 2 }
Question
Let f(x,y)=xyf ( x , y ) = \frac { x } { y } . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) xΔyy(y+Δy)- \frac { x \Delta y } { y ( y + \Delta y ) }
B) xΔyy(y+Δy)\frac { x \Delta y } { y ( y + \Delta y ) }
C) 2xΔyy(y+Δy)\frac { 2 x \Delta y } { y ( y + \Delta y ) }
D) 2xΔyy(y+Δy)- \frac { 2 x \Delta y } { y ( y + \Delta y ) }
E) x+Δyy(y+Δy)\frac { x + \Delta y } { y ( y + \Delta y ) }
Question
Let f(x,y)=x22xyf ( x , y ) = x ^ { 2 } - 2 x y . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) ΔxΔy- \Delta x \Delta y
B) 2ΔxΔy- 2 \Delta x \Delta y
C) 2xΔy- 2 x \Delta y
D) xΔyx \Delta y
E) 2xΔy2 x \Delta y
Question
Let f(x,y)=x1y+2f ( x , y ) = \frac { x - 1 } { y + 2 } . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) (1x)Δy(y+2)(y+2+Δy)\frac { ( 1 - x ) \Delta y } { ( y + 2 ) ( y + 2 + \Delta y ) }
B) (1+x)Δy(y+2)(y+2+Δy)\frac { ( 1 + x ) \Delta y } { ( y + 2 ) ( y + 2 + \Delta y ) }
C) (1x)Δy(y2)(y+2+Δy)\frac { ( 1 - x ) \Delta y } { ( y - 2 ) ( y + 2 + \Delta y ) }
D) (1+x)Δy(y2)(y+2+Δy)\frac { ( 1 + x ) \Delta y } { ( y - 2 ) ( y + 2 + \Delta y ) }
E) (1x)Δy(y+2)(y+2Δy)\frac { ( 1 - x ) \Delta y } { ( y + 2 ) ( y + 2 - \Delta y ) }
Question
Let f(x,y)=x1y+2f ( x , y ) = \frac { x - 1 } { y + 2 } . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δxy+1\frac { \Delta x } { y + 1 }
B) 2Δxy+2\frac { 2 \Delta x } { y + 2 }
C) Δxy+2- \frac { \Delta x } { y + 2 }
D) Δxy2\frac { \Delta x } { y - 2 }
E) Δxy+2\frac { \Delta x } { y + 2 }
Question
Let f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } . Then the level curve for z = 3 is

A)A circle
B)An ellipse
C)A hyperbola
D)A cardioid
E)A limaçon
Question
Let f(x,y)=cosxf ( x , y ) = \cos x . Then the level curve for z = 0 is

A)A circle
B)An ellipse
C)A hyperbola
D)A horizontal line
E)A line parallel to the z-axis
Question
The limit lim(x,y)(0,0)xyx2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } is

A)Does not exist
B)1
C) 12\frac { 1 } { 2 }
D)0
E) 1- 1
Question
The limit lim(x,y)(0,0)x+y1x+y1\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x + y - 1 } { \sqrt { x + y } - 1 } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Question
The limit lim(x,y)(0,0)x2y2x4+y4\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } y ^ { 2 } } { x ^ { 4 } + y ^ { 4 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Question
The limit lim(x,y)(0,0)x2y4x4+y4\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } y ^ { 4 } } { x ^ { 4 } + y ^ { 4 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Question
The limit lim(x,y)(0,0)x2+yx2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } + y } { x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Question
The limit lim(x,y)(0,0)x2y2x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } - y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Question
The limit lim(x,y)(2,2)xy4xy2\lim _ { ( x , y ) \rightarrow ( 2,2 ) } \frac { x y - 4 } { \sqrt { x y } - 2 } is

A)Does not exist
B)2
C)4
D)0
E)1
Question
The limit lim(x,y)(0,0)y4+3x2y2+2xy3(x2+y2)2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { y ^ { 4 } + 3 x ^ { 2 } y ^ { 2 } + 2 x y ^ { 3 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Question
The limit lim(x,y)(0,0)4xy2x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { 4 x y } { 2 x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Question
The limit lim(x,y)(0,0)x2+y4x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } + y ^ { 4 } } { x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Question
The limit lim(x,y)(0,0)sin(xy)xy\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { \sin ( x - y ) } { x - y } is

A)Does not exist
B)2
C)4
D)0
E)1
Question
The limit lim(x,y,z)(0,1,0)x2y2+y2z2x2+z2\lim _ { ( x , y , z ) \rightarrow ( 0,1,0 ) } \frac { x ^ { 2 } y ^ { 2 } + y ^ { 2 } z ^ { 2 } } { x ^ { 2 } + z ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Question
The limit lim(x,y,z)(2,1,1)xyzx2(y+z)2\lim _ { ( x , y , z ) \rightarrow ( 2,1,1 ) } \frac { x - y - z } { x ^ { 2 } - ( y + z ) ^ { 2 } }

A)Does not exist
B)2
C) 14\frac { 1 } { 4 }
D)0
E)1
Question
The limit lim(x,y)(0.0)x3yx4+y4\lim _ { ( x , y ) \rightarrow ( 0.0 ) } \frac { x ^ { 3 } y } { x ^ { 4 } + y ^ { 4 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Question
Let f(x,y)={x2+yx2+y2(x,y)(0,0)0(x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { c c } \frac { x ^ { 2 } + y } { x ^ { 2 } + y ^ { 2 } } & ( x , y ) \neq ( 0,0 ) \\0 & ( x , y ) = ( 0,0 )\end{array} \right. . Then f is

A)Continuous at (0,0)
B)Discontinuous at (0,0)because f is undefined at (0,0)
C)Discontinuous at (0,0)because the limit of f at (0,0) does not exist
D)Discontinuous at (0,0)because the limit of f at (0,0) is different from the function values at (0,0)
E)Discontinuous at (0,0) for a reason that is different from the ones above
Question
Let f(x,y)={xy4xy2(x,y)(2,2)0(x,y)=(2,2)f ( x , y ) = \left\{ \begin{array} { c c } \frac { x y - 4 } { \sqrt { x y } - 2 } & ( x , y ) \neq ( 2,2 ) \\0 & ( x , y ) = ( 2,2 )\end{array} \right. . Then f is

A)Continuous at (2,2)
B)Discontinuous at (2,2)because f is undefined at (2,2)
C)Discontinuous at (2,2)because the limit of f at (2,2) does not exist
D)Discontinuous at (2,2)because the limit of f at (2,2) is different from the function value at (2,2)
E)Discontinuous at (2,2) for a reason that is different from the ones above
Question
Let f(x,y)={sin(xy)xyxy1x=yf ( x , y ) = \left\{ \begin{array} { c c } \frac { \sin ( x - y ) } { x - y } & x \neq y \\1 & x = y\end{array} \right. . Then f is

A)Continuous at (2,2)
B)Discontinuous at (2,2) because f is undefined at (2,2)
C)Discontinuous at (2,2) because the limit of f at (2,2) does not exist
D)Discontinuous at (2,2) because the limit of f at (2,2) is different from the function values at (2,2)
E)Discontinuous at (2,2) for a reason that is different from the ones above
Question
Let f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { c c } \frac { x y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } & ( x , y ) \neq ( 0,0 ) \\0 & ( x , y ) = ( 0,0 )\end{array} \right. . Then f is

A)Continuous at (0,0)
B)Discontinuous at (0,0) because f is undefined at (0,0)
C)Discontinuous at (0,0) because the limit of f at (0,0) does not exist
D)Discontinuous at (0,0) because the limit of f at (0,0) is different from the function values at (0,0)
E)Discontinuous at (0,0) for a reason that is different from the ones above
Question
Let f(x,y,z)={1x2+z2(x,z)(0,0)0(x,z)=(0,0)f ( x , y , z ) = \left\{ \begin{array} { c c } \frac { 1 } { x ^ { 2 } + z ^ { 2 } } & ( x , z ) \neq ( 0,0 ) \\0 & ( x , z ) = ( 0,0 )\end{array} \right. . Then f is

A)Continuous at (0,1,0)
B)Discontinuous at (0,1,0) because f is undefined at (0,1,0)
C)Discontinuous at (0,1,0) because the limit of f at (0,1,0) does not exist
D)Discontinuous at (0,1,0) because the limit of f at (0,1,0) is different from the function values at (0,1,0)
E)Discontinuous at (0,1,0) for a reason that is different from the ones above
Question
Let f(x,y,z)={xyzx2(y+z)2x2(y+z)214x2=(y+z)2f ( x , y , z ) = \left\{ \begin{array} { c l } \frac { x - y - z } { x ^ { 2 } - ( y + z ) ^ { 2 } } & x ^ { 2 } \neq ( y + z ) ^ { 2 } \\\frac { 1 } { 4 } & x ^ { 2 } = ( y + z ) ^ { 2 }\end{array} \right. . Then f is

A)Continuous at (2,1,1)
B)Discontinuous at (2,1,1) because f is undefined at(2,1,1)
C)Discontinuous at (2,1,1) because the limit of f at (2,1,1) does not exist
D)Discontinuous at (2,1,1) because the limit of f at (2,1,1) is different from the function values at (2,1,1)
E)Discontinuous at (2,1,1) for a reason that is different from the ones above
Question
Let f(x,y)=xln(y)4xy+xf ( x , y ) = x \ln ( y ) - 4 x y + x . Then fy(x,y)f _ { y } ( x , y ) is

A) x(1+4y)y\frac { x ( 1 + 4 y ) } { y }
B) x(14y)y\frac { x ( 1 - 4 y ) } { y }
C) x(14y)y- \frac { x ( 1 - 4 y ) } { y }
D) y(14y)x\frac { y ( 1 - 4 y ) } { x }
E) y(1+4y)x\frac { y ( 1 + 4 y ) } { x }
Question
Let f(x,y)=x34log7(x2)+sin1(xy)f ( x , y ) = x ^ { 3 } - 4 \log _ { 7 } \left( x ^ { 2 } \right) + \sin ^ { - 1 } ( x y ) . Then fx(x,y)f _ { x } ( x , y ) is

A) 3x28xln7+y1x2y2- 3 x ^ { 2 } - \frac { 8 } { x \ln 7 } + \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
B) 3x2+8xln7y1x2y23 x ^ { 2 } + \frac { 8 } { x \ln 7 } - \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
C) 3x28xln7y1x2y23 x ^ { 2 } - \frac { 8 } { x \ln 7 } - \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
D) 3x28xln7+y1x2y23 x ^ { 2 } - \frac { 8 } { x \ln 7 } + \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
E) 3x2+8xln7+y1x2y23 x ^ { 2 } + \frac { 8 } { x \ln 7 } + \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
Question
Let f(x,y)=x2sin2(xy)f ( x , y ) = \frac { x ^ { 2 } } { \sin ^ { 2 } ( x y ) } . Then fy(x,y)f _ { y } ( x , y ) is

A) 2x3cos(xy)sin2(xy)- \frac { 2 x ^ { 3 } \cos ( x y ) } { \sin ^ { 2 } ( x y ) }
B) 2x3cos(xy)sin2(xy)\frac { 2 x ^ { 3 } \cos ( x y ) } { \sin ^ { 2 } ( x y ) }
C) 2x3sin(xy)cos2(xy)- \frac { 2 x ^ { 3 } \sin ( x y ) } { \cos ^ { 2 } ( x y ) }
D) 2x3sin(xy)cos2(xy)\frac { 2 x ^ { 3 } \sin ( x y ) } { \cos ^ { 2 } ( x y ) }
E) 2y3cos(xy)sin2(xy)- \frac { 2 y ^ { 3 } \cos ( x y ) } { \sin ^ { 2 } ( x y ) }
Question
Let f(x,y)=5x2ysin(xy)f ( x , y ) = 5 ^ { x ^ { 2 } } y \sin ( x - y ) . Then fy(x,y)f _ { y } ( x , y ) is

A) 5x2[sin(xy)ycos(xy)]- 5 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ]
B) xx2[sin(xy)+ycos(xy)]x ^ { x ^ { 2 } } [ \sin ( x - y ) + y \cos ( x - y ) ]
C) 5x2[sin(xy)ycos(xy)]2xln55 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ] 2 x \ln 5
D) 5x2[sin(xy)ycos(xy)]ln55 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ] \ln 5
E) 5x2[sin(xy)ycos(xy)]5 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ]
Question
Let f(x,y)=exy2f ( x , y ) = e ^ { x y ^ { 2 } } . Then fx(x,y)f _ { x } ( x , y ) is

A) xy2exy2x y ^ { 2 } e ^ { x y ^ { 2 } }
B) 2xyexy2- 2 x y e ^ { x y ^ { 2 } }
C) 2xyexy22 x y e ^ { x y ^ { 2 } }
D) xy2exy2- x y ^ { 2 } e ^ { x y ^ { 2 } }
E) 2xy2exy22 x y ^ { 2 } e ^ { x y ^ { 2 } }
Question
Let f(x,y,z)=xysinzyzsinxf ( x , y , z ) = x y \sin z - y z \sin x . Then fz(x,y,z)f _ { z } ( x , y , z ) is

A) xycosz+ysinxx y \cos z + y \sin x
B) xycoszysinxx y \cos z - y \sin x
C) xycoszysinx- x y \cos z - y \sin x
D) xycosz+ysinx- x y \cos z + y \sin x
E) xysinzycosxx y \sin z - y \cos x
Question
Let f(x,y,z)=zxyf ( x , y , z ) = z ^ { x y } . Then fy(x,y,z)f _ { y } ( x , y , z ) is

A) xyzxyln(z)x y z ^ { x y } \ln ( z )
B) yzxyln(z)- y z ^ { x y } \ln ( z )
C) xyxyln(z)x y ^ { x y } \ln ( z )
D) xzxyln(z)- x z ^ { x y } \ln ( z )
E) xzxyln(z)x z ^ { x y } \ln ( z )
Question
Let f(x,y,z)=tan1(xyz)f ( x , y , z ) = \tan ^ { - 1 } \left( \frac { x y } { z } \right) . Then fx(x,y,z)f _ { x } ( x , y , z ) is

A) xyz2+x2y2- \frac { x y } { z ^ { 2 } + x ^ { 2 } y ^ { 2 } }
B) xyz2+x2y2\frac { x y } { z ^ { 2 } + x ^ { 2 } y ^ { 2 } }
C) xyx2+z2y2\frac { x y } { x ^ { 2 } + z ^ { 2 } y ^ { 2 } }
D) xyx2+z2y2- \frac { x y } { x ^ { 2 } + z ^ { 2 } y ^ { 2 } }
E) xyx2+x2z2- \frac { x y } { x ^ { 2 } + x ^ { 2 } z ^ { 2 } }
Question
Let f(x,y)=3x22y3f ( x , y ) = \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } . Then fxx(x,y)f _ { x x } ( x , y ) is

A) 6y3(3x22y3)3- \frac { 6 y ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
B) 6y3(3x22y3)3\frac { 6 y ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
C) 6x3(3x22y3)3- \frac { 6 x ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
D) 6x3(3x22y3)3\frac { 6 x ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
E) 6xy3(3x22y3)3- \frac { 6 x y ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
Question
Let f(x,y)=3x22y3f ( x , y ) = \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } . Then fxy(x,y)f _ { x y } ( x , y ) is

A) 9xy2(3x22y3)3- \frac { 9 x y ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
B) 9xy2(3x22y3)3\frac { 9 x y ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
C) 9yx2(3x22y3)3- \frac { 9 y x ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
D) 9yx2(3x22y3)3\frac { 9 y x ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
E) 9x2y2(3x22y3)3\frac { 9 x ^ { 2 } y ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
Question
Let f(x,y)=3x22y3f ( x , y ) = \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } . Then fwy(x,y)f _ { w y } ( x , y ) is

A) 3xy(6x2y3)(3x22y3)3- \frac { 3 x y \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
B) 3x(6x2y3)(3x22y3)3\frac { 3 x \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
C) 3x(6x2y3)(3x22y3)3- \frac { 3 x \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
D) 3y(6x2y3)(3x22y3)3\frac { 3 y \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
E) 3y(6x2y3)(3x22y3)3- \frac { 3 y \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
Question
Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fxx(x,y)f _ { x x } ( x , y ) is

A) xy2sin(xy+y2)- x y ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
B) y2sin(xy+y2)y ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
C) y2sin(xy+y2)- y ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
D) x2sin(xy+y2)- x ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
E) x2sin(xy+y2)x ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
Question
Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fyx(x,y)f _ { y x } ( x , y ) is

A) cos(xy+y2)y(x2y)sin(xy+y2)\cos \left( x y + y ^ { 2 } \right) - y ( x - 2 y ) \sin \left( x y + y ^ { 2 } \right)
B) cos(xy+y2)+y(x+2y)sin(xy+y2)- \cos \left( x y + y ^ { 2 } \right) + y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
C) cos(xy+y2)y(x+2y)sin(xy+y2)- \cos \left( x y + y ^ { 2 } \right) - y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
D) cos(xy+y2)y(x+2y)sin(xy+y2)\cos \left( x y + y ^ { 2 } \right) - y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
E) cos(xy+y2)+y(x+2y)sin(xy+y2)\cos \left( x y + y ^ { 2 } \right) + y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
Question
Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fyy(x,y)f _ {y y } ( x , y ) is

A) 2cos(xy+y2)(x2y)2sin(xy+y2)2 \cos \left( x y + y ^ { 2 } \right) - ( x - 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
B) 2cos(xy+y2)+(x+2y)2sin(xy+y2)- 2 \cos \left( x y + y ^ { 2 } \right) + ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
C) 2cos(xy+y2)(x+2y)2sin(xy+y2)- 2 \cos \left( x y + y ^ { 2 } \right) - ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
D) 2cos(xy+y2)+(x+2y)2sin(xy+y2)2 \cos \left( x y + y ^ { 2 } \right) + ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
E) 2cos(xy+y2)(x+2y)2sin(xy+y2)2 \cos \left( x y + y ^ { 2 } \right) - ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
Question
Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then fxx(x,y)f _ { x x } ( x , y ) is

A) y2x2(x2+y2)2- \frac { y ^ { 2 } - x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
B) y2+x2(x2+y2)2\frac { y ^ { 2 } + x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
C) y2x2(x2+y2)2\frac { y ^ { 2 } - x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
D) y2+x2(x2+y2)2- \frac { y ^ { 2 } + x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
E) y22x2(x2+y2)2\frac { y ^ { 2 } - 2 x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
Question
Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then fxy(x,y)f _ { x y } ( x , y ) is

A) 2xy(x2+y2)2- \frac { 2 x y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
B) 2xy(x2+y2)2\frac { 2 x y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
C) x2y(x2+y2)2- \frac { x ^ { 2 } y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
D) x2y(x2+y2)2\frac { x ^ { 2 } y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
E) y2x(x2+y2)2- \frac { y ^ { 2 } x } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
Question
Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then fyy(x,y)f _ { y y } ( x , y ) is

A) x22y2(x2+y2)2\frac { x ^ { 2 } - 2 y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
B) 2x2y2(x2+y2)2\frac { 2 x ^ { 2 } - y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
C) x2+y2(x2+y2)2\frac { x ^ { 2 } + y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
D) x2y2(x2+y2)2\frac { x ^ { 2 } - y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
E) x2y2(x2+y2)2- \frac { x ^ { 2 } - y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
Question
The symmetric equations of the tangent line to the curve of intersection of the surface z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } and the plane y = 2 at the point (1, 2, 11) are

A) z11=2(x1),y=2z - 11 = - 2 ( x - 1 ) , y = 2
B) z11=x112,y=2z - 11 = \frac { x - 1 } { \frac { 1 } { 2 } } , y = 2
C) 2z11=x112,y=22 z - 11 = \frac { x - 1 } { - \frac { 1 } { 2 } } , y = 2
D) 2z11=x112,y=22 z - 11 = \frac { x - 1 } { \frac { 1 } { 2 } } , y = 2
E) 4z11=x112,y=24 z - 11 = \frac { x - 1 } { - \frac { 1 } { 2 } } , y = 2
Question
The symmetric equations of the tangent line to the curve of intersection of the surface z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } and the plane x = 1 at the point (1, 2, 11) are

A) 2z11=y214,x=12 z - 11 = \frac { y - 2 } { - \frac { 1 } { 4 } } , x = 1
B) 4z11=y214,x=14 z - 11 = \frac { y - 2 } { \frac { 1 } { 4 } } , x = 1
C) 4z11=y214,x=14 z - 11 = \frac { y - 2 } { - \frac { 1 } { 4 } } , x = 1
D) z11=y214,x=1z - 11 = \frac { y - 2 } { \frac { 1 } { 4 } } , x = 1
E) z11=4(y2),x=1z - 11 = - 4 ( y - 2 ) , x = 1
Question
The symmetric equations of the tangent line to the curve of intersection of the surface z=x2+y2z = x ^ { 2 } + y ^ { 2 } and the plane y = 2 at the point (1, 2, 5) are

A) z5=2(x1),y=2z - 5 = 2 ( x - 1 ) , y = 2
B) z5=x12,y=2z - 5 = \frac { x - 1 } { - 2 } , y = 2
C) 2z5=x12,y=22 z - 5 = \frac { x - 1 } { 2 } , y = 2
D) 2z5=x12,y=22 z - 5 = \frac { x - 1 } { - 2 } , y = 2
E) 4z5=x12,y=24 z - 5 = \frac { x - 1 } { 2 } , y = 2
Question
Let z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Then Δz\Delta z , the change of z from (1, 3) to (1.1, 3.2), is

A)2.01
B)1.87
C)1.45
D)1.25
E)1.08
Question
Let z=xyx+yz = \frac { x y } { x + y } . Then Δz\Delta z , the change of z from (-1, 2) to (-0.9, 1.9), is

A)1.04
B)0.87
C)0.63
D)0.29
E)0.15
Question
Let z=3x2+xy2y3z = 3 x ^ { 2 } + x y - 2 y ^ { 3 } . Then the differential dzd ^ { z} is

A) (6x+y)dx(x+6y2)dy( 6 x + y ) d x - \left( x + 6 y ^ { 2 } \right) d y
B) (6x+y)dx+(x+6y2)dy( 6 x + y ) d x + \left( x + 6 y ^ { 2 } \right) d y
C) (6xy)dx+(x6y2)dy( 6 x - y ) d x + \left( x - 6 y ^ { 2 } \right) d y
D) (6x+y)dx(x6y2)dy( 6 x + y ) d x - \left( x - 6 y ^ { 2 } \right) d y
E) (6x+y)dx+(x6y2)dy( 6 x + y ) d x + \left( x - 6 y ^ { 2 } \right) d y
Question
Let z=xcosy+ysinxz = x \cos y + y \sin x . Then the differential dzd ^ { z} is

A) (cosy+ycosx)dx+(xsinysinx)dy( \cos y + y \cos x ) d x + ( - x \sin y - \sin x ) d y
B) (cosy+ycosx)dx+(xsiny+sinx)dy( \cos y + y \cos x ) d x + ( - x \sin y + \sin x ) d y
C) (cosyycosx)dx+(xsiny+sinx)dy( \cos y - y \cos x ) d x + ( x \sin y + \sin x ) d y
D) (cosyycosx)dx(xsiny+sinx)dy( \cos y - y \cos x ) d x - ( - x \sin y + \sin x ) d y
E) (cosyycosx)dx+(xsiny+sinx)dy( \cos y - y \cos x ) d x + ( - x \sin y + \sin x ) d y
Question
Let z=xyz = x ^ { y } . Then the differential dzd ^ { z } is

A) (yxy1)dx+(yxlnx)dy\left( y x ^ { y - 1 } \right) d x + \left( y ^ { x } \ln x \right) d y
B) (xyx1)dxdx(xylnx)dy\left( x y ^ { x - 1 } \right) d x d x - \left( x ^ { y } \ln x \right) d y
C) (xyx1)dx+(xylnx)dy\left( x y ^ { x - 1 } \right) d x + \left( x ^ { y } \ln x \right) d y
D) (yxy1)dx+(xylnx)dy\left( y x ^ { y - 1 } \right) d x + \left( x ^ { y } \ln x \right) d y
E) (yxy1)dx(xylnx)dy\left( y x ^ { y - 1 } \right) d x - \left( x ^ { y } \ln x \right) d y
Question
Let z=ln(x2+y2)z = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then the differential dzd ^ { z } is

A) xdx+ydyx2+y2\frac { x d x + y d y } { x ^ { 2 } + y ^ { 2 } }
B) xdxydyx2+y2\frac { x d x - y d y } { x ^ { 2 } + y ^ { 2 } }
C) xdx+ydyx2+y2- \frac { x d x + y d y } { x ^ { 2 } + y ^ { 2 } }
D) xdxydyx2+y2- \frac { x d x - y d y } { x ^ { 2 } + y ^ { 2 } }
E) ydy+xdxx2+y2\frac { y d y + x d x } { x ^ { 2 } + y ^ { 2 } }
Question
Let z=ln(xy)z = \ln \left( \frac { x } { y } \right) . Then the differential dzd ^ { z } is

A) dxx+dyy- \frac { d x } { x } + \frac { d y } { y }
B) dxxdyy- \frac { d x } { x } - \frac { d y } { y }
C) dxxdyy\frac { d x } { x } - \frac { d y } { y }
D) dxx+dyy\frac { d x } { x } + \frac { d y } { y }
E) dxydyx\frac { d x } { y } - \frac { d y } { x }
Question
Let z=ex2+y2z = e ^ { x ^ { 2 } + y ^ { 2 } } . Then the differential dzd ^ { z } is

A) ex2+y2(xdx+ydy)e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x + y d y )
B) 2ex2+y2(xdx+ydy)- 2 e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x + y d y )
C) 2ex2+y2(xdx+ydy)2 e ^ { x ^ { 2 } + y ^ { 2 } } ( - x d x + y d y )
D) 2ex2+y2(xdxydy)2 e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x - y d y )
E) 2ex2+y2(xdx+ydy)2 e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x + y d y )
Question
Let z=e5xyz = e ^ { 5 x y } . Then the differential dzd ^ { z } is

A) 5e5xy(ydxxdy)5 e ^ { 5 x y } ( y d x - x d y )
B) 5e5xy(ydx+xdy)5 e ^ { 5 x y } ( y d x + x d y )
C) 5e5xy(ydx+xdy)- 5 e ^ { 5 x y } ( y d x + x d y )
D) 5e5xy(ydx+xdy)5 e ^ { 5 x y } ( - y d x + x d y )
E) e5xy(ydx+xdy)e ^ { 5 x y } ( y d x + x d y )
Question
Let z=sin(xy)z = \sin ( x y ) . Then the differential dzd ^ { z } is

A) 2cos(xy)[ydx+xdy]2 \cos ( x y ) [ y d x + x d y ]
B) cos(xy)[ydx+xdy]\cos ( x y ) [ - y d x + x d y ]
C) cos(xy)[ydx+xdy]\cos ( x y ) [ y d x + x d y ]
D) cos(xy)[ydxxdy]\cos ( x y ) [ y d x - x d y ]
E) cos(xy)[ydx+xdy]- \cos ( x y ) [ y d x + x d y ]
Question
Let w=eyz+exz+exyw = e ^ { y z } + e ^ { x z } + e ^ { x y } . Then the differential dwd ^ { w } is

A) (zexz+yexy)dx(zeyz+xexz)dy(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x - \left( z e ^ { y z } + x e ^ { x z } \right) d y - \left( x e ^ { x z } + y e ^ { y z } \right) d z
B) (zexz+yexy)dx+(zeyz+xexz)dy+(xexz+yeyz)dz- \left( z e ^ { x z } + y e ^ { x y } \right) d x + \left( z e ^ { y z } + x e ^ { x z } \right) d y + \left( x e ^ { x z } + y e ^ { y z } \right) d z
C) (zexz+yexy)dx(zeyz+xexz)dy+(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x - \left( z e ^ { y z } + x e ^ { x z } \right) d y + \left( x e ^ { x z } + y e ^ { y z } \right) d z
D) (zexz+yexy)dx+(zeyz+xexz)dy(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x + \left( z e ^ {y z } + x e ^ { x z } \right) d y - \left( x e ^ { x z } + y e ^ { yz } \right) d z
E) (zexz+yexy)dx+(zeyz+xexy)dy+(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x + \left( z e ^ { y z } + x e ^ { x y } \right) d y + \left( x e ^ { x z } + y e ^ { y z } \right) d z
Question
Let w=exyzw = e ^ { x y z } . Then the differential dwd ^ { w } is

A) exyz(yzdxxzdy+xydz)e ^ { x y z } ( y z d x - x z d y + x y d z )
B) exyz(yzdx+xzdy+xydz)e ^ { x y z } ( y z d x + x z d y + x y d z )
C) exyz(yzdx+xzdyxydz)e ^ { x y z } ( y z d x + x z d y - x y d z )
D) exyz(yzdxxzdyxydz)e ^ { x y z } ( y z d x - x z d y - x y d z )
E) exyz(yzdx+xzdy+xydz)e ^ { x y z } ( - y z d x + x z d y + x y d z )
Question
Let w=yz2+x2z+xy2w = y z ^ { 2 } + x ^ { 2 } z + x y ^ { 2 } . Then the differential dwd ^ { w } is

A) (2xz+y2)dx+(2xy+z2)dy+(2yz+x2)dz- \left( 2 x z + y ^ { 2 } \right) d x + \left( 2 x y + z ^ { 2 } \right) d y + \left( 2 y z + x ^ { 2 } \right) d z
B) (2xz+y2)dx(2xy+z2)dy(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x - \left( 2 x y + z ^ { 2 } \right) d y - \left( 2 y z + x ^ { 2 } \right) d z
C) (2xz+y2)dx+(2xy+z2)dy+(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x + \left( 2 x y + z ^ { 2 } \right) d y + \left( 2 y z + x ^ { 2 } \right) d z
D) (2xz+y2)dx(2xy+z2)dy+(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x - \left( 2 x y + z ^ { 2 } \right) d y + \left( 2 y z + x ^ { 2 } \right) d z
E) (2xz+y2)dx+(2xy+z2)dy(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x + \left( 2 x y + z ^ { 2 } \right) d y - \left( 2 y z + x ^ { 2 } \right) d z
Question
Let w=ex2+y2+z2w = e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } . Then the differential dwd ^ { w } is

A) 2ex2+y2+z2(xdx+ydy+zdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x + y d y + z d z )
B) 2ex2+y2+z2(xdxydy+zdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x - y d y + z d z )
C) 2ex2+y2+z2(xdx+ydyzdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x + y d y - z d z )
D) 2ex2+y2+z2(xdxydyzdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x - y d y - z d z )
E) 2ex2+y2+z2(xdx+ydy+zdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( - x d x + y d y + z d z )
Question
Let w=cos(xyz)w = \cos ( x y z ) . Then the differential dwd ^ { w } is

A) sin(xyz)[yzdx+xzdyxydz]\sin ( x y z ) [ y z d x + x z d y - x y d z ]
B) sin(xyz)[yzdx+xzdyxydz]- \sin ( x y z ) [ y z d x + x z d y - x y d z ]
C) sin(xyz)[yzdx+xzdy+xydz]- \sin ( x y z ) [ y z d x + x z d y + x y d z ]
D) sin(xyz)[yzdx+xzdy+xydz]- \sin ( x y z ) [ y z d x + x z d y + x y d z ] .
E) sin(xyz)[yzdx+xzdy+xydz]\sin ( x y z ) [ y z d x + x z d y + x y d z ]
Question
Let w=tan(xyz)w = \tan ( x y z ) . Then the differential dwd ^ { w } is

A) sec2(xyz)[yzdxxzdy+xydz]\sec ^ { 2 } ( x y z ) [ y z d x - x z d y + x y d z ]
B) sec2(xyz)[yzdx+xzdy+xydz]\sec ^ { 2 } ( x y z ) [ y z d x + x z d y + x y d z ]
C) sec2(xyz)[yzdx+xzdyxydz]\sec ^ { 2 } ( x y z ) [ y z d x + x z d y - x y d z ]
D) sec2(xyz)[yzdxxzdyxydz]\sec ^ { 2 } ( x y z ) [ y z d x - x z d y - x y d z ]
E) sec2(xyz)[yzdx+xzdy+xydz]\sec ^ { 2 } ( x y z ) [ - y z d x + x z d y + x y d z ]
Question
Let z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Then the change of z from (1, 3) to (1.1, 3.2) approximated by dzd ^ { z } is

A)0.52
B)0.74
C)1.4
D)1.27
E)1.77
Question
Let z=2x2+xyy2z = 2 x ^ { 2 } + x y - y ^ { 2 } . Then the change of z from (2, -1) to (2.1, -1.1) approximated by dzd z is

A)1.32
B)0.94
C)0.77
D)0.58
E)0.3
Question
Consider a rectangular solid with a square end of side length 10 inches and a length of 20 inches. If the measurements are accurate to within 0.1 inch, then the estimated error of the volume in cubic inches using differential is

A)50
B)72.5
C)88.1
D)93.7
E)102.3
Question
Consider a right circular cone with radius 4 inches and height 8 inches. If the measurements are accurate to within 0.1 inch, then the estimated error of the volume in cubic inches using differential is

A) 4π11\frac { 4 \pi } { 11 }
B) 4π9\frac { 4 \pi } { 9 }
C) 4π7\frac { 4 \pi } { 7 }
D) 4π5\frac { 4 \pi } { 5 }
E) 8π3\frac { 8 \pi } { 3 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/100
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Functions of Several Variables
1
The domain of the function f(x,y)=2xyx2+y2f ( x , y ) = \frac { 2 x y } { x ^ { 2 } + y ^ { 2 } } is

A) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
D) {(x,y):x0}\{ ( x , y ) : x \neq 0 \}
E) {(x,y):y0}\{ ( x , y ) : y \neq 0 \}
{(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
2
The domain of the function f(x,y)=x2x+3yf ( x , y ) = \frac { x } { \sqrt { 2 x + 3 y } } is

A) {(x,y):x0}\{ ( x , y ) : x \neq 0 \}
B) {(x,y):3x+2y0}\{ ( x , y ) : 3 x + 2 y \neq 0 \}
C) {(x,y):2x+3y0}\{ ( x , y ) : - 2 x + 3 y \neq 0 \}
D) {(x,y):2x3y0}\{ ( x , y ) : 2 x - 3 y \neq 0 \}
E) {(x,y):2x+3y>0}\{ ( x , y ) : 2 x + 3 y > 0 \}
{(x,y):2x+3y>0}\{ ( x , y ) : 2 x + 3 y > 0 \}
3
The domain of the function f(x,y)=x2y2x22xy+y2f ( x , y ) = \frac { x ^ { 2 } - y ^ { 2 } } { x ^ { 2 } - 2 x y + y ^ { 2 } } is

A) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):2xy}\{ ( x , y ) : 2 x \neq y \}
D) {(x,y):x2y}\{ ( x , y ) : x \neq 2 y \}
E) {(x,y):x2y2}\left\{ ( x , y ) : x ^ { 2 } \neq y ^ { 2 } \right\}
{(x,y):xy}\{ ( x , y ) : x \neq y \}
4
The domain of the function f(x,y)=2x+y1x2y2f ( x , y ) = \frac { 2 x + y } { \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } is

A) {(x,y):x2+y21}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \neq 1 \right\}
B) {(x,y):x2+y2>1}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } > 1 \right\}
C) {(x,y):x2+y21}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \geq 1 \right\}
D) {(x,y):x2+y2<1}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } < 1 \right\}
E) {(x,y):x2+y21}\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 1 \right\}
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
5
The domain of the function f(x,y)=ln(2x2+y2)f ( x , y ) = \ln \left( 2 x ^ { 2 } + y ^ { 2 } \right) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):y2x}\{ ( x , y ) : y \neq \sqrt { 2 } x \}
D) {(x,y):2x2+y20}\left\{ ( x , y ) : 2 x ^ { 2 } + y ^ { 2 } \leq 0 \right\}
E) {(x,y):2x2+y20}\left\{ ( x , y ) : 2 x ^ { 2 } + y ^ { 2 } \geq 0 \right\}
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
6
The domain of the function f(x,y)=sin(x+y)f ( x , y ) = \sin ( x + y ) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
D) {(x,y):yx}\{ ( x , y ) : y \geq x \}
E) {(x,y):<x<,<y<}\{ ( x , y ) : - \infty < x < \infty , - \infty < y < \infty \}
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
7
The domain of the function f(x,y)=cos(x+y)f ( x , y ) = \cos ( x + y ) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):xy}\{ ( x , y ) : x \neq y \}
C) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
D) {(x,y):yx}\{ ( x , y ) : y \geq x \}
E) {(x,y):<x<,<y<}\{ ( x , y ) : - \infty < x < \infty , - \infty < y < \infty \}
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
8
The domain of the function f(x,y)=ln(2x2y2)f ( x , y ) = \ln \left( 2 x ^ { 2 } - y ^ { 2 } \right) is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):2xy}\{ ( x , y ) : 2 x \neq y \}
C) {(x,y):y2<2x2}\left\{ ( x , y ) : y ^ { 2 } < 2 x ^ { 2 } \right\}
D) {(x,y):y2x}\{ ( x , y ) : y \neq \sqrt { 2 } x \}
E) {(x,y):<x<,<y<}\{ ( x , y ) : - \infty < x < \infty , - \infty < y < \infty \}
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
9
Let f(x,y)=x+2yf ( x , y ) = x + 2 y . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δx+2y\Delta x + 2 y
B) Δx\Delta x
C) Δx+2Δy\Delta x + 2 \Delta y
D) Δx2y\Delta x - 2 y
E) Δx2Δy\Delta x - 2 \Delta y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
10
Let f(x,y)=xy+3f ( x , y ) = x y + 3 . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δx+3Δy\Delta x + 3 \Delta y
B) yΔxy - \Delta x
C) y+Δxy + \Delta x
D) yΔxy \Delta x
E) ΔxΔy\Delta x \Delta y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
11
Let f(x,y)=xyf ( x , y ) = \frac { x } { y } . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δyx\frac { \Delta y } { x }
B) Δyx- \frac { \Delta y } { x }
C) ΔxΔy\frac { \Delta x } { \Delta y }
D) Δxy- \frac { \Delta x } { y }
E) Δxy\frac { \Delta x } { y }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
12
Let f(x,y)=x22xyf ( x , y ) = x ^ { 2 } - 2 x y . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) 2(xy)Δx+(Δx)22 ( x - y ) \Delta x + ( \Delta x ) ^ { 2 }
B) 2(xy)(Δx)22 ( x - y ) ( \Delta x ) ^ { 2 }
C) 2(xy)(Δx)2+Δx2 ( x - y ) ( \Delta x ) ^ { 2 } + \Delta x
D) 2(xy)(Δx)2+(Δx)22 ( x - y ) ( \Delta x ) ^ { 2 } + ( \Delta x ) ^ { 2 }
E) 2(xy)Δx+y(Δx)22 ( x - y ) \Delta x + y ( \Delta x ) ^ { 2 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
13
Let f(x,y)=x+2yf ( x , y ) = x + 2 y . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) Δx2Δy\Delta x - 2 \Delta y
B) Δy\Delta y
C) 2Δy2 \Delta y
D) x+2Δyx + 2 \Delta y
E) Δx+2Δy\Delta x + 2 \Delta y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
14
Let f(x,y)=xy+3f ( x , y ) = x y + 3 . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) ΔxΔy\Delta x \Delta y
B) x3Δyx - 3 \Delta y
C) x+3Δyx + 3 \Delta y
D) xΔyx \Delta y
E) x(Δy)2x ( \Delta y ) ^ { 2 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
15
Let f(x,y)=xyf ( x , y ) = \frac { x } { y } . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) xΔyy(y+Δy)- \frac { x \Delta y } { y ( y + \Delta y ) }
B) xΔyy(y+Δy)\frac { x \Delta y } { y ( y + \Delta y ) }
C) 2xΔyy(y+Δy)\frac { 2 x \Delta y } { y ( y + \Delta y ) }
D) 2xΔyy(y+Δy)- \frac { 2 x \Delta y } { y ( y + \Delta y ) }
E) x+Δyy(y+Δy)\frac { x + \Delta y } { y ( y + \Delta y ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
16
Let f(x,y)=x22xyf ( x , y ) = x ^ { 2 } - 2 x y . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) ΔxΔy- \Delta x \Delta y
B) 2ΔxΔy- 2 \Delta x \Delta y
C) 2xΔy- 2 x \Delta y
D) xΔyx \Delta y
E) 2xΔy2 x \Delta y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
17
Let f(x,y)=x1y+2f ( x , y ) = \frac { x - 1 } { y + 2 } . Then f(x,y+Δy)f(x,y)f ( x , y + \Delta y ) - f ( x , y ) is

A) (1x)Δy(y+2)(y+2+Δy)\frac { ( 1 - x ) \Delta y } { ( y + 2 ) ( y + 2 + \Delta y ) }
B) (1+x)Δy(y+2)(y+2+Δy)\frac { ( 1 + x ) \Delta y } { ( y + 2 ) ( y + 2 + \Delta y ) }
C) (1x)Δy(y2)(y+2+Δy)\frac { ( 1 - x ) \Delta y } { ( y - 2 ) ( y + 2 + \Delta y ) }
D) (1+x)Δy(y2)(y+2+Δy)\frac { ( 1 + x ) \Delta y } { ( y - 2 ) ( y + 2 + \Delta y ) }
E) (1x)Δy(y+2)(y+2Δy)\frac { ( 1 - x ) \Delta y } { ( y + 2 ) ( y + 2 - \Delta y ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
18
Let f(x,y)=x1y+2f ( x , y ) = \frac { x - 1 } { y + 2 } . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

A) Δxy+1\frac { \Delta x } { y + 1 }
B) 2Δxy+2\frac { 2 \Delta x } { y + 2 }
C) Δxy+2- \frac { \Delta x } { y + 2 }
D) Δxy2\frac { \Delta x } { y - 2 }
E) Δxy+2\frac { \Delta x } { y + 2 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
19
Let f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } . Then the level curve for z = 3 is

A)A circle
B)An ellipse
C)A hyperbola
D)A cardioid
E)A limaçon
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
20
Let f(x,y)=cosxf ( x , y ) = \cos x . Then the level curve for z = 0 is

A)A circle
B)An ellipse
C)A hyperbola
D)A horizontal line
E)A line parallel to the z-axis
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
21
The limit lim(x,y)(0,0)xyx2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } is

A)Does not exist
B)1
C) 12\frac { 1 } { 2 }
D)0
E) 1- 1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
22
The limit lim(x,y)(0,0)x+y1x+y1\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x + y - 1 } { \sqrt { x + y } - 1 } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
23
The limit lim(x,y)(0,0)x2y2x4+y4\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } y ^ { 2 } } { x ^ { 4 } + y ^ { 4 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
24
The limit lim(x,y)(0,0)x2y4x4+y4\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } y ^ { 4 } } { x ^ { 4 } + y ^ { 4 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
25
The limit lim(x,y)(0,0)x2+yx2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } + y } { x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
26
The limit lim(x,y)(0,0)x2y2x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } - y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C) 12\frac { 1 } { 2 }
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
27
The limit lim(x,y)(2,2)xy4xy2\lim _ { ( x , y ) \rightarrow ( 2,2 ) } \frac { x y - 4 } { \sqrt { x y } - 2 } is

A)Does not exist
B)2
C)4
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
28
The limit lim(x,y)(0,0)y4+3x2y2+2xy3(x2+y2)2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { y ^ { 4 } + 3 x ^ { 2 } y ^ { 2 } + 2 x y ^ { 3 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
29
The limit lim(x,y)(0,0)4xy2x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { 4 x y } { 2 x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
30
The limit lim(x,y)(0,0)x2+y4x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } + y ^ { 4 } } { x ^ { 2 } + y ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
31
The limit lim(x,y)(0,0)sin(xy)xy\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { \sin ( x - y ) } { x - y } is

A)Does not exist
B)2
C)4
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
32
The limit lim(x,y,z)(0,1,0)x2y2+y2z2x2+z2\lim _ { ( x , y , z ) \rightarrow ( 0,1,0 ) } \frac { x ^ { 2 } y ^ { 2 } + y ^ { 2 } z ^ { 2 } } { x ^ { 2 } + z ^ { 2 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
33
The limit lim(x,y,z)(2,1,1)xyzx2(y+z)2\lim _ { ( x , y , z ) \rightarrow ( 2,1,1 ) } \frac { x - y - z } { x ^ { 2 } - ( y + z ) ^ { 2 } }

A)Does not exist
B)2
C) 14\frac { 1 } { 4 }
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
34
The limit lim(x,y)(0.0)x3yx4+y4\lim _ { ( x , y ) \rightarrow ( 0.0 ) } \frac { x ^ { 3 } y } { x ^ { 4 } + y ^ { 4 } } is

A)Does not exist
B)2
C)4
D)0
E)1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
35
Let f(x,y)={x2+yx2+y2(x,y)(0,0)0(x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { c c } \frac { x ^ { 2 } + y } { x ^ { 2 } + y ^ { 2 } } & ( x , y ) \neq ( 0,0 ) \\0 & ( x , y ) = ( 0,0 )\end{array} \right. . Then f is

A)Continuous at (0,0)
B)Discontinuous at (0,0)because f is undefined at (0,0)
C)Discontinuous at (0,0)because the limit of f at (0,0) does not exist
D)Discontinuous at (0,0)because the limit of f at (0,0) is different from the function values at (0,0)
E)Discontinuous at (0,0) for a reason that is different from the ones above
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
36
Let f(x,y)={xy4xy2(x,y)(2,2)0(x,y)=(2,2)f ( x , y ) = \left\{ \begin{array} { c c } \frac { x y - 4 } { \sqrt { x y } - 2 } & ( x , y ) \neq ( 2,2 ) \\0 & ( x , y ) = ( 2,2 )\end{array} \right. . Then f is

A)Continuous at (2,2)
B)Discontinuous at (2,2)because f is undefined at (2,2)
C)Discontinuous at (2,2)because the limit of f at (2,2) does not exist
D)Discontinuous at (2,2)because the limit of f at (2,2) is different from the function value at (2,2)
E)Discontinuous at (2,2) for a reason that is different from the ones above
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
37
Let f(x,y)={sin(xy)xyxy1x=yf ( x , y ) = \left\{ \begin{array} { c c } \frac { \sin ( x - y ) } { x - y } & x \neq y \\1 & x = y\end{array} \right. . Then f is

A)Continuous at (2,2)
B)Discontinuous at (2,2) because f is undefined at (2,2)
C)Discontinuous at (2,2) because the limit of f at (2,2) does not exist
D)Discontinuous at (2,2) because the limit of f at (2,2) is different from the function values at (2,2)
E)Discontinuous at (2,2) for a reason that is different from the ones above
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
38
Let f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { c c } \frac { x y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } & ( x , y ) \neq ( 0,0 ) \\0 & ( x , y ) = ( 0,0 )\end{array} \right. . Then f is

A)Continuous at (0,0)
B)Discontinuous at (0,0) because f is undefined at (0,0)
C)Discontinuous at (0,0) because the limit of f at (0,0) does not exist
D)Discontinuous at (0,0) because the limit of f at (0,0) is different from the function values at (0,0)
E)Discontinuous at (0,0) for a reason that is different from the ones above
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
39
Let f(x,y,z)={1x2+z2(x,z)(0,0)0(x,z)=(0,0)f ( x , y , z ) = \left\{ \begin{array} { c c } \frac { 1 } { x ^ { 2 } + z ^ { 2 } } & ( x , z ) \neq ( 0,0 ) \\0 & ( x , z ) = ( 0,0 )\end{array} \right. . Then f is

A)Continuous at (0,1,0)
B)Discontinuous at (0,1,0) because f is undefined at (0,1,0)
C)Discontinuous at (0,1,0) because the limit of f at (0,1,0) does not exist
D)Discontinuous at (0,1,0) because the limit of f at (0,1,0) is different from the function values at (0,1,0)
E)Discontinuous at (0,1,0) for a reason that is different from the ones above
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
40
Let f(x,y,z)={xyzx2(y+z)2x2(y+z)214x2=(y+z)2f ( x , y , z ) = \left\{ \begin{array} { c l } \frac { x - y - z } { x ^ { 2 } - ( y + z ) ^ { 2 } } & x ^ { 2 } \neq ( y + z ) ^ { 2 } \\\frac { 1 } { 4 } & x ^ { 2 } = ( y + z ) ^ { 2 }\end{array} \right. . Then f is

A)Continuous at (2,1,1)
B)Discontinuous at (2,1,1) because f is undefined at(2,1,1)
C)Discontinuous at (2,1,1) because the limit of f at (2,1,1) does not exist
D)Discontinuous at (2,1,1) because the limit of f at (2,1,1) is different from the function values at (2,1,1)
E)Discontinuous at (2,1,1) for a reason that is different from the ones above
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
41
Let f(x,y)=xln(y)4xy+xf ( x , y ) = x \ln ( y ) - 4 x y + x . Then fy(x,y)f _ { y } ( x , y ) is

A) x(1+4y)y\frac { x ( 1 + 4 y ) } { y }
B) x(14y)y\frac { x ( 1 - 4 y ) } { y }
C) x(14y)y- \frac { x ( 1 - 4 y ) } { y }
D) y(14y)x\frac { y ( 1 - 4 y ) } { x }
E) y(1+4y)x\frac { y ( 1 + 4 y ) } { x }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
42
Let f(x,y)=x34log7(x2)+sin1(xy)f ( x , y ) = x ^ { 3 } - 4 \log _ { 7 } \left( x ^ { 2 } \right) + \sin ^ { - 1 } ( x y ) . Then fx(x,y)f _ { x } ( x , y ) is

A) 3x28xln7+y1x2y2- 3 x ^ { 2 } - \frac { 8 } { x \ln 7 } + \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
B) 3x2+8xln7y1x2y23 x ^ { 2 } + \frac { 8 } { x \ln 7 } - \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
C) 3x28xln7y1x2y23 x ^ { 2 } - \frac { 8 } { x \ln 7 } - \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
D) 3x28xln7+y1x2y23 x ^ { 2 } - \frac { 8 } { x \ln 7 } + \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
E) 3x2+8xln7+y1x2y23 x ^ { 2 } + \frac { 8 } { x \ln 7 } + \frac { y } { \sqrt { 1 - x ^ { 2 } y ^ { 2 } } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
43
Let f(x,y)=x2sin2(xy)f ( x , y ) = \frac { x ^ { 2 } } { \sin ^ { 2 } ( x y ) } . Then fy(x,y)f _ { y } ( x , y ) is

A) 2x3cos(xy)sin2(xy)- \frac { 2 x ^ { 3 } \cos ( x y ) } { \sin ^ { 2 } ( x y ) }
B) 2x3cos(xy)sin2(xy)\frac { 2 x ^ { 3 } \cos ( x y ) } { \sin ^ { 2 } ( x y ) }
C) 2x3sin(xy)cos2(xy)- \frac { 2 x ^ { 3 } \sin ( x y ) } { \cos ^ { 2 } ( x y ) }
D) 2x3sin(xy)cos2(xy)\frac { 2 x ^ { 3 } \sin ( x y ) } { \cos ^ { 2 } ( x y ) }
E) 2y3cos(xy)sin2(xy)- \frac { 2 y ^ { 3 } \cos ( x y ) } { \sin ^ { 2 } ( x y ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
44
Let f(x,y)=5x2ysin(xy)f ( x , y ) = 5 ^ { x ^ { 2 } } y \sin ( x - y ) . Then fy(x,y)f _ { y } ( x , y ) is

A) 5x2[sin(xy)ycos(xy)]- 5 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ]
B) xx2[sin(xy)+ycos(xy)]x ^ { x ^ { 2 } } [ \sin ( x - y ) + y \cos ( x - y ) ]
C) 5x2[sin(xy)ycos(xy)]2xln55 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ] 2 x \ln 5
D) 5x2[sin(xy)ycos(xy)]ln55 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ] \ln 5
E) 5x2[sin(xy)ycos(xy)]5 ^ { x ^ { 2 } } [ \sin ( x - y ) - y \cos ( x - y ) ]
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
45
Let f(x,y)=exy2f ( x , y ) = e ^ { x y ^ { 2 } } . Then fx(x,y)f _ { x } ( x , y ) is

A) xy2exy2x y ^ { 2 } e ^ { x y ^ { 2 } }
B) 2xyexy2- 2 x y e ^ { x y ^ { 2 } }
C) 2xyexy22 x y e ^ { x y ^ { 2 } }
D) xy2exy2- x y ^ { 2 } e ^ { x y ^ { 2 } }
E) 2xy2exy22 x y ^ { 2 } e ^ { x y ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
46
Let f(x,y,z)=xysinzyzsinxf ( x , y , z ) = x y \sin z - y z \sin x . Then fz(x,y,z)f _ { z } ( x , y , z ) is

A) xycosz+ysinxx y \cos z + y \sin x
B) xycoszysinxx y \cos z - y \sin x
C) xycoszysinx- x y \cos z - y \sin x
D) xycosz+ysinx- x y \cos z + y \sin x
E) xysinzycosxx y \sin z - y \cos x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
47
Let f(x,y,z)=zxyf ( x , y , z ) = z ^ { x y } . Then fy(x,y,z)f _ { y } ( x , y , z ) is

A) xyzxyln(z)x y z ^ { x y } \ln ( z )
B) yzxyln(z)- y z ^ { x y } \ln ( z )
C) xyxyln(z)x y ^ { x y } \ln ( z )
D) xzxyln(z)- x z ^ { x y } \ln ( z )
E) xzxyln(z)x z ^ { x y } \ln ( z )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
48
Let f(x,y,z)=tan1(xyz)f ( x , y , z ) = \tan ^ { - 1 } \left( \frac { x y } { z } \right) . Then fx(x,y,z)f _ { x } ( x , y , z ) is

A) xyz2+x2y2- \frac { x y } { z ^ { 2 } + x ^ { 2 } y ^ { 2 } }
B) xyz2+x2y2\frac { x y } { z ^ { 2 } + x ^ { 2 } y ^ { 2 } }
C) xyx2+z2y2\frac { x y } { x ^ { 2 } + z ^ { 2 } y ^ { 2 } }
D) xyx2+z2y2- \frac { x y } { x ^ { 2 } + z ^ { 2 } y ^ { 2 } }
E) xyx2+x2z2- \frac { x y } { x ^ { 2 } + x ^ { 2 } z ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
49
Let f(x,y)=3x22y3f ( x , y ) = \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } . Then fxx(x,y)f _ { x x } ( x , y ) is

A) 6y3(3x22y3)3- \frac { 6 y ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
B) 6y3(3x22y3)3\frac { 6 y ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
C) 6x3(3x22y3)3- \frac { 6 x ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
D) 6x3(3x22y3)3\frac { 6 x ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
E) 6xy3(3x22y3)3- \frac { 6 x y ^ { 3 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
50
Let f(x,y)=3x22y3f ( x , y ) = \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } . Then fxy(x,y)f _ { x y } ( x , y ) is

A) 9xy2(3x22y3)3- \frac { 9 x y ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
B) 9xy2(3x22y3)3\frac { 9 x y ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
C) 9yx2(3x22y3)3- \frac { 9 y x ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
D) 9yx2(3x22y3)3\frac { 9 y x ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
E) 9x2y2(3x22y3)3\frac { 9 x ^ { 2 } y ^ { 2 } } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
51
Let f(x,y)=3x22y3f ( x , y ) = \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } . Then fwy(x,y)f _ { w y } ( x , y ) is

A) 3xy(6x2y3)(3x22y3)3- \frac { 3 x y \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
B) 3x(6x2y3)(3x22y3)3\frac { 3 x \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
C) 3x(6x2y3)(3x22y3)3- \frac { 3 x \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
D) 3y(6x2y3)(3x22y3)3\frac { 3 y \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
E) 3y(6x2y3)(3x22y3)3- \frac { 3 y \left( 6 x ^ { 2 } - y ^ { 3 } \right) } { \left( \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } \right) ^ { 3 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
52
Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fxx(x,y)f _ { x x } ( x , y ) is

A) xy2sin(xy+y2)- x y ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
B) y2sin(xy+y2)y ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
C) y2sin(xy+y2)- y ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
D) x2sin(xy+y2)- x ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
E) x2sin(xy+y2)x ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
53
Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fyx(x,y)f _ { y x } ( x , y ) is

A) cos(xy+y2)y(x2y)sin(xy+y2)\cos \left( x y + y ^ { 2 } \right) - y ( x - 2 y ) \sin \left( x y + y ^ { 2 } \right)
B) cos(xy+y2)+y(x+2y)sin(xy+y2)- \cos \left( x y + y ^ { 2 } \right) + y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
C) cos(xy+y2)y(x+2y)sin(xy+y2)- \cos \left( x y + y ^ { 2 } \right) - y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
D) cos(xy+y2)y(x+2y)sin(xy+y2)\cos \left( x y + y ^ { 2 } \right) - y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
E) cos(xy+y2)+y(x+2y)sin(xy+y2)\cos \left( x y + y ^ { 2 } \right) + y ( x + 2 y ) \sin \left( x y + y ^ { 2 } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
54
Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fyy(x,y)f _ {y y } ( x , y ) is

A) 2cos(xy+y2)(x2y)2sin(xy+y2)2 \cos \left( x y + y ^ { 2 } \right) - ( x - 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
B) 2cos(xy+y2)+(x+2y)2sin(xy+y2)- 2 \cos \left( x y + y ^ { 2 } \right) + ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
C) 2cos(xy+y2)(x+2y)2sin(xy+y2)- 2 \cos \left( x y + y ^ { 2 } \right) - ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
D) 2cos(xy+y2)+(x+2y)2sin(xy+y2)2 \cos \left( x y + y ^ { 2 } \right) + ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
E) 2cos(xy+y2)(x+2y)2sin(xy+y2)2 \cos \left( x y + y ^ { 2 } \right) - ( x + 2 y ) ^ { 2 } \sin \left( x y + y ^ { 2 } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
55
Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then fxx(x,y)f _ { x x } ( x , y ) is

A) y2x2(x2+y2)2- \frac { y ^ { 2 } - x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
B) y2+x2(x2+y2)2\frac { y ^ { 2 } + x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
C) y2x2(x2+y2)2\frac { y ^ { 2 } - x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
D) y2+x2(x2+y2)2- \frac { y ^ { 2 } + x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
E) y22x2(x2+y2)2\frac { y ^ { 2 } - 2 x ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
56
Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then fxy(x,y)f _ { x y } ( x , y ) is

A) 2xy(x2+y2)2- \frac { 2 x y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
B) 2xy(x2+y2)2\frac { 2 x y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
C) x2y(x2+y2)2- \frac { x ^ { 2 } y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
D) x2y(x2+y2)2\frac { x ^ { 2 } y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
E) y2x(x2+y2)2- \frac { y ^ { 2 } x } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
57
Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then fyy(x,y)f _ { y y } ( x , y ) is

A) x22y2(x2+y2)2\frac { x ^ { 2 } - 2 y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
B) 2x2y2(x2+y2)2\frac { 2 x ^ { 2 } - y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
C) x2+y2(x2+y2)2\frac { x ^ { 2 } + y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
D) x2y2(x2+y2)2\frac { x ^ { 2 } - y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
E) x2y2(x2+y2)2- \frac { x ^ { 2 } - y ^ { 2 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
58
The symmetric equations of the tangent line to the curve of intersection of the surface z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } and the plane y = 2 at the point (1, 2, 11) are

A) z11=2(x1),y=2z - 11 = - 2 ( x - 1 ) , y = 2
B) z11=x112,y=2z - 11 = \frac { x - 1 } { \frac { 1 } { 2 } } , y = 2
C) 2z11=x112,y=22 z - 11 = \frac { x - 1 } { - \frac { 1 } { 2 } } , y = 2
D) 2z11=x112,y=22 z - 11 = \frac { x - 1 } { \frac { 1 } { 2 } } , y = 2
E) 4z11=x112,y=24 z - 11 = \frac { x - 1 } { - \frac { 1 } { 2 } } , y = 2
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
59
The symmetric equations of the tangent line to the curve of intersection of the surface z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } and the plane x = 1 at the point (1, 2, 11) are

A) 2z11=y214,x=12 z - 11 = \frac { y - 2 } { - \frac { 1 } { 4 } } , x = 1
B) 4z11=y214,x=14 z - 11 = \frac { y - 2 } { \frac { 1 } { 4 } } , x = 1
C) 4z11=y214,x=14 z - 11 = \frac { y - 2 } { - \frac { 1 } { 4 } } , x = 1
D) z11=y214,x=1z - 11 = \frac { y - 2 } { \frac { 1 } { 4 } } , x = 1
E) z11=4(y2),x=1z - 11 = - 4 ( y - 2 ) , x = 1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
60
The symmetric equations of the tangent line to the curve of intersection of the surface z=x2+y2z = x ^ { 2 } + y ^ { 2 } and the plane y = 2 at the point (1, 2, 5) are

A) z5=2(x1),y=2z - 5 = 2 ( x - 1 ) , y = 2
B) z5=x12,y=2z - 5 = \frac { x - 1 } { - 2 } , y = 2
C) 2z5=x12,y=22 z - 5 = \frac { x - 1 } { 2 } , y = 2
D) 2z5=x12,y=22 z - 5 = \frac { x - 1 } { - 2 } , y = 2
E) 4z5=x12,y=24 z - 5 = \frac { x - 1 } { 2 } , y = 2
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
61
Let z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Then Δz\Delta z , the change of z from (1, 3) to (1.1, 3.2), is

A)2.01
B)1.87
C)1.45
D)1.25
E)1.08
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
62
Let z=xyx+yz = \frac { x y } { x + y } . Then Δz\Delta z , the change of z from (-1, 2) to (-0.9, 1.9), is

A)1.04
B)0.87
C)0.63
D)0.29
E)0.15
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
63
Let z=3x2+xy2y3z = 3 x ^ { 2 } + x y - 2 y ^ { 3 } . Then the differential dzd ^ { z} is

A) (6x+y)dx(x+6y2)dy( 6 x + y ) d x - \left( x + 6 y ^ { 2 } \right) d y
B) (6x+y)dx+(x+6y2)dy( 6 x + y ) d x + \left( x + 6 y ^ { 2 } \right) d y
C) (6xy)dx+(x6y2)dy( 6 x - y ) d x + \left( x - 6 y ^ { 2 } \right) d y
D) (6x+y)dx(x6y2)dy( 6 x + y ) d x - \left( x - 6 y ^ { 2 } \right) d y
E) (6x+y)dx+(x6y2)dy( 6 x + y ) d x + \left( x - 6 y ^ { 2 } \right) d y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
64
Let z=xcosy+ysinxz = x \cos y + y \sin x . Then the differential dzd ^ { z} is

A) (cosy+ycosx)dx+(xsinysinx)dy( \cos y + y \cos x ) d x + ( - x \sin y - \sin x ) d y
B) (cosy+ycosx)dx+(xsiny+sinx)dy( \cos y + y \cos x ) d x + ( - x \sin y + \sin x ) d y
C) (cosyycosx)dx+(xsiny+sinx)dy( \cos y - y \cos x ) d x + ( x \sin y + \sin x ) d y
D) (cosyycosx)dx(xsiny+sinx)dy( \cos y - y \cos x ) d x - ( - x \sin y + \sin x ) d y
E) (cosyycosx)dx+(xsiny+sinx)dy( \cos y - y \cos x ) d x + ( - x \sin y + \sin x ) d y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
65
Let z=xyz = x ^ { y } . Then the differential dzd ^ { z } is

A) (yxy1)dx+(yxlnx)dy\left( y x ^ { y - 1 } \right) d x + \left( y ^ { x } \ln x \right) d y
B) (xyx1)dxdx(xylnx)dy\left( x y ^ { x - 1 } \right) d x d x - \left( x ^ { y } \ln x \right) d y
C) (xyx1)dx+(xylnx)dy\left( x y ^ { x - 1 } \right) d x + \left( x ^ { y } \ln x \right) d y
D) (yxy1)dx+(xylnx)dy\left( y x ^ { y - 1 } \right) d x + \left( x ^ { y } \ln x \right) d y
E) (yxy1)dx(xylnx)dy\left( y x ^ { y - 1 } \right) d x - \left( x ^ { y } \ln x \right) d y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
66
Let z=ln(x2+y2)z = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then the differential dzd ^ { z } is

A) xdx+ydyx2+y2\frac { x d x + y d y } { x ^ { 2 } + y ^ { 2 } }
B) xdxydyx2+y2\frac { x d x - y d y } { x ^ { 2 } + y ^ { 2 } }
C) xdx+ydyx2+y2- \frac { x d x + y d y } { x ^ { 2 } + y ^ { 2 } }
D) xdxydyx2+y2- \frac { x d x - y d y } { x ^ { 2 } + y ^ { 2 } }
E) ydy+xdxx2+y2\frac { y d y + x d x } { x ^ { 2 } + y ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
67
Let z=ln(xy)z = \ln \left( \frac { x } { y } \right) . Then the differential dzd ^ { z } is

A) dxx+dyy- \frac { d x } { x } + \frac { d y } { y }
B) dxxdyy- \frac { d x } { x } - \frac { d y } { y }
C) dxxdyy\frac { d x } { x } - \frac { d y } { y }
D) dxx+dyy\frac { d x } { x } + \frac { d y } { y }
E) dxydyx\frac { d x } { y } - \frac { d y } { x }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
68
Let z=ex2+y2z = e ^ { x ^ { 2 } + y ^ { 2 } } . Then the differential dzd ^ { z } is

A) ex2+y2(xdx+ydy)e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x + y d y )
B) 2ex2+y2(xdx+ydy)- 2 e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x + y d y )
C) 2ex2+y2(xdx+ydy)2 e ^ { x ^ { 2 } + y ^ { 2 } } ( - x d x + y d y )
D) 2ex2+y2(xdxydy)2 e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x - y d y )
E) 2ex2+y2(xdx+ydy)2 e ^ { x ^ { 2 } + y ^ { 2 } } ( x d x + y d y )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
69
Let z=e5xyz = e ^ { 5 x y } . Then the differential dzd ^ { z } is

A) 5e5xy(ydxxdy)5 e ^ { 5 x y } ( y d x - x d y )
B) 5e5xy(ydx+xdy)5 e ^ { 5 x y } ( y d x + x d y )
C) 5e5xy(ydx+xdy)- 5 e ^ { 5 x y } ( y d x + x d y )
D) 5e5xy(ydx+xdy)5 e ^ { 5 x y } ( - y d x + x d y )
E) e5xy(ydx+xdy)e ^ { 5 x y } ( y d x + x d y )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
70
Let z=sin(xy)z = \sin ( x y ) . Then the differential dzd ^ { z } is

A) 2cos(xy)[ydx+xdy]2 \cos ( x y ) [ y d x + x d y ]
B) cos(xy)[ydx+xdy]\cos ( x y ) [ - y d x + x d y ]
C) cos(xy)[ydx+xdy]\cos ( x y ) [ y d x + x d y ]
D) cos(xy)[ydxxdy]\cos ( x y ) [ y d x - x d y ]
E) cos(xy)[ydx+xdy]- \cos ( x y ) [ y d x + x d y ]
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
71
Let w=eyz+exz+exyw = e ^ { y z } + e ^ { x z } + e ^ { x y } . Then the differential dwd ^ { w } is

A) (zexz+yexy)dx(zeyz+xexz)dy(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x - \left( z e ^ { y z } + x e ^ { x z } \right) d y - \left( x e ^ { x z } + y e ^ { y z } \right) d z
B) (zexz+yexy)dx+(zeyz+xexz)dy+(xexz+yeyz)dz- \left( z e ^ { x z } + y e ^ { x y } \right) d x + \left( z e ^ { y z } + x e ^ { x z } \right) d y + \left( x e ^ { x z } + y e ^ { y z } \right) d z
C) (zexz+yexy)dx(zeyz+xexz)dy+(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x - \left( z e ^ { y z } + x e ^ { x z } \right) d y + \left( x e ^ { x z } + y e ^ { y z } \right) d z
D) (zexz+yexy)dx+(zeyz+xexz)dy(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x + \left( z e ^ {y z } + x e ^ { x z } \right) d y - \left( x e ^ { x z } + y e ^ { yz } \right) d z
E) (zexz+yexy)dx+(zeyz+xexy)dy+(xexz+yeyz)dz\left( z e ^ { x z } + y e ^ { x y } \right) d x + \left( z e ^ { y z } + x e ^ { x y } \right) d y + \left( x e ^ { x z } + y e ^ { y z } \right) d z
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
72
Let w=exyzw = e ^ { x y z } . Then the differential dwd ^ { w } is

A) exyz(yzdxxzdy+xydz)e ^ { x y z } ( y z d x - x z d y + x y d z )
B) exyz(yzdx+xzdy+xydz)e ^ { x y z } ( y z d x + x z d y + x y d z )
C) exyz(yzdx+xzdyxydz)e ^ { x y z } ( y z d x + x z d y - x y d z )
D) exyz(yzdxxzdyxydz)e ^ { x y z } ( y z d x - x z d y - x y d z )
E) exyz(yzdx+xzdy+xydz)e ^ { x y z } ( - y z d x + x z d y + x y d z )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
73
Let w=yz2+x2z+xy2w = y z ^ { 2 } + x ^ { 2 } z + x y ^ { 2 } . Then the differential dwd ^ { w } is

A) (2xz+y2)dx+(2xy+z2)dy+(2yz+x2)dz- \left( 2 x z + y ^ { 2 } \right) d x + \left( 2 x y + z ^ { 2 } \right) d y + \left( 2 y z + x ^ { 2 } \right) d z
B) (2xz+y2)dx(2xy+z2)dy(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x - \left( 2 x y + z ^ { 2 } \right) d y - \left( 2 y z + x ^ { 2 } \right) d z
C) (2xz+y2)dx+(2xy+z2)dy+(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x + \left( 2 x y + z ^ { 2 } \right) d y + \left( 2 y z + x ^ { 2 } \right) d z
D) (2xz+y2)dx(2xy+z2)dy+(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x - \left( 2 x y + z ^ { 2 } \right) d y + \left( 2 y z + x ^ { 2 } \right) d z
E) (2xz+y2)dx+(2xy+z2)dy(2yz+x2)dz\left( 2 x z + y ^ { 2 } \right) d x + \left( 2 x y + z ^ { 2 } \right) d y - \left( 2 y z + x ^ { 2 } \right) d z
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
74
Let w=ex2+y2+z2w = e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } . Then the differential dwd ^ { w } is

A) 2ex2+y2+z2(xdx+ydy+zdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x + y d y + z d z )
B) 2ex2+y2+z2(xdxydy+zdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x - y d y + z d z )
C) 2ex2+y2+z2(xdx+ydyzdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x + y d y - z d z )
D) 2ex2+y2+z2(xdxydyzdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( x d x - y d y - z d z )
E) 2ex2+y2+z2(xdx+ydy+zdz)2 e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } ( - x d x + y d y + z d z )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
75
Let w=cos(xyz)w = \cos ( x y z ) . Then the differential dwd ^ { w } is

A) sin(xyz)[yzdx+xzdyxydz]\sin ( x y z ) [ y z d x + x z d y - x y d z ]
B) sin(xyz)[yzdx+xzdyxydz]- \sin ( x y z ) [ y z d x + x z d y - x y d z ]
C) sin(xyz)[yzdx+xzdy+xydz]- \sin ( x y z ) [ y z d x + x z d y + x y d z ]
D) sin(xyz)[yzdx+xzdy+xydz]- \sin ( x y z ) [ y z d x + x z d y + x y d z ] .
E) sin(xyz)[yzdx+xzdy+xydz]\sin ( x y z ) [ y z d x + x z d y + x y d z ]
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
76
Let w=tan(xyz)w = \tan ( x y z ) . Then the differential dwd ^ { w } is

A) sec2(xyz)[yzdxxzdy+xydz]\sec ^ { 2 } ( x y z ) [ y z d x - x z d y + x y d z ]
B) sec2(xyz)[yzdx+xzdy+xydz]\sec ^ { 2 } ( x y z ) [ y z d x + x z d y + x y d z ]
C) sec2(xyz)[yzdx+xzdyxydz]\sec ^ { 2 } ( x y z ) [ y z d x + x z d y - x y d z ]
D) sec2(xyz)[yzdxxzdyxydz]\sec ^ { 2 } ( x y z ) [ y z d x - x z d y - x y d z ]
E) sec2(xyz)[yzdx+xzdy+xydz]\sec ^ { 2 } ( x y z ) [ - y z d x + x z d y + x y d z ]
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
77
Let z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Then the change of z from (1, 3) to (1.1, 3.2) approximated by dzd ^ { z } is

A)0.52
B)0.74
C)1.4
D)1.27
E)1.77
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
78
Let z=2x2+xyy2z = 2 x ^ { 2 } + x y - y ^ { 2 } . Then the change of z from (2, -1) to (2.1, -1.1) approximated by dzd z is

A)1.32
B)0.94
C)0.77
D)0.58
E)0.3
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
79
Consider a rectangular solid with a square end of side length 10 inches and a length of 20 inches. If the measurements are accurate to within 0.1 inch, then the estimated error of the volume in cubic inches using differential is

A)50
B)72.5
C)88.1
D)93.7
E)102.3
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
80
Consider a right circular cone with radius 4 inches and height 8 inches. If the measurements are accurate to within 0.1 inch, then the estimated error of the volume in cubic inches using differential is

A) 4π11\frac { 4 \pi } { 11 }
B) 4π9\frac { 4 \pi } { 9 }
C) 4π7\frac { 4 \pi } { 7 }
D) 4π5\frac { 4 \pi } { 5 }
E) 8π3\frac { 8 \pi } { 3 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 100 flashcards in this deck.