Deck 6: Additional Topics in Integration

Full screen (f)
exit full mode
Question
Evaluate xex/3dx\int x e ^ { x / 3 } d x .

A) 13xex/3ex/3+C\frac { 1 } { 3 } x e ^ { x / 3 } - e ^ { x / 3 } + C
B) 13xex/319ex/3+C\frac { 1 } { 3 } x e ^ { x / 3 } - \frac { 1 } { 9 } e ^ { x / 3 } + C
C) 3xex/39ex/3+C3 x e ^ { x / 3 } - 9 e ^ { x / 3 } + C
D) 3xex/3+9ex/3+C3 x e ^ { x / 3 } + 9 e ^ { x / 3 } + C
Use Space or
up arrow
down arrow
to flip the card.
Question
Evaluate xex/8dx\int x e ^ { x / 8 } d x .

A) 8xex/864ex/8+C8 x e ^ { x / 8 } - 64 e ^ { x / 8 } + C
B) 8xex/8+64ex/8+C8 x e ^ { x / 8 } + 64 e ^ { x / 8 } + C
C) xex/88+ex/864+C\frac { x e ^ { x / 8 } } { 8 } + \frac { e ^ { x / 8 } } { 64 } + C
D) xex/88ex/864+C\frac { x e ^ { x / 8 } } { 8 } - \frac { e ^ { x / 8 } } { 64 } + C
Question
Use integration by parts to evaluate the integral (3x)exdx\int ( 3 - x ) e ^ { x } d x .

A) (4x)ex+C( 4 - x ) e ^ { x } + C
B) (4+x)ex+C( 4 + x ) e ^ { x } + C
C) (3x)ex+C( 3 - x ) e ^ { x } + C
D) (4x)ex+C( - 4 - x ) e ^ { x } + C
Question
Evaluate (23x)e2xdx\int ( 2 - 3 x ) e ^ { - 2 x } d x .

A) e2x(32x14)+Ce ^ { - 2 x } \left( \frac { 3 } { 2 } x - \frac { 1 } { 4 } \right) + C
B) xe2x+Cx e ^ { - 2 x } + C
C) 32xe2x+C\frac { 3 } { 2 } x e ^ { - 2 x } + C
D) 3e2x+C- 3 e ^ { - 2 x } + C
Question
Evaluate (x3)ln(2x)dx\int ( x - 3 ) \ln ( 2 x ) d x .

A) (x3)22ln(2x)+C\frac { ( x - 3 ) ^ { 2 } } { 2 } \ln ( 2 x ) + C
B) 3xx24+x(x6)ln(2x)2+C3 x - \frac { x ^ { 2 } } { 4 } + \frac { x ( x - 6 ) \ln ( 2 x ) } { 2 } + C
C) 6xx22+x(x6)ln(2x)+C6 x - \frac { x ^ { 2 } } { 2 } + x ( x - 6 ) \ln ( 2 x ) + C
D) x22+x(x6)ln(2x)+C\frac { x ^ { 2 } } { 2 } + x ( x - 6 ) \ln ( 2 x ) + C
Question
xln(x+2)dx=(x222)ln(x+2)x24+x+C\int x \ln ( x + 2 ) d x = \left( \frac { x ^ { 2 } } { 2 } - 2 \right) \ln ( x + 2 ) - \frac { x ^ { 2 } } { 4 } + x + C
Question
Evaluate x(x2)9dx\int x ( x - 2 ) ^ { 9 } d x .

A) 155(x2)10(x+10)+C\frac { 1 } { 55 } ( x - 2 ) ^ { 10 } ( x + 10 ) + C
B) 1110(x2)10(5x+2)+C\frac { 1 } { 110 } ( x - 2 ) ^ { 10 } ( 5 x + 2 ) + C
C) 155(x2)10(5x+1)+C\frac { 1 } { 55 } ( x - 2 ) ^ { 10 } ( 5 x + 1 ) + C
D) g 1110(x2)10(10x+1)+C\frac { 1 } { 110 } ( x - 2 ) ^ { 10 } ( 10 x + 1 ) + C
Question
Evaluate x3(x23)7dx\int x ^ { 3 } \left( x ^ { 2 } - 3 \right) ^ { 7 } d x .

A) x216(x23)81144(x23)9+C\frac { x ^ { 2 } } { 16 } \left( x ^ { 2 } - 3 \right) ^ { 8 } - \frac { 1 } { 144 } \left( x ^ { 2 } - 3 \right) ^ { 9 } + C
B) x216(x23)8172(x23)9+C\frac { x ^ { 2 } } { 16 } \left( x ^ { 2 } - 3 \right) ^ { 8 } - \frac { 1 } { 72 } \left( x ^ { 2 } - 3 \right) ^ { 9 } + C
C) x216(x23)8+C\frac { x ^ { 2 } } { 16 } \left( x ^ { 2 } - 3 \right) ^ { 8 } + C
D) (x23)8x324+C\frac { \left( x ^ { 2 } - 3 \right) ^ { 8 } x ^ { 3 } } { 24 } + C
Question
Evaluate x(x+7)8dx\int x ( x + 7 ) ^ { 8 } d x .
Question
Evaluate x7(x46)7dx\int x ^ { 7 } \left( x ^ { 4 } - 6 \right) ^ { 7 } d x .
Question
Evaluate x(x+2)7dx\int x ( x + 2 ) ^ { 7 } d x .
Question
Evaluate x7(x410)7dx\int x ^ { 7 } \left( x ^ { 4 } - 10 \right) ^ { 7 } d x .
Question
Use integration by parts to evaluate the integral xx+8dx\int \frac { x } { \sqrt { x + 8 } } d x .

A) 23(x8)1/2(x+16)+C\frac { 2 } { 3 } ( x - 8 ) ^ { 1 / 2 } ( x + 16 ) + C
B) 23(x+8)1/2(x16)+C\frac { 2 } { 3 } ( x + 8 ) ^ { 1 / 2 } ( x - 16 ) + C
C) 32(x+8)1/2(x16)+C\frac { 3 } { 2 } ( x + 8 ) ^ { 1 / 2 } ( x - 16 ) + C
D) 23(x+8)3/2(x16)+C\frac { 2 } { 3 } ( x + 8 ) ^ { 3 / 2 } ( x - 16 ) + C
Question
Evaluate xlnxdx\int x \ln \sqrt { x } d x .

A) x2lnx4x28+C\frac { x ^ { 2 } \ln x } { 4 } - \frac { x ^ { 2 } } { 8 } + C
B) x+Cx + C
C) x2lnx+Cx ^ { 2 } \ln x + C
D) x2lnx4+C\frac { x ^ { 2 } \ln x } { 4 } + C
Question
Evaluate x2lnxdx\int x ^ { 2 } \ln x d x .
Question
Evaluate ln3xx2dx\int \frac { \ln 3 x } { x ^ { 2 } } d x .
Question
Evaluate ln9xx5dx\int \frac { \ln 9 x } { x ^ { 5 } } d x .
Question
Evaluate x(lnx)2dx\int x ( \ln x ) ^ { 2 } d x .
Question
Evaluate x2(lnx)2dx\int x ^ { 2 } ( \ln x ) ^ { 2 } d x .
Question
Evaluate x3ex2dx\int x ^ { 3 } e ^ { x ^ { 2 } } d x .
Question
Evaluate x7ex4dx\int x ^ { 7 } e ^ { x ^ { 4 } } d x .
Question
Evaluate x2x+5dx\int \frac { x } { 2 x + 5 } d x .
Question
Evaluate x5x+2dx\int \frac { x } { 5 x + 2 } d x .
Question
Use the formula (lnx)ndx=x(lnx)nn(lnx)n1dx\int ( \ln x ) ^ { n } d x = x ( \ln x ) ^ { n } - n \int ( \ln x ) ^ { n - 1 } d x to evaluate (lnx)3dx\int ( \ln x ) ^ { 3 } d x .
Question
(lnx)2dx=x(lnx)22xlnx+2x+C\int ( \ln x ) ^ { 2 } d x = x ( \ln x ) ^ { 2 } - 2 x \ln x + 2 x + C
Question
After t hours on the job, a factory worker can produce 130te0.5t130 t e ^ { - 0.5 t } units per hour. How many units does the worker produce during the first 4 hours? Round to two decimal places.

A) 211.12 units
B) 308.88 units
C) 731.12 units
D) 344.06 units
Question
If, after t hours on the job, a factory worker can produce 10te0.02t10 t e ^ { - 0.02 t } units per hour, then the worker produces 130 units during the first 5 hours.
Question
It is projected that t years from now the population of a city will be changing at the rate of t2e0.01tt ^ { 2 } e ^ { 0.01 t } thousand people per year. If the current population is 1 million, what will the population be 4 years from now?

A) 1,028,000
B) 1,000,022
C) 1,028,800
D) 1,021,984
Question
After t weeks, a charity is raising money at the rate of 5,000 t ln(t + 1) dollars per week. How much money is raised during the first 10 weeks? Round to the nearest ten dollars.

A) $493,000
B) $493,480
C) $493,520
D) $493,550
Question
Given an initial population, P0=14,000P _ { 0 } = 14,000 , a renewal rate, R = 100, and a survival function, S(t)=te0.2tS ( t ) = t e ^ { - 0.2 t } , with time t measured in years, determine the population at the end of 11 years. Round to two decimal places.

A) 8,120.55
B) 824.60
C) 58,646.60
D) 18,677.26
Question
From time t = 0 to t = 5 an object's speed is given by the function s(t)=te3ts ( t ) = t e ^ { 3 t } . Compute the distance travelled by the object during this time interval. Round your answer to two decimals.

A) 5,085,148.51
B) 5,085,134.38
C) 5,085,239.58
D) 5,085,138.25
Question
An object moving in a straight line has velocity v(t)=tetv ( t ) = t e ^ { - \sqrt { t } } meters per second. Is it true that in the first 4 seconds the object will have travelled 4e2+124 e ^ { 2 } + 12 meters?
Question
After t seconds, an object is moving at the speed of te1tt e ^ { 1 - t } meters per second. If the object begins at 0 when t = 0, then the distance the object travels as a function of time is expressed s(t)=e1t(t+1)s ( t ) = - e ^ { 1 - t } ( t + 1 ) .
Question
Approximate the integral 12e1/xdx\int _ { 1 } ^ { 2 } e ^ { 1 / x } d x using (a) the trapezoidal rule and (b) Simpson's rule, both with 6 subintervals. Round your answer to five decimal places.
Question
Approximate the integral 01ex2dx\int _ { 0 } ^ { 1 } e ^ { x ^ { 2 } } d x using (a) the trapezoidal rule and (b) Simpson's rule, both with 4 subintervals. Round your answer to five decimal places.
Question
Determine how many subintervals are required to guarantee accuracy to within 0.00001 for the approximation of the integral 12ln(1+x2)dx\int _ { 1 } ^ { 2 } \ln \left( 1 + x ^ { 2 } \right) d x using (a) the trapezoidal rule and (b) Simpson's rule.
Question
Assume a 6-year franchise is expected to generate profit at the rate of t2+13,0003\sqrt [ 3 ] { t ^ { 2 } + 13,000 } dollars per year. If, over the next 6 years, the prevailing annual interest rate remains fixed at 6%, compounded continuously, what is the present value of the franchise? Use Simpson's rule with n = 6 to approximate the integral. Round your answer to two decimal places.

A) $509.79
B) $305.87
C) $1,019.58
D) $339.86
Question
Shortly after leaving on a road trip, two math majors realize that the car's odometer is broken. To estimate the distance they travel between 8 PM and 9 PM, they record speedometer readings every 10 minutes:  Time 8:008:108:208:308:408:509:00 Speed (mph) 55694769397850\begin{array} { c | c | c | c | c | c | c | c | } \text { Time } & 8 : 00 & 8 : 10 & 8 : 20 & 8 : 30 & 8 : 40 & 8 : 50 & 9 : 00 \\\hline \text { Speed (mph) } & 55 & 69 & 47 & 69 & 39 & 78 & 50\end{array}
Using Simpson's rule and only the information in the table, get the best possible estimate of the distance they traveled between 8 PM and 9 PM. Round your answer to one decimal place.
Question
Evaluate 1dxx3\int _ { 1 } ^ { \infty } \frac { d x } { \sqrt [ 3 ] { x } } .

A) 0
B) 1
C) 13\frac { 1 } { 3 }
D) Diverges
Question
Evaluate 11x4dx\int _ { 1 } ^ { \infty } \frac { 1 } { \sqrt [ 4 ] { x } } d x

A) Diverges
B) 0
C) 43\frac { 4 } { 3 }
D) 34\frac { 3 } { 4 }
Question
Evaluate 51x2xdx\int _ { 5} ^ { \infty } \frac { 1 } { x ^ { 2 } - x } d x . ( Hint: 1x2x=1x11x)\left( \text { Hint: } \frac { 1 } { x ^ { 2 } - x } = \frac { 1 } { x - 1 } - \frac { 1 } { x } \right)
Question
Evaluate 2dxx(x1)3\int _ { 2 } ^ { \infty } \frac { d x } { \sqrt [ 3 ] { x ( x - 1 ) } } .
Question
Evaluate 1e5xdx\int _ { 1 } ^ { \infty } e ^ { - 5 x } d x .

A) 15e5\frac { 1 } { 5 e ^ { 5 } }
B) 15e\frac { 1 } { 5 e }
C) e5e ^ { 5 }
D) 5e55 e ^ { 5 }
Question
Given that 0ex2dx=π2\int _ { 0 } ^ { \infty } e ^ { - x ^ { 2 } } d x = \frac { \sqrt { \pi } } { 2 } , evaluate 0e9x2dx\int _ { 0 } ^ { \infty } e ^ { - 9 x ^ { 2 } } d x .
Question
Evaluate 1e7xdx\int _ { 1 } ^ { \infty } e ^ { - 7 x } d x .

A) 17e7\frac { 1 } { 7 e ^ { 7 } }
B) 17e\frac { 1 } { 7 e }
C) e7
D) 7e77 e ^ { 7 }
Question
01(1+x)3dx=18\int _ { 0 } ^ { \infty } \frac { 1 } { ( 1 + x ) ^ { 3 } } d x = \frac { 1 } { 8 } .
Question
Evaluate the improper integral: 2x2(x3+6)2dx\int _ { 2 } ^ { \infty } \frac { x ^ { 2 } } { \left( x ^ { 3 } + 6 \right) ^ { 2 } } d x

A) 42
B) 128\frac { 1 } { 28 }
C) 144\frac { 1 } { 44 }
D) 142\frac { 1 } { 42 }
Question
02x1+x2dx=0\int _ { 0 } ^ { \infty } \frac { 2 x } { 1 + x ^ { 2 } } d x = 0
Question
Evaluate 21x(lnx)3dx\int _ { 2 } ^ { \infty } \frac { 1 } { x ( \ln x ) ^ { 3 } } d x .

A) 12ln2\frac { 1 } { 2 \ln 2 }
B) 12(ln2)2\frac { 1 } { 2 ( \ln 2 ) ^ { 2 } }
C) 12ln2- \frac { 1 } { 2 \ln 2 }
D) 12(ln2)2- \frac { 1 } { 2 ( \ln 2 ) ^ { 2 } }
Question
Evaluate 21xlnxdx\int _ { 2 } ^ { \infty } \frac { 1 } { x \ln \sqrt { x } } d x .

A) 0
B) 12ln2\frac { 1 } { 2 \ln 2 }
C) 12ln2- \frac { 1 } { 2 \ln 2 }
D) Diverges
Question
Evaluate the improper integral: 01(x7)ln(x7)dx\int _ { 0 } ^ { \infty } \frac { 1 } { ( x - 7 ) \ln ( x - 7 ) } d x Round your answer to two decimal places, if necessary.

A) -inf
B) 0.00
C) 2.08
D) Undefined
Question
Evaluate the improper integral: 0x5ex5/6dx\int _ { 0 } ^ { \infty } x ^ { 5 } e ^ { - x ^ { 5 } / 6 } d x Round to two decimal places, if necessary.

A) 1.5
B) 2
C) 1
D) Undefined
Question
0x2ex3dx=13\int _ { 0 } ^ { \infty } \frac { x ^ { 2 } } { e ^ { x ^ { 3 } } } d x = \frac { 1 } { 3 }
Question
0x4ex5dx=15\int _ { 0 } ^ { \infty } \frac { x ^ { 4 } } { e ^ { x ^ { 5 } } } d x = \frac { 1 } { 5 }
Question
The long run capitalized cost of an asset that initially cost C0C _ { 0 } dollars is given by C=C0+0A(t)ertdtC = C _ { 0 } + \int _ { 0 } ^ { \infty } A ( t ) e ^ { - r t } d t where A(t) is the annual cost of maintenance and r is the annual rate of interest, compounded continuously. Find the long run capitalized cost, in dollars, in the case where C0=$5,000,000C _ { 0 } = \$ 5,000,000 , A(t) = 5, 000(1 + 3t), and r = 0.08.
Question
A hospital patient receives 4 units of a certain drug per hour intravenously. The drug is eliminated exponentially, so that the fraction that remains in the patients body for t hours is f(t)=et/12f ( t ) = e ^ { - t / 12 } . If treatment is continued indefinitely, approximately how many units of the drug will be in the patient's body in the long run?

A) 44 units
B) 48 units
C) 52 units
D) 56 units
Question
A hospital patient receives intravenously 6 units of a certain drug per hour. The drug is eliminated exponentially, so that the fraction that remains in the patients body for t hours is f(t)=et/11f ( t ) = e ^ { - t / 11 } . If the treatment is continued indefinitely, approximately how many units of the drug will be in the patient's body in the long run? Round to two decimal places, if necessary.

A) 17 units
B) 60 units
C) 66 units
D) 0.55 units
Question
A certain nuclear power plant produces radioactive waste at the rate of 500 pounds per year. The waste decays exponentially at the rate of 1.5% per year. How many pounds of radioactive waste from the plant will be present in the long run? Round to two decimal places, if necessary.
Question
f(x)={7e7x for x00 for x<0f ( x ) = \left\{ \begin{array} { l l } 7 e ^ { - 7 x } & \text { for } x \geq 0 \\0 & \text { for } x < 0\end{array} \right. is a probability density function.
Question
f(x)={116x for 0x80 otherwise f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 16 } \sqrt { x } & \text { for } 0 \leq x \leq 8 \\0 & \text { otherwise }\end{array} \right. is a probability density function.
Question
Find k so that f(x)={kx4+0.4 for 0x10 otherw ise f ( x ) = \left\{ \begin{array} { l } k x ^ { 4 } + 0.4 \text { for } 0 \leq x \leq 1 \\0 \quad \text { otherw ise }\end{array} \right. is a probability density function.
Question
f(x)={17 for 0x70 otherwise f ( x ) = \left\{ \begin{array} { l r } \frac { 1 } { 7 } & \text { for } 0 \leq x \leq 7 \\0 & \text { otherwise }\end{array} \right. is a probability density function for a particular random variable X. Use integration to find P(0x3)P ( 0 \leq x \leq 3 ) rounded to the nearest hundredth.

A) 0.15
B) 0.57
C) 0.43
D) 0.28
Question
f(x)={5x6 if x10 if x<1f ( x ) = \left\{ \begin{array} { l l } \frac { 5 } { x ^ { 6 } } & \text { if } x \geq 1 \\0 & \text { if } x < 1\end{array} \right. is a probability density function for a particular random variable X. Use integration to find P(X3)P ( X \geq 3 )
Question
f(x)={12ex/2 if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 2 } e ^ { - x / 2 } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. is a probability density function for a particular random variable X. Use integration to find P(X4)P ( X \geq 4 )

A) e2e ^ { 2 }
B) 1+e21 + e ^ { 2 }
C) e21e ^ { - 2 } - 1
D) e2e ^ { - 2 }
Question
The life span of car stereos manufactured by a certain company is measured by a random variable X that is exponentially distributed with a probability density function f(x)={0.2e0.2x if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } 0.2 e ^ { - 0.2 x } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. where x is the life span in years of a randomly selected stereo. What is the probability that the life span of a randomly selected stereo is between 5 and 16 years? Round to the nearest hundredth.

A) 0.33
B) 0.36
C) 0.29
D) 0.16
Question
The useful life X of a particular kind of machine is a random variable with density function f(x)={415+23x2 if 2x50 otherwise f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 15 } + \frac { 2 } { 3 x ^ { 2 } } & \text { if } 2 \leq x \leq 5 \\0 & \text { otherwise }\end{array} \right. where x is the number of years a randomly selected machine stays in use. P(X3)=2845P ( X \leq 3 ) = \frac { 28 } { 45 }
Question
The clothes dryers at a laundromat run for 45 minutes. You arrive at the laundromat and find that all of the dryers are being used. Use an appropriate uniform density function to find the probability that a dryer chosen at random will finish its cycle within 5 minutes.
Question
Let X be a random variable that measures the age of a randomly selected virus in a particular population. Suppose X is exponentially distributed with a probability density function f(x)={kekx for x00 otherw ise f ( x ) = \left\{ \begin{array} { l l } k e ^ { - k x } & \text { for } x \geq 0 \\0 & \text { otherw ise }\end{array} \right. where x is the age of a randomly selected virus and k is a positive constant. Experiments indicate that it is four times as likely for a virus to be less than 2 days old as it is for it to be more than 2 days old. Use this information to determine k.
Question
Suppose the length of time, x, that it takes a chimpanzee to solve a simple puzzle is measured by a random variable X that is exponentially distributed with a probability density function f(x)={23e2x/3 if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } \frac { 2 } { 3 } e ^ { - 2 x / 3 } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. where x is in minutes. Find the probability that a randomly chosen chimpanzee will take more than 12 minutes to solve the puzzle.

A) e8+1e ^ { - 8 } + 1
B) e8e ^ { - 8 }
C) e8e ^ { 8 }
D) e81e ^ { 8 } - 1
Question
Suppose the length of time that it takes a person to complete a hedgerow maze is measured by a random variable X that is exponentially distributed with a probability density function f(x)={14xex/2 if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 4 } x e ^ { - x / 2 } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. where x is the number of minutes a randomly selected person takes to complete the maze. Find the probability that a randomly chosen person will take less than 4 minutes to complete the maze.
Question
A 2.5-hour movie runs continuously at a local theater. You leave for the theater without first checking the show times. Use an appropriate uniform density function to find the probability that you will arrive at the theater within 4 minutes of the start of the film (before or after). Round to the nearest hundredth.

A) 0.95
B) 0.04
C) 0.03
D) 0.05
Question
Evaluate xex/6dx\int x e ^ { x / 6 } d x .
Question
Use integration by parts to evaluate the integral (2x)exdx\int ( 2 - x ) e ^ { x } d x .
Question
Evaluate x(x+7)8dx\int x ( x + 7 ) ^ { 8 } d x .
Question
Use integration by parts to evaluate the integral xx+11dx\int \frac { x } { \sqrt { x + 11 } } d x .
Question
Evaluate x2lnxdx\int x ^ { 2 } \ln x d x .
Question
After t hours on the job, a factory worker can produce 130te0.5t130 t e ^ { - 0.5 t } units per hour. How many units does the worker produce during the first 4 hours? Round to two decimal places.
Question
Given an initial population, P0=17,000P _ { 0 } = 17,000 , a renewal rate, R = 150, and a survival function, S(t)=te0.2tS ( t ) = t e ^ { - 0.2 t } , with time t measured in years, determine the population at the end of 11 years. Round to two decimal places.
Question
From time t = 0 to t = 2 an object's speed is given by the function s(t)=te4ts ( t ) = t e ^ { 4 t } . Compute the distance travelled by the object during this time interval. Round your answer to two decimals.
Question
Assume a 7-year franchise is expected to generate profit at the rate of t2+18,0003\sqrt [ 3 ] { t ^ { 2 } + 18,000 } dollars per year. If, over the next 7 years, the prevailing annual interest rate remains fixed at 8%, compounded continuously, what is the present value of the franchise? Use Simpson's rule with n = 6 to approximate the integral. Round your answer to two decimal places.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/111
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: Additional Topics in Integration
1
Evaluate xex/3dx\int x e ^ { x / 3 } d x .

A) 13xex/3ex/3+C\frac { 1 } { 3 } x e ^ { x / 3 } - e ^ { x / 3 } + C
B) 13xex/319ex/3+C\frac { 1 } { 3 } x e ^ { x / 3 } - \frac { 1 } { 9 } e ^ { x / 3 } + C
C) 3xex/39ex/3+C3 x e ^ { x / 3 } - 9 e ^ { x / 3 } + C
D) 3xex/3+9ex/3+C3 x e ^ { x / 3 } + 9 e ^ { x / 3 } + C
3xex/39ex/3+C3 x e ^ { x / 3 } - 9 e ^ { x / 3 } + C
2
Evaluate xex/8dx\int x e ^ { x / 8 } d x .

A) 8xex/864ex/8+C8 x e ^ { x / 8 } - 64 e ^ { x / 8 } + C
B) 8xex/8+64ex/8+C8 x e ^ { x / 8 } + 64 e ^ { x / 8 } + C
C) xex/88+ex/864+C\frac { x e ^ { x / 8 } } { 8 } + \frac { e ^ { x / 8 } } { 64 } + C
D) xex/88ex/864+C\frac { x e ^ { x / 8 } } { 8 } - \frac { e ^ { x / 8 } } { 64 } + C
8xex/864ex/8+C8 x e ^ { x / 8 } - 64 e ^ { x / 8 } + C
3
Use integration by parts to evaluate the integral (3x)exdx\int ( 3 - x ) e ^ { x } d x .

A) (4x)ex+C( 4 - x ) e ^ { x } + C
B) (4+x)ex+C( 4 + x ) e ^ { x } + C
C) (3x)ex+C( 3 - x ) e ^ { x } + C
D) (4x)ex+C( - 4 - x ) e ^ { x } + C
(4x)ex+C( 4 - x ) e ^ { x } + C
4
Evaluate (23x)e2xdx\int ( 2 - 3 x ) e ^ { - 2 x } d x .

A) e2x(32x14)+Ce ^ { - 2 x } \left( \frac { 3 } { 2 } x - \frac { 1 } { 4 } \right) + C
B) xe2x+Cx e ^ { - 2 x } + C
C) 32xe2x+C\frac { 3 } { 2 } x e ^ { - 2 x } + C
D) 3e2x+C- 3 e ^ { - 2 x } + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate (x3)ln(2x)dx\int ( x - 3 ) \ln ( 2 x ) d x .

A) (x3)22ln(2x)+C\frac { ( x - 3 ) ^ { 2 } } { 2 } \ln ( 2 x ) + C
B) 3xx24+x(x6)ln(2x)2+C3 x - \frac { x ^ { 2 } } { 4 } + \frac { x ( x - 6 ) \ln ( 2 x ) } { 2 } + C
C) 6xx22+x(x6)ln(2x)+C6 x - \frac { x ^ { 2 } } { 2 } + x ( x - 6 ) \ln ( 2 x ) + C
D) x22+x(x6)ln(2x)+C\frac { x ^ { 2 } } { 2 } + x ( x - 6 ) \ln ( 2 x ) + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
6
xln(x+2)dx=(x222)ln(x+2)x24+x+C\int x \ln ( x + 2 ) d x = \left( \frac { x ^ { 2 } } { 2 } - 2 \right) \ln ( x + 2 ) - \frac { x ^ { 2 } } { 4 } + x + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate x(x2)9dx\int x ( x - 2 ) ^ { 9 } d x .

A) 155(x2)10(x+10)+C\frac { 1 } { 55 } ( x - 2 ) ^ { 10 } ( x + 10 ) + C
B) 1110(x2)10(5x+2)+C\frac { 1 } { 110 } ( x - 2 ) ^ { 10 } ( 5 x + 2 ) + C
C) 155(x2)10(5x+1)+C\frac { 1 } { 55 } ( x - 2 ) ^ { 10 } ( 5 x + 1 ) + C
D) g 1110(x2)10(10x+1)+C\frac { 1 } { 110 } ( x - 2 ) ^ { 10 } ( 10 x + 1 ) + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate x3(x23)7dx\int x ^ { 3 } \left( x ^ { 2 } - 3 \right) ^ { 7 } d x .

A) x216(x23)81144(x23)9+C\frac { x ^ { 2 } } { 16 } \left( x ^ { 2 } - 3 \right) ^ { 8 } - \frac { 1 } { 144 } \left( x ^ { 2 } - 3 \right) ^ { 9 } + C
B) x216(x23)8172(x23)9+C\frac { x ^ { 2 } } { 16 } \left( x ^ { 2 } - 3 \right) ^ { 8 } - \frac { 1 } { 72 } \left( x ^ { 2 } - 3 \right) ^ { 9 } + C
C) x216(x23)8+C\frac { x ^ { 2 } } { 16 } \left( x ^ { 2 } - 3 \right) ^ { 8 } + C
D) (x23)8x324+C\frac { \left( x ^ { 2 } - 3 \right) ^ { 8 } x ^ { 3 } } { 24 } + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
9
Evaluate x(x+7)8dx\int x ( x + 7 ) ^ { 8 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate x7(x46)7dx\int x ^ { 7 } \left( x ^ { 4 } - 6 \right) ^ { 7 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate x(x+2)7dx\int x ( x + 2 ) ^ { 7 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate x7(x410)7dx\int x ^ { 7 } \left( x ^ { 4 } - 10 \right) ^ { 7 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
13
Use integration by parts to evaluate the integral xx+8dx\int \frac { x } { \sqrt { x + 8 } } d x .

A) 23(x8)1/2(x+16)+C\frac { 2 } { 3 } ( x - 8 ) ^ { 1 / 2 } ( x + 16 ) + C
B) 23(x+8)1/2(x16)+C\frac { 2 } { 3 } ( x + 8 ) ^ { 1 / 2 } ( x - 16 ) + C
C) 32(x+8)1/2(x16)+C\frac { 3 } { 2 } ( x + 8 ) ^ { 1 / 2 } ( x - 16 ) + C
D) 23(x+8)3/2(x16)+C\frac { 2 } { 3 } ( x + 8 ) ^ { 3 / 2 } ( x - 16 ) + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
14
Evaluate xlnxdx\int x \ln \sqrt { x } d x .

A) x2lnx4x28+C\frac { x ^ { 2 } \ln x } { 4 } - \frac { x ^ { 2 } } { 8 } + C
B) x+Cx + C
C) x2lnx+Cx ^ { 2 } \ln x + C
D) x2lnx4+C\frac { x ^ { 2 } \ln x } { 4 } + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate x2lnxdx\int x ^ { 2 } \ln x d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate ln3xx2dx\int \frac { \ln 3 x } { x ^ { 2 } } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
17
Evaluate ln9xx5dx\int \frac { \ln 9 x } { x ^ { 5 } } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate x(lnx)2dx\int x ( \ln x ) ^ { 2 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate x2(lnx)2dx\int x ^ { 2 } ( \ln x ) ^ { 2 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate x3ex2dx\int x ^ { 3 } e ^ { x ^ { 2 } } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
21
Evaluate x7ex4dx\int x ^ { 7 } e ^ { x ^ { 4 } } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate x2x+5dx\int \frac { x } { 2 x + 5 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
23
Evaluate x5x+2dx\int \frac { x } { 5 x + 2 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
24
Use the formula (lnx)ndx=x(lnx)nn(lnx)n1dx\int ( \ln x ) ^ { n } d x = x ( \ln x ) ^ { n } - n \int ( \ln x ) ^ { n - 1 } d x to evaluate (lnx)3dx\int ( \ln x ) ^ { 3 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
25
(lnx)2dx=x(lnx)22xlnx+2x+C\int ( \ln x ) ^ { 2 } d x = x ( \ln x ) ^ { 2 } - 2 x \ln x + 2 x + C
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
26
After t hours on the job, a factory worker can produce 130te0.5t130 t e ^ { - 0.5 t } units per hour. How many units does the worker produce during the first 4 hours? Round to two decimal places.

A) 211.12 units
B) 308.88 units
C) 731.12 units
D) 344.06 units
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
27
If, after t hours on the job, a factory worker can produce 10te0.02t10 t e ^ { - 0.02 t } units per hour, then the worker produces 130 units during the first 5 hours.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
28
It is projected that t years from now the population of a city will be changing at the rate of t2e0.01tt ^ { 2 } e ^ { 0.01 t } thousand people per year. If the current population is 1 million, what will the population be 4 years from now?

A) 1,028,000
B) 1,000,022
C) 1,028,800
D) 1,021,984
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
29
After t weeks, a charity is raising money at the rate of 5,000 t ln(t + 1) dollars per week. How much money is raised during the first 10 weeks? Round to the nearest ten dollars.

A) $493,000
B) $493,480
C) $493,520
D) $493,550
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
30
Given an initial population, P0=14,000P _ { 0 } = 14,000 , a renewal rate, R = 100, and a survival function, S(t)=te0.2tS ( t ) = t e ^ { - 0.2 t } , with time t measured in years, determine the population at the end of 11 years. Round to two decimal places.

A) 8,120.55
B) 824.60
C) 58,646.60
D) 18,677.26
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
31
From time t = 0 to t = 5 an object's speed is given by the function s(t)=te3ts ( t ) = t e ^ { 3 t } . Compute the distance travelled by the object during this time interval. Round your answer to two decimals.

A) 5,085,148.51
B) 5,085,134.38
C) 5,085,239.58
D) 5,085,138.25
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
32
An object moving in a straight line has velocity v(t)=tetv ( t ) = t e ^ { - \sqrt { t } } meters per second. Is it true that in the first 4 seconds the object will have travelled 4e2+124 e ^ { 2 } + 12 meters?
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
33
After t seconds, an object is moving at the speed of te1tt e ^ { 1 - t } meters per second. If the object begins at 0 when t = 0, then the distance the object travels as a function of time is expressed s(t)=e1t(t+1)s ( t ) = - e ^ { 1 - t } ( t + 1 ) .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
34
Approximate the integral 12e1/xdx\int _ { 1 } ^ { 2 } e ^ { 1 / x } d x using (a) the trapezoidal rule and (b) Simpson's rule, both with 6 subintervals. Round your answer to five decimal places.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
35
Approximate the integral 01ex2dx\int _ { 0 } ^ { 1 } e ^ { x ^ { 2 } } d x using (a) the trapezoidal rule and (b) Simpson's rule, both with 4 subintervals. Round your answer to five decimal places.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
36
Determine how many subintervals are required to guarantee accuracy to within 0.00001 for the approximation of the integral 12ln(1+x2)dx\int _ { 1 } ^ { 2 } \ln \left( 1 + x ^ { 2 } \right) d x using (a) the trapezoidal rule and (b) Simpson's rule.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
37
Assume a 6-year franchise is expected to generate profit at the rate of t2+13,0003\sqrt [ 3 ] { t ^ { 2 } + 13,000 } dollars per year. If, over the next 6 years, the prevailing annual interest rate remains fixed at 6%, compounded continuously, what is the present value of the franchise? Use Simpson's rule with n = 6 to approximate the integral. Round your answer to two decimal places.

A) $509.79
B) $305.87
C) $1,019.58
D) $339.86
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
38
Shortly after leaving on a road trip, two math majors realize that the car's odometer is broken. To estimate the distance they travel between 8 PM and 9 PM, they record speedometer readings every 10 minutes:  Time 8:008:108:208:308:408:509:00 Speed (mph) 55694769397850\begin{array} { c | c | c | c | c | c | c | c | } \text { Time } & 8 : 00 & 8 : 10 & 8 : 20 & 8 : 30 & 8 : 40 & 8 : 50 & 9 : 00 \\\hline \text { Speed (mph) } & 55 & 69 & 47 & 69 & 39 & 78 & 50\end{array}
Using Simpson's rule and only the information in the table, get the best possible estimate of the distance they traveled between 8 PM and 9 PM. Round your answer to one decimal place.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
39
Evaluate 1dxx3\int _ { 1 } ^ { \infty } \frac { d x } { \sqrt [ 3 ] { x } } .

A) 0
B) 1
C) 13\frac { 1 } { 3 }
D) Diverges
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
40
Evaluate 11x4dx\int _ { 1 } ^ { \infty } \frac { 1 } { \sqrt [ 4 ] { x } } d x

A) Diverges
B) 0
C) 43\frac { 4 } { 3 }
D) 34\frac { 3 } { 4 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
41
Evaluate 51x2xdx\int _ { 5} ^ { \infty } \frac { 1 } { x ^ { 2 } - x } d x . ( Hint: 1x2x=1x11x)\left( \text { Hint: } \frac { 1 } { x ^ { 2 } - x } = \frac { 1 } { x - 1 } - \frac { 1 } { x } \right)
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
42
Evaluate 2dxx(x1)3\int _ { 2 } ^ { \infty } \frac { d x } { \sqrt [ 3 ] { x ( x - 1 ) } } .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
43
Evaluate 1e5xdx\int _ { 1 } ^ { \infty } e ^ { - 5 x } d x .

A) 15e5\frac { 1 } { 5 e ^ { 5 } }
B) 15e\frac { 1 } { 5 e }
C) e5e ^ { 5 }
D) 5e55 e ^ { 5 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
44
Given that 0ex2dx=π2\int _ { 0 } ^ { \infty } e ^ { - x ^ { 2 } } d x = \frac { \sqrt { \pi } } { 2 } , evaluate 0e9x2dx\int _ { 0 } ^ { \infty } e ^ { - 9 x ^ { 2 } } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate 1e7xdx\int _ { 1 } ^ { \infty } e ^ { - 7 x } d x .

A) 17e7\frac { 1 } { 7 e ^ { 7 } }
B) 17e\frac { 1 } { 7 e }
C) e7
D) 7e77 e ^ { 7 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
46
01(1+x)3dx=18\int _ { 0 } ^ { \infty } \frac { 1 } { ( 1 + x ) ^ { 3 } } d x = \frac { 1 } { 8 } .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
47
Evaluate the improper integral: 2x2(x3+6)2dx\int _ { 2 } ^ { \infty } \frac { x ^ { 2 } } { \left( x ^ { 3 } + 6 \right) ^ { 2 } } d x

A) 42
B) 128\frac { 1 } { 28 }
C) 144\frac { 1 } { 44 }
D) 142\frac { 1 } { 42 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
48
02x1+x2dx=0\int _ { 0 } ^ { \infty } \frac { 2 x } { 1 + x ^ { 2 } } d x = 0
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
49
Evaluate 21x(lnx)3dx\int _ { 2 } ^ { \infty } \frac { 1 } { x ( \ln x ) ^ { 3 } } d x .

A) 12ln2\frac { 1 } { 2 \ln 2 }
B) 12(ln2)2\frac { 1 } { 2 ( \ln 2 ) ^ { 2 } }
C) 12ln2- \frac { 1 } { 2 \ln 2 }
D) 12(ln2)2- \frac { 1 } { 2 ( \ln 2 ) ^ { 2 } }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
50
Evaluate 21xlnxdx\int _ { 2 } ^ { \infty } \frac { 1 } { x \ln \sqrt { x } } d x .

A) 0
B) 12ln2\frac { 1 } { 2 \ln 2 }
C) 12ln2- \frac { 1 } { 2 \ln 2 }
D) Diverges
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
51
Evaluate the improper integral: 01(x7)ln(x7)dx\int _ { 0 } ^ { \infty } \frac { 1 } { ( x - 7 ) \ln ( x - 7 ) } d x Round your answer to two decimal places, if necessary.

A) -inf
B) 0.00
C) 2.08
D) Undefined
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
52
Evaluate the improper integral: 0x5ex5/6dx\int _ { 0 } ^ { \infty } x ^ { 5 } e ^ { - x ^ { 5 } / 6 } d x Round to two decimal places, if necessary.

A) 1.5
B) 2
C) 1
D) Undefined
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
53
0x2ex3dx=13\int _ { 0 } ^ { \infty } \frac { x ^ { 2 } } { e ^ { x ^ { 3 } } } d x = \frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
54
0x4ex5dx=15\int _ { 0 } ^ { \infty } \frac { x ^ { 4 } } { e ^ { x ^ { 5 } } } d x = \frac { 1 } { 5 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
55
The long run capitalized cost of an asset that initially cost C0C _ { 0 } dollars is given by C=C0+0A(t)ertdtC = C _ { 0 } + \int _ { 0 } ^ { \infty } A ( t ) e ^ { - r t } d t where A(t) is the annual cost of maintenance and r is the annual rate of interest, compounded continuously. Find the long run capitalized cost, in dollars, in the case where C0=$5,000,000C _ { 0 } = \$ 5,000,000 , A(t) = 5, 000(1 + 3t), and r = 0.08.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
56
A hospital patient receives 4 units of a certain drug per hour intravenously. The drug is eliminated exponentially, so that the fraction that remains in the patients body for t hours is f(t)=et/12f ( t ) = e ^ { - t / 12 } . If treatment is continued indefinitely, approximately how many units of the drug will be in the patient's body in the long run?

A) 44 units
B) 48 units
C) 52 units
D) 56 units
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
57
A hospital patient receives intravenously 6 units of a certain drug per hour. The drug is eliminated exponentially, so that the fraction that remains in the patients body for t hours is f(t)=et/11f ( t ) = e ^ { - t / 11 } . If the treatment is continued indefinitely, approximately how many units of the drug will be in the patient's body in the long run? Round to two decimal places, if necessary.

A) 17 units
B) 60 units
C) 66 units
D) 0.55 units
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
58
A certain nuclear power plant produces radioactive waste at the rate of 500 pounds per year. The waste decays exponentially at the rate of 1.5% per year. How many pounds of radioactive waste from the plant will be present in the long run? Round to two decimal places, if necessary.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
59
f(x)={7e7x for x00 for x<0f ( x ) = \left\{ \begin{array} { l l } 7 e ^ { - 7 x } & \text { for } x \geq 0 \\0 & \text { for } x < 0\end{array} \right. is a probability density function.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
60
f(x)={116x for 0x80 otherwise f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 16 } \sqrt { x } & \text { for } 0 \leq x \leq 8 \\0 & \text { otherwise }\end{array} \right. is a probability density function.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
61
Find k so that f(x)={kx4+0.4 for 0x10 otherw ise f ( x ) = \left\{ \begin{array} { l } k x ^ { 4 } + 0.4 \text { for } 0 \leq x \leq 1 \\0 \quad \text { otherw ise }\end{array} \right. is a probability density function.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
62
f(x)={17 for 0x70 otherwise f ( x ) = \left\{ \begin{array} { l r } \frac { 1 } { 7 } & \text { for } 0 \leq x \leq 7 \\0 & \text { otherwise }\end{array} \right. is a probability density function for a particular random variable X. Use integration to find P(0x3)P ( 0 \leq x \leq 3 ) rounded to the nearest hundredth.

A) 0.15
B) 0.57
C) 0.43
D) 0.28
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
63
f(x)={5x6 if x10 if x<1f ( x ) = \left\{ \begin{array} { l l } \frac { 5 } { x ^ { 6 } } & \text { if } x \geq 1 \\0 & \text { if } x < 1\end{array} \right. is a probability density function for a particular random variable X. Use integration to find P(X3)P ( X \geq 3 )
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
64
f(x)={12ex/2 if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 2 } e ^ { - x / 2 } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. is a probability density function for a particular random variable X. Use integration to find P(X4)P ( X \geq 4 )

A) e2e ^ { 2 }
B) 1+e21 + e ^ { 2 }
C) e21e ^ { - 2 } - 1
D) e2e ^ { - 2 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
65
The life span of car stereos manufactured by a certain company is measured by a random variable X that is exponentially distributed with a probability density function f(x)={0.2e0.2x if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } 0.2 e ^ { - 0.2 x } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. where x is the life span in years of a randomly selected stereo. What is the probability that the life span of a randomly selected stereo is between 5 and 16 years? Round to the nearest hundredth.

A) 0.33
B) 0.36
C) 0.29
D) 0.16
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
66
The useful life X of a particular kind of machine is a random variable with density function f(x)={415+23x2 if 2x50 otherwise f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 15 } + \frac { 2 } { 3 x ^ { 2 } } & \text { if } 2 \leq x \leq 5 \\0 & \text { otherwise }\end{array} \right. where x is the number of years a randomly selected machine stays in use. P(X3)=2845P ( X \leq 3 ) = \frac { 28 } { 45 }
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
67
The clothes dryers at a laundromat run for 45 minutes. You arrive at the laundromat and find that all of the dryers are being used. Use an appropriate uniform density function to find the probability that a dryer chosen at random will finish its cycle within 5 minutes.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
68
Let X be a random variable that measures the age of a randomly selected virus in a particular population. Suppose X is exponentially distributed with a probability density function f(x)={kekx for x00 otherw ise f ( x ) = \left\{ \begin{array} { l l } k e ^ { - k x } & \text { for } x \geq 0 \\0 & \text { otherw ise }\end{array} \right. where x is the age of a randomly selected virus and k is a positive constant. Experiments indicate that it is four times as likely for a virus to be less than 2 days old as it is for it to be more than 2 days old. Use this information to determine k.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
69
Suppose the length of time, x, that it takes a chimpanzee to solve a simple puzzle is measured by a random variable X that is exponentially distributed with a probability density function f(x)={23e2x/3 if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } \frac { 2 } { 3 } e ^ { - 2 x / 3 } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. where x is in minutes. Find the probability that a randomly chosen chimpanzee will take more than 12 minutes to solve the puzzle.

A) e8+1e ^ { - 8 } + 1
B) e8e ^ { - 8 }
C) e8e ^ { 8 }
D) e81e ^ { 8 } - 1
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
70
Suppose the length of time that it takes a person to complete a hedgerow maze is measured by a random variable X that is exponentially distributed with a probability density function f(x)={14xex/2 if x00 if x<0f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 4 } x e ^ { - x / 2 } & \text { if } x \geq 0 \\0 & \text { if } x < 0\end{array} \right. where x is the number of minutes a randomly selected person takes to complete the maze. Find the probability that a randomly chosen person will take less than 4 minutes to complete the maze.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
71
A 2.5-hour movie runs continuously at a local theater. You leave for the theater without first checking the show times. Use an appropriate uniform density function to find the probability that you will arrive at the theater within 4 minutes of the start of the film (before or after). Round to the nearest hundredth.

A) 0.95
B) 0.04
C) 0.03
D) 0.05
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
72
Evaluate xex/6dx\int x e ^ { x / 6 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
73
Use integration by parts to evaluate the integral (2x)exdx\int ( 2 - x ) e ^ { x } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
74
Evaluate x(x+7)8dx\int x ( x + 7 ) ^ { 8 } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
75
Use integration by parts to evaluate the integral xx+11dx\int \frac { x } { \sqrt { x + 11 } } d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
76
Evaluate x2lnxdx\int x ^ { 2 } \ln x d x .
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
77
After t hours on the job, a factory worker can produce 130te0.5t130 t e ^ { - 0.5 t } units per hour. How many units does the worker produce during the first 4 hours? Round to two decimal places.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
78
Given an initial population, P0=17,000P _ { 0 } = 17,000 , a renewal rate, R = 150, and a survival function, S(t)=te0.2tS ( t ) = t e ^ { - 0.2 t } , with time t measured in years, determine the population at the end of 11 years. Round to two decimal places.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
79
From time t = 0 to t = 2 an object's speed is given by the function s(t)=te4ts ( t ) = t e ^ { 4 t } . Compute the distance travelled by the object during this time interval. Round your answer to two decimals.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
80
Assume a 7-year franchise is expected to generate profit at the rate of t2+18,0003\sqrt [ 3 ] { t ^ { 2 } + 18,000 } dollars per year. If, over the next 7 years, the prevailing annual interest rate remains fixed at 8%, compounded continuously, what is the present value of the franchise? Use Simpson's rule with n = 6 to approximate the integral. Round your answer to two decimal places.
Unlock Deck
Unlock for access to all 111 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 111 flashcards in this deck.