Deck 7: Sequences and Series

Full screen (f)
exit full mode
Question
Find a possible formula for the general term of the given sequence, assume that the first term has index 1.{1, 4, 7, 10, 13, …}

A) {2n - 1}
B) {3n + 1}
C) {3n - 2}
D) {2n+1}n=0\{ 2 n + 1 \} _ { n = 0 } ^ { \infty }
Use Space or
up arrow
down arrow
to flip the card.
Question
Find a possible formula for the general term of the given sequence, assume that the first term has index 0. {13,25,37,49,}\left\{ \frac { 1 } { 3 } , \frac { 2 } { 5 } , \frac { 3 } { 7 } , \frac { 4 } { 9 } , \ldots \right\}

A) {n12n+1}n=0\left\{ \frac { n - 1 } { 2 n + 1 } \right\} _ { n = 0 } ^ { \infty }
B) {2n14n1}\left\{ \frac { 2 n - 1 } { 4 n - 1 } \right\}
C) {n12n+3}n=0\left\{ \frac { n - 1 } { 2 n + 3 } \right\} _ { n = 0 } ^ { \infty }
D) {n+12n+3}n=0\left\{ \frac { n + 1 } { 2 n + 3 } \right\} _ { n = 0 } ^ { \infty }
Question
Find a possible formula for the general term of the given sequence, assume that the first term has index 1. {15,225,3125,4625,}\left\{ \frac { 1 } { 5 } , \frac { 2 } { 25 } , \frac { 3 } { 125 } , \frac { 4 } { 625 } , \ldots \right\}

A) {n+25n}\left\{ \frac { n + 2 } { 5 ^ { n } } \right\}
B) {n5n}\left\{ \frac { n } { 5 ^ { n } } \right\}
C) {n+15n}\left\{ \frac { n + 1 } { 5 ^ { n } } \right\}
D) {n25n}\left\{ \frac { n ^ { 2 } } { 5 ^ { n } } \right\}
Question
Find a possible formula for the general term of the given sequence, assume that the first term has index 0. {3,32,34,38,316,}\left\{ 3 , \frac { - 3 } { 2 } , \frac { 3 } { 4 } , \frac { - 3 } { 8 } , \frac { 3 } { 16 } , \ldots \right\}
Question
Provide the first five terms of the sequence: {1(1)nn+1}\left\{ \frac { 1 - ( - 1 ) ^ { n } } { n + 1 } \right\} Assume that the first term has index 1.

A) {12,0,13,0,14,}\left\{ \frac { 1 } { 2 } , 0 , \frac { 1 } { 3 } , 0 , \frac { 1 } { 4 } , \ldots \right\}
B) {0,1,0,12,0,}\left\{ 0,1,0 , \frac { 1 } { 2 } , 0 , \ldots \right\}
C) {1,0,12,0,13,}\left\{ 1,0 , \frac { 1 } { 2 } , 0 , \frac { 1 } { 3 } , \ldots \right\}
D) {1,12,13,14,15,}\left\{ 1 , \frac { 1 } { 2 } , \frac { 1 } { 3 } , \frac { 1 } { 4 } , \frac { 1 } { 5 } , \ldots \right\}
Question
Provide the first five terms of the sequence: {2n3n1}\left\{ \frac { 2 n } { 3 n - 1 } \right\} Assume that the first term has index 1.

A) {0,1,45,34,811,}\left\{ 0,1 , \frac { 4 } { 5 } , \frac { 3 } { 4 } , \frac { 8 } { 11 } , \ldots \right\}
B) {1,23,45,34,811,}\left\{ 1 , \frac { 2 } { 3 } , \frac { 4 } { 5 } , \frac { 3 } { 4 } , \frac { 8 } { 11 } , \ldots \right\}
C) {1,45,34,811,57,}\left\{ 1 , \frac { 4 } { 5 } , \frac { 3 } { 4 } , \frac { 8 } { 11 } , \frac { 5 } { 7 } , \ldots \right\}
D) {0,1,23,35,47,}\left\{ 0,1 , \frac { 2 } { 3 } , \frac { 3 } { 5 } , \frac { 4 } { 7 } , \ldots \right\}
Question
Provide the first five terms of the sequence {sin(nx)xn+n2}\left\{ \frac { \sin ( n x ) } { x ^ { n } + n ^ { 2 } } \right\} Assume that the first term has index 1.
Question
Provide the first five terms of the sequence {nn2}\left\{ \frac { \sqrt { n } } { n ^ { 2 } } \right\} Assume that the first term has index
Question
Find the least upper bound and the greatest lower bound of the sequence: {2n}\left\{ \frac { 2 } { n } \right\}
Question
Find the least upper bound and the greatest lower bound of the sequence: {13,12,35,23,57,34,}\left\{ \frac { 1 } { 3 } , \frac { 1 } { 2 } , \frac { 3 } { 5 } , \frac { 2 } { 3 } , \frac { 5 } { 7 } , \frac { 3 } { 4 } , \ldots \right\}
Question
Write the arithmetic sequence {2,8,18,28,}\{ - 2,8,18,28 , \ldots \} in the form: {c+dk}k=0\{ c + d k \} _ { k = 0 } ^ { \infty }

A) {2+8k}k=0\{ - 2 + 8 k \} _ { k = 0 } ^ { \infty }
B) {2+10k}\{ - 2 + 10 k \}
C) {2+10k}k=0\{ - 2 + 10 k \} _ { k = 0 } ^ { \infty }
D) none of these
Question
Write the arithmetic sequence {3,4.1,5.2,6.3,7.4,8.5,}\{ 3,4.1,5.2,6.3,7.4,8.5 , \ldots \} in the form: {c+dk}k=0\{ c + d k \} _ { k = 0 } ^ { \infty }
Question
Give the first five terms of the geometric sequence {crk}k=0\left\{ c r ^ { k } \right\} _ { k = 0 } ^ { \infty } with c = 5, and r = 1/21 / 2

A) {54,56,58,12,512,}\left\{ \frac { 5 } { 4 } , \frac { 5 } { 6 } , \frac { 5 } { 8 } , \frac { 1 } { 2 } , \frac { 5 } { 12 } , \ldots \right\}
B) {5,52,54,58,516,}\left\{ 5 , \frac { 5 } { 2 } , \frac { 5 } { 4 } , \frac { 5 } { 8 } , \frac { 5 } { 16 } , \ldots \right\}
C) {5,54,58,516,532,}\left\{ 5 , \frac { 5 } { 4 } , \frac { 5 } { 8 } , \frac { 5 } { 16 } , \frac { 5 } { 32 } , \ldots \right\}
D) none of these
Question
Give the first five terms of the geometric sequence {crk}k=0\left\{ c r ^ { k } \right\} _ { k = 0 } ^ { \infty } with c = 3, and r = - 1/21 / 2
Question
Use the difference test in Theorem 7.6 to analyze the monotonicity of the sequence {k2k}\left\{ k ^ { 2 } - k \right\} Assume that the first term has index 1.

A) Strictly decreasing
B) Eventually decreasing
C) Strictly increasing
D) Eventually increasing
Question
Use the difference test in Theorem 7.6 to analyze the monotonicity of the sequence {kk+3}\left\{ \frac { k } { k + 3 } \right\}

A) Strictly decreasing
B) Eventually decreasing
C) Eventually increasing
D) Strictly increasing
Question
Use the ratio test in Theorem 7.6 to analyze the monotonicity of the sequence {2k2k!}\left\{ \frac { 2 k ^ { 2 } } { k ! } \right\}

A) Strictly increasing
B) Eventually increasing
C) Strictly decreasing
D) Eventually decreasing
Question
Use the derivative test in Theorem 7.6 to analyze the monotonicity of the sequence {k3k}\left\{ k ^ { 3 } - k \right\} Assume that the first term has index 1.

A) Strictly decreasing
B) Eventually decreasing
C) Strictly increasing
D) Eventually increasing
Question
Use the derivative test in Theorem 7.6 to analyze the monotonicity of the sequence {k+2k}\left\{ \frac { \sqrt { k + 2 } } { k } \right\}

A) Strictly increasing
B) Strictly decreasing
C) Eventually decreasing
D) Eventually increasing
Question
Use the derivative test in Theorem 7.6 to analyze the monotonicity of the sequence {k2ek}\left\{ \frac { k ^ { 2 } } { e ^ { k } } \right\}

A) Strictly decreasing
B) Strictly increasing
C) Eventually decreasing
D) Eventually increasing
Question
Determine whether the sequence {k2ek}\left\{ \frac { k ^ { 2 } } { e ^ { k } } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 1
B) Monotonic, bounded, converges to 0
C) Eventually monotonic, bounded, converges to 1
D) Eventually monotonic, bounded, converges to 0
Question
Determine whether the sequence {21/k}\left\{ 2 ^ { 1 / k } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Eventually monotonic, bounded, converges to 0
B) Monotonic, unbounded, diverges
C) Monotonic, bounded, converges to 0
D) Monotonic, bounded, converges to 1
Question
Determine whether the sequence {cos(kπ)}\{ \cos ( k \pi ) \} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 1
B) Monotonic, unbounded, diverges
C) Not monotonic, bounded, diverges
D) Monotonic, bounded, converges to 0
Question
Determine whether the sequence {kk2+3k+2}\left\{ \frac { k } { k ^ { 2 } + 3 k + 2 } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 1
B) Monotonic, bounded, converges to 0
C) Eventually monotonic, bounded, converges to 0
D) Eventually monotonic, bounded, converges to 1
Question
Determine whether the sequence {coskk}\left\{ \frac { \cos k } { k } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 0
B) Not monotonic, bounded, diverges
C) Not monotonic, bounded, converges to 1
D) Not monotonic, bounded, converges to 0
Question
Determine whether the sequence {cos(kπ2)}\left\{ \cos \left( \frac { k \pi } { 2 } \right) \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 0
B) Monotonic, not bounded, diverges
C) Monotonic, bounded, converges to 1
D) Not monotonic, bounded, diverges
Question
Does the sequence {cosk2k}\left\{ \frac { \cos k } { 2 k } \right\} converge? If it does, give the limit.

A) Converges to 1
B) Diverges
C) Converges to -1
D) Converges to 0
Question
Does the sequence {tan(kπ2)}\left\{ \tan \left( \frac { k \pi } { 2 } \right) \right\} converge? If it does, give the limit.

A) Converges to 1
B) Converges to 0
C) Diverges
D) Converges to -1
Question
Does the sequence {lnk2k}\left\{ \frac { \ln k } { 2 ^ { k } } \right\} converge? If it does, give the limit.

A) Converges to 1
B) Converges to 0
C) Converges to -1
D) Diverges
Question
Does the sequence {lnk3k!}\left\{ \frac { \ln k } { 3 k ! } \right\} converge? If it does, give the limit.

A) Diverges
B) Converges to 1
C) Converges to -1
D) Converges to 0
Question
Does the sequence {5kk!}\left\{ \frac { 5 ^ { k } } { k ! } \right\} converge? If it does, give the limit.

A) Diverges
B) Converges to 1
C) Converges to 0
D) Converges to -1
Question
Does the sequence {kekek}\left\{ \frac { k - e ^ { - k } } { e ^ { k } } \right\} converge? If it does, give the limit.

A) Converges to 1
B) Converges to 0
C) Converges to -1
D) Diverges
Question
Provide the first five terms of the series n=1n+2n!\sum _ { n = 1 } ^ { \infty } \frac { n + 2 } { n ! }
Question
Provide the first five terms of the series n=0(1)n3(n!)\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 3 ( n ! ) }
Question
Provide the first five terms of the series n=12n2+1\sum _ { n = 1 } ^ { \infty } \frac { 2 } { n ^ { 2 } + 1 }
Question
Provide the first four terms of the sequence of partial sums for the series n=1n+2n!\sum _ { n = 1 } ^ { \infty } \frac { n + 2 } { n ! }
Question
Provide the first four terms of the sequence of partial sums for the series n=2(2n+3)\sum _ { n = 2 } ^ { \infty } ( 2 n + 3 )
Question
Does the series k=042k\sum _ { k = 0 } ^ { \infty } \frac { 4 } { 2 ^ { k } } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 4
B) Converges, sum is 8
C) Diverges
D) Converges, sum is 2
Question
Does the series k=23k2\sum _ { k = 2 } ^ { \infty } \frac { 3 ^ { k } } { 2 } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 3
B) Converges, sum is 3/2
C) Diverges
D) Converges, sum is 1
Question
Does the series k=2(1)k2k+1\sum _ { k = 2 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 ^ { k + 1 } } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 1/21 / 2
B) Converges, sum is 1/41 / 4
C) Converges, sum is 1/12
D) Diverges
Question
Does the series k=2(25)k\sum _ { k = 2 } ^ { \infty } \left( - \frac { 2 } { 5 } \right) ^ { k } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 2/5
B) Converges, sum is 4/25
C) Diverges
D) Converges, sum is 4/35
Question
Does the series k=03k+14k\sum _ { k = 0 } ^ { \infty } \frac { 3 ^ { k + 1 } } { 4 ^ { k } } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 3/43 / 4
B) Converges, sum is 3/16
C) Converges, sum is 12
D) Diverges
Question
Does the series k=1(1k1k+3)\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 } { k } - \frac { 1 } { k + 3 } \right) converge or diverge? If it converges, then find the sum.

A) Diverges
B) Converges, sum is 5/6
C) Converges, sum is 11/6
D) Converges, sum is 1/3
Question
Does the series k=14k2+k\sum _ { k = 1 } ^ { \infty } \frac { 4 } { k ^ { 2 } + k } converge or diverge? If it converges, then find the sum.

A) Diverges
B) Converges, sum is 2
C) Converges, sum is 8
D) Converges, sum is 4
Question
Does the series k=15k2+3k+2\sum _ { k = 1 } ^ { \infty } \frac { 5 } { k ^ { 2 } + 3 k + 2 } converge or diverge? If it converges, then find the sum.

A) Diverges
B) Converges, sum is 5/2
C) Converges, sum is 5/3
D) Converges, sum is 2/3
Question
Use divergence test to analyze the series n=11n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n }
Question
Use divergence test to analyze the series n=11n2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } }
Question
Use divergence test to analyze the series n=1n4n+3\sum _ { n = 1 } ^ { \infty } \frac { n } { 4 n + 3 }
Question
Use integral test to determine whether the series n=1nen\sum _ { n = 1 } ^ { \infty } \frac { n } { e ^ { n } } converges or diverges.
Question
Use integral test to determine whether the series n=21nlnn\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n \ln n } converges or diverges.
Question
Use integral test to determine whether the series n=12+nn2\sum _ { n = 1 } ^ { \infty } \frac { 2 + n } { n ^ { 2 } } converges or diverges.
Question
Use either divergence or integral test to determine whether the series k=1kk2+1\sum _ { k = 1 } ^ { \infty } \frac { k } { k ^ { 2 } + 1 } converges or diverges.
Question
Use either divergence or integral test to determine whether the series k=123k+1\sum _ { k = 1 } ^ { \infty } \frac { 2 } { 3 k + 1 } converges or diverges.
Question
Use either divergence or integral test to determine whether the series k=1lnk2k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { 2 k } converges or diverges.
Question
Use either divergence or integral test to determine whether the series k=12k2\sum _ { k = 1 } ^ { \infty } \frac { 2 } { k ^ { 2 } } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=12+lnkk\sum _ { k = 1 } ^ { \infty } \frac { 2 + \ln k } { k } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=02k2+1k3+k2+3\sum _ { k = 0 } ^ { \infty } \frac { 2 k ^ { 2 } + 1 } { k ^ { 3 } + k ^ { 2 } + 3 } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=11+lnkk2\sum _ { k = 1 } ^ { \infty } \frac { 1 + \ln k } { k ^ { 2 } } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=1sin2kk2\sum _ { k = 1 } ^ { \infty } \frac { \sin ^ { 2 } k } { k ^ { 2 } } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=121+k2\sum _ { k = 1 } ^ { \infty } \frac { 2 } { 1 + k ^ { 2 } } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=141+3k\sum _ { k = 1 } ^ { \infty } \frac { 4 } { 1 + 3 k } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=1sin(2k)\sum _ { k = 1 } ^ { \infty } \sin \left( \frac { 2 } { k } \right) converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=1kk2+1\sum _ { k = 1 } ^ { \infty } \frac { \sqrt { k } } { k ^ { 2 } + 1 } converges or diverges.
Question
Use one of the comparison tests to determine whether the series k=1lnk2k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { 2 k } converges or diverges.
Question
Use ratio test to determine whether the series k=03kk!\sum _ { k = 0 } ^ { \infty } \frac { 3 ^ { k } } { k ! } converges or diverges.
Question
Use ratio test to determine whether the series k=12kk5\sum _ { k = 1 } ^ { \infty } \frac { 2 ^ { k } } { k ^ { 5 } } converges or diverges.
Question
Use ratio test to determine whether the series k=1k!(3k)!\sum _ { k = 1 } ^ { \infty } \frac { k ! } { ( 3 k ) ! } converges or diverges.
Question
Use ratio test to determine whether the series k=122k1(2k1)!\sum _ { k = 1 } ^ { \infty } \frac { 2 ^ { 2 k - 1 } } { ( 2 k - 1 ) ! } converges or diverges.
Question
Use ratio test to determine whether the series k=1(2k)!(k+1)!\sum _ { k = 1 } ^ { \infty } \frac { ( 2 k ) ! } { ( k + 1 ) ! } converges or diverges.
Question
Use root test to determine whether the series k=13kk2\sum _ { k = 1 } ^ { \infty } \frac { 3 ^ { k } } { k ^ { 2 } } converges or diverges.
Question
Use root test to determine whether the series k=2(2lnk)k\sum _ { k = 2 } ^ { \infty } \left( \frac { 2 } { \ln k } \right) ^ { k } converges or diverges.
Question
Use root test to determine whether the series k=1(1+3k4k1)k\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 + 3 k } { 4 k - 1 } \right) ^ { k } converges or diverges.
Question
Use root test to determine whether the series k=1(1+5k3k1)k\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 + 5 k } { 3 k - 1 } \right) ^ { k } converges or diverges.
Question
Use root test to determine whether the series k=12kkk\sum _ { k = 1 } ^ { \infty } \frac { 2 ^ { k } } { k ^ { k } } converges or diverges.
Question
Use any convergence test to determine whether the series k=1(1+k2k+1)k\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 + k } { 2 k + 1 } \right) ^ { k } converges or diverges.
Question
Use any convergence test to determine whether the series k=1k23k\sum _ { k = 1 } ^ { \infty } \frac { k ^ { 2 } } { 3 ^ { k } } converges or diverges.
Question
Use any convergence test to determine whether the series k=132+k\sum _ { k = 1 } ^ { \infty } \frac { 3 } { 2 + k } converges or diverges.
Question
Use any convergence test to determine whether the series k=12k(1+k)\sum _ { k = 1 } ^ { \infty } \frac { 2 } { k ( 1 + k ) } converges or diverges.
Question
Use any convergence test to determine whether the series k=1k1+2k3\sum _ { k = 1 } ^ { \infty } \frac { k } { 1 + 2 k ^ { 3 } } converges or diverges.
Question
Use any convergence test to determine whether the series k=13k(k+1)!\sum _ { k = 1 } ^ { \infty } \frac { 3 ^ { k } } { ( k + 1 ) ! } converges or diverges.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/87
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Sequences and Series
1
Find a possible formula for the general term of the given sequence, assume that the first term has index 1.{1, 4, 7, 10, 13, …}

A) {2n - 1}
B) {3n + 1}
C) {3n - 2}
D) {2n+1}n=0\{ 2 n + 1 \} _ { n = 0 } ^ { \infty }
C
2
Find a possible formula for the general term of the given sequence, assume that the first term has index 0. {13,25,37,49,}\left\{ \frac { 1 } { 3 } , \frac { 2 } { 5 } , \frac { 3 } { 7 } , \frac { 4 } { 9 } , \ldots \right\}

A) {n12n+1}n=0\left\{ \frac { n - 1 } { 2 n + 1 } \right\} _ { n = 0 } ^ { \infty }
B) {2n14n1}\left\{ \frac { 2 n - 1 } { 4 n - 1 } \right\}
C) {n12n+3}n=0\left\{ \frac { n - 1 } { 2 n + 3 } \right\} _ { n = 0 } ^ { \infty }
D) {n+12n+3}n=0\left\{ \frac { n + 1 } { 2 n + 3 } \right\} _ { n = 0 } ^ { \infty }
D
3
Find a possible formula for the general term of the given sequence, assume that the first term has index 1. {15,225,3125,4625,}\left\{ \frac { 1 } { 5 } , \frac { 2 } { 25 } , \frac { 3 } { 125 } , \frac { 4 } { 625 } , \ldots \right\}

A) {n+25n}\left\{ \frac { n + 2 } { 5 ^ { n } } \right\}
B) {n5n}\left\{ \frac { n } { 5 ^ { n } } \right\}
C) {n+15n}\left\{ \frac { n + 1 } { 5 ^ { n } } \right\}
D) {n25n}\left\{ \frac { n ^ { 2 } } { 5 ^ { n } } \right\}
B
4
Find a possible formula for the general term of the given sequence, assume that the first term has index 0. {3,32,34,38,316,}\left\{ 3 , \frac { - 3 } { 2 } , \frac { 3 } { 4 } , \frac { - 3 } { 8 } , \frac { 3 } { 16 } , \ldots \right\}
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
5
Provide the first five terms of the sequence: {1(1)nn+1}\left\{ \frac { 1 - ( - 1 ) ^ { n } } { n + 1 } \right\} Assume that the first term has index 1.

A) {12,0,13,0,14,}\left\{ \frac { 1 } { 2 } , 0 , \frac { 1 } { 3 } , 0 , \frac { 1 } { 4 } , \ldots \right\}
B) {0,1,0,12,0,}\left\{ 0,1,0 , \frac { 1 } { 2 } , 0 , \ldots \right\}
C) {1,0,12,0,13,}\left\{ 1,0 , \frac { 1 } { 2 } , 0 , \frac { 1 } { 3 } , \ldots \right\}
D) {1,12,13,14,15,}\left\{ 1 , \frac { 1 } { 2 } , \frac { 1 } { 3 } , \frac { 1 } { 4 } , \frac { 1 } { 5 } , \ldots \right\}
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
6
Provide the first five terms of the sequence: {2n3n1}\left\{ \frac { 2 n } { 3 n - 1 } \right\} Assume that the first term has index 1.

A) {0,1,45,34,811,}\left\{ 0,1 , \frac { 4 } { 5 } , \frac { 3 } { 4 } , \frac { 8 } { 11 } , \ldots \right\}
B) {1,23,45,34,811,}\left\{ 1 , \frac { 2 } { 3 } , \frac { 4 } { 5 } , \frac { 3 } { 4 } , \frac { 8 } { 11 } , \ldots \right\}
C) {1,45,34,811,57,}\left\{ 1 , \frac { 4 } { 5 } , \frac { 3 } { 4 } , \frac { 8 } { 11 } , \frac { 5 } { 7 } , \ldots \right\}
D) {0,1,23,35,47,}\left\{ 0,1 , \frac { 2 } { 3 } , \frac { 3 } { 5 } , \frac { 4 } { 7 } , \ldots \right\}
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
7
Provide the first five terms of the sequence {sin(nx)xn+n2}\left\{ \frac { \sin ( n x ) } { x ^ { n } + n ^ { 2 } } \right\} Assume that the first term has index 1.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
8
Provide the first five terms of the sequence {nn2}\left\{ \frac { \sqrt { n } } { n ^ { 2 } } \right\} Assume that the first term has index
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
9
Find the least upper bound and the greatest lower bound of the sequence: {2n}\left\{ \frac { 2 } { n } \right\}
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
10
Find the least upper bound and the greatest lower bound of the sequence: {13,12,35,23,57,34,}\left\{ \frac { 1 } { 3 } , \frac { 1 } { 2 } , \frac { 3 } { 5 } , \frac { 2 } { 3 } , \frac { 5 } { 7 } , \frac { 3 } { 4 } , \ldots \right\}
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
11
Write the arithmetic sequence {2,8,18,28,}\{ - 2,8,18,28 , \ldots \} in the form: {c+dk}k=0\{ c + d k \} _ { k = 0 } ^ { \infty }

A) {2+8k}k=0\{ - 2 + 8 k \} _ { k = 0 } ^ { \infty }
B) {2+10k}\{ - 2 + 10 k \}
C) {2+10k}k=0\{ - 2 + 10 k \} _ { k = 0 } ^ { \infty }
D) none of these
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
12
Write the arithmetic sequence {3,4.1,5.2,6.3,7.4,8.5,}\{ 3,4.1,5.2,6.3,7.4,8.5 , \ldots \} in the form: {c+dk}k=0\{ c + d k \} _ { k = 0 } ^ { \infty }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
13
Give the first five terms of the geometric sequence {crk}k=0\left\{ c r ^ { k } \right\} _ { k = 0 } ^ { \infty } with c = 5, and r = 1/21 / 2

A) {54,56,58,12,512,}\left\{ \frac { 5 } { 4 } , \frac { 5 } { 6 } , \frac { 5 } { 8 } , \frac { 1 } { 2 } , \frac { 5 } { 12 } , \ldots \right\}
B) {5,52,54,58,516,}\left\{ 5 , \frac { 5 } { 2 } , \frac { 5 } { 4 } , \frac { 5 } { 8 } , \frac { 5 } { 16 } , \ldots \right\}
C) {5,54,58,516,532,}\left\{ 5 , \frac { 5 } { 4 } , \frac { 5 } { 8 } , \frac { 5 } { 16 } , \frac { 5 } { 32 } , \ldots \right\}
D) none of these
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
14
Give the first five terms of the geometric sequence {crk}k=0\left\{ c r ^ { k } \right\} _ { k = 0 } ^ { \infty } with c = 3, and r = - 1/21 / 2
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
15
Use the difference test in Theorem 7.6 to analyze the monotonicity of the sequence {k2k}\left\{ k ^ { 2 } - k \right\} Assume that the first term has index 1.

A) Strictly decreasing
B) Eventually decreasing
C) Strictly increasing
D) Eventually increasing
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
16
Use the difference test in Theorem 7.6 to analyze the monotonicity of the sequence {kk+3}\left\{ \frac { k } { k + 3 } \right\}

A) Strictly decreasing
B) Eventually decreasing
C) Eventually increasing
D) Strictly increasing
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
17
Use the ratio test in Theorem 7.6 to analyze the monotonicity of the sequence {2k2k!}\left\{ \frac { 2 k ^ { 2 } } { k ! } \right\}

A) Strictly increasing
B) Eventually increasing
C) Strictly decreasing
D) Eventually decreasing
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
18
Use the derivative test in Theorem 7.6 to analyze the monotonicity of the sequence {k3k}\left\{ k ^ { 3 } - k \right\} Assume that the first term has index 1.

A) Strictly decreasing
B) Eventually decreasing
C) Strictly increasing
D) Eventually increasing
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
19
Use the derivative test in Theorem 7.6 to analyze the monotonicity of the sequence {k+2k}\left\{ \frac { \sqrt { k + 2 } } { k } \right\}

A) Strictly increasing
B) Strictly decreasing
C) Eventually decreasing
D) Eventually increasing
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
20
Use the derivative test in Theorem 7.6 to analyze the monotonicity of the sequence {k2ek}\left\{ \frac { k ^ { 2 } } { e ^ { k } } \right\}

A) Strictly decreasing
B) Strictly increasing
C) Eventually decreasing
D) Eventually increasing
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
21
Determine whether the sequence {k2ek}\left\{ \frac { k ^ { 2 } } { e ^ { k } } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 1
B) Monotonic, bounded, converges to 0
C) Eventually monotonic, bounded, converges to 1
D) Eventually monotonic, bounded, converges to 0
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
22
Determine whether the sequence {21/k}\left\{ 2 ^ { 1 / k } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Eventually monotonic, bounded, converges to 0
B) Monotonic, unbounded, diverges
C) Monotonic, bounded, converges to 0
D) Monotonic, bounded, converges to 1
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
23
Determine whether the sequence {cos(kπ)}\{ \cos ( k \pi ) \} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 1
B) Monotonic, unbounded, diverges
C) Not monotonic, bounded, diverges
D) Monotonic, bounded, converges to 0
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
24
Determine whether the sequence {kk2+3k+2}\left\{ \frac { k } { k ^ { 2 } + 3 k + 2 } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 1
B) Monotonic, bounded, converges to 0
C) Eventually monotonic, bounded, converges to 0
D) Eventually monotonic, bounded, converges to 1
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
25
Determine whether the sequence {coskk}\left\{ \frac { \cos k } { k } \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 0
B) Not monotonic, bounded, diverges
C) Not monotonic, bounded, converges to 1
D) Not monotonic, bounded, converges to 0
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
26
Determine whether the sequence {cos(kπ2)}\left\{ \cos \left( \frac { k \pi } { 2 } \right) \right\} is monotonic or eventually monotonic and whether the sequence is bounded. If the sequence is convergent, find the limit.

A) Monotonic, bounded, converges to 0
B) Monotonic, not bounded, diverges
C) Monotonic, bounded, converges to 1
D) Not monotonic, bounded, diverges
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
27
Does the sequence {cosk2k}\left\{ \frac { \cos k } { 2 k } \right\} converge? If it does, give the limit.

A) Converges to 1
B) Diverges
C) Converges to -1
D) Converges to 0
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
28
Does the sequence {tan(kπ2)}\left\{ \tan \left( \frac { k \pi } { 2 } \right) \right\} converge? If it does, give the limit.

A) Converges to 1
B) Converges to 0
C) Diverges
D) Converges to -1
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
29
Does the sequence {lnk2k}\left\{ \frac { \ln k } { 2 ^ { k } } \right\} converge? If it does, give the limit.

A) Converges to 1
B) Converges to 0
C) Converges to -1
D) Diverges
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
30
Does the sequence {lnk3k!}\left\{ \frac { \ln k } { 3 k ! } \right\} converge? If it does, give the limit.

A) Diverges
B) Converges to 1
C) Converges to -1
D) Converges to 0
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
31
Does the sequence {5kk!}\left\{ \frac { 5 ^ { k } } { k ! } \right\} converge? If it does, give the limit.

A) Diverges
B) Converges to 1
C) Converges to 0
D) Converges to -1
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
32
Does the sequence {kekek}\left\{ \frac { k - e ^ { - k } } { e ^ { k } } \right\} converge? If it does, give the limit.

A) Converges to 1
B) Converges to 0
C) Converges to -1
D) Diverges
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
33
Provide the first five terms of the series n=1n+2n!\sum _ { n = 1 } ^ { \infty } \frac { n + 2 } { n ! }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
34
Provide the first five terms of the series n=0(1)n3(n!)\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 3 ( n ! ) }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
35
Provide the first five terms of the series n=12n2+1\sum _ { n = 1 } ^ { \infty } \frac { 2 } { n ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
36
Provide the first four terms of the sequence of partial sums for the series n=1n+2n!\sum _ { n = 1 } ^ { \infty } \frac { n + 2 } { n ! }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
37
Provide the first four terms of the sequence of partial sums for the series n=2(2n+3)\sum _ { n = 2 } ^ { \infty } ( 2 n + 3 )
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
38
Does the series k=042k\sum _ { k = 0 } ^ { \infty } \frac { 4 } { 2 ^ { k } } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 4
B) Converges, sum is 8
C) Diverges
D) Converges, sum is 2
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
39
Does the series k=23k2\sum _ { k = 2 } ^ { \infty } \frac { 3 ^ { k } } { 2 } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 3
B) Converges, sum is 3/2
C) Diverges
D) Converges, sum is 1
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
40
Does the series k=2(1)k2k+1\sum _ { k = 2 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 ^ { k + 1 } } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 1/21 / 2
B) Converges, sum is 1/41 / 4
C) Converges, sum is 1/12
D) Diverges
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
41
Does the series k=2(25)k\sum _ { k = 2 } ^ { \infty } \left( - \frac { 2 } { 5 } \right) ^ { k } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 2/5
B) Converges, sum is 4/25
C) Diverges
D) Converges, sum is 4/35
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
42
Does the series k=03k+14k\sum _ { k = 0 } ^ { \infty } \frac { 3 ^ { k + 1 } } { 4 ^ { k } } converge or diverge? If it converges, then find the sum.

A) Converges, sum is 3/43 / 4
B) Converges, sum is 3/16
C) Converges, sum is 12
D) Diverges
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
43
Does the series k=1(1k1k+3)\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 } { k } - \frac { 1 } { k + 3 } \right) converge or diverge? If it converges, then find the sum.

A) Diverges
B) Converges, sum is 5/6
C) Converges, sum is 11/6
D) Converges, sum is 1/3
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
44
Does the series k=14k2+k\sum _ { k = 1 } ^ { \infty } \frac { 4 } { k ^ { 2 } + k } converge or diverge? If it converges, then find the sum.

A) Diverges
B) Converges, sum is 2
C) Converges, sum is 8
D) Converges, sum is 4
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
45
Does the series k=15k2+3k+2\sum _ { k = 1 } ^ { \infty } \frac { 5 } { k ^ { 2 } + 3 k + 2 } converge or diverge? If it converges, then find the sum.

A) Diverges
B) Converges, sum is 5/2
C) Converges, sum is 5/3
D) Converges, sum is 2/3
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
46
Use divergence test to analyze the series n=11n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
47
Use divergence test to analyze the series n=11n2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
48
Use divergence test to analyze the series n=1n4n+3\sum _ { n = 1 } ^ { \infty } \frac { n } { 4 n + 3 }
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
49
Use integral test to determine whether the series n=1nen\sum _ { n = 1 } ^ { \infty } \frac { n } { e ^ { n } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
50
Use integral test to determine whether the series n=21nlnn\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n \ln n } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
51
Use integral test to determine whether the series n=12+nn2\sum _ { n = 1 } ^ { \infty } \frac { 2 + n } { n ^ { 2 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
52
Use either divergence or integral test to determine whether the series k=1kk2+1\sum _ { k = 1 } ^ { \infty } \frac { k } { k ^ { 2 } + 1 } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
53
Use either divergence or integral test to determine whether the series k=123k+1\sum _ { k = 1 } ^ { \infty } \frac { 2 } { 3 k + 1 } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
54
Use either divergence or integral test to determine whether the series k=1lnk2k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { 2 k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
55
Use either divergence or integral test to determine whether the series k=12k2\sum _ { k = 1 } ^ { \infty } \frac { 2 } { k ^ { 2 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
56
Use one of the comparison tests to determine whether the series k=12+lnkk\sum _ { k = 1 } ^ { \infty } \frac { 2 + \ln k } { k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
57
Use one of the comparison tests to determine whether the series k=02k2+1k3+k2+3\sum _ { k = 0 } ^ { \infty } \frac { 2 k ^ { 2 } + 1 } { k ^ { 3 } + k ^ { 2 } + 3 } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
58
Use one of the comparison tests to determine whether the series k=11+lnkk2\sum _ { k = 1 } ^ { \infty } \frac { 1 + \ln k } { k ^ { 2 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
59
Use one of the comparison tests to determine whether the series k=1sin2kk2\sum _ { k = 1 } ^ { \infty } \frac { \sin ^ { 2 } k } { k ^ { 2 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
60
Use one of the comparison tests to determine whether the series k=121+k2\sum _ { k = 1 } ^ { \infty } \frac { 2 } { 1 + k ^ { 2 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
61
Use one of the comparison tests to determine whether the series k=141+3k\sum _ { k = 1 } ^ { \infty } \frac { 4 } { 1 + 3 k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
62
Use one of the comparison tests to determine whether the series k=1sin(2k)\sum _ { k = 1 } ^ { \infty } \sin \left( \frac { 2 } { k } \right) converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
63
Use one of the comparison tests to determine whether the series k=1kk2+1\sum _ { k = 1 } ^ { \infty } \frac { \sqrt { k } } { k ^ { 2 } + 1 } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
64
Use one of the comparison tests to determine whether the series k=1lnk2k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { 2 k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
65
Use ratio test to determine whether the series k=03kk!\sum _ { k = 0 } ^ { \infty } \frac { 3 ^ { k } } { k ! } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
66
Use ratio test to determine whether the series k=12kk5\sum _ { k = 1 } ^ { \infty } \frac { 2 ^ { k } } { k ^ { 5 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
67
Use ratio test to determine whether the series k=1k!(3k)!\sum _ { k = 1 } ^ { \infty } \frac { k ! } { ( 3 k ) ! } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
68
Use ratio test to determine whether the series k=122k1(2k1)!\sum _ { k = 1 } ^ { \infty } \frac { 2 ^ { 2 k - 1 } } { ( 2 k - 1 ) ! } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
69
Use ratio test to determine whether the series k=1(2k)!(k+1)!\sum _ { k = 1 } ^ { \infty } \frac { ( 2 k ) ! } { ( k + 1 ) ! } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
70
Use root test to determine whether the series k=13kk2\sum _ { k = 1 } ^ { \infty } \frac { 3 ^ { k } } { k ^ { 2 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
71
Use root test to determine whether the series k=2(2lnk)k\sum _ { k = 2 } ^ { \infty } \left( \frac { 2 } { \ln k } \right) ^ { k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
72
Use root test to determine whether the series k=1(1+3k4k1)k\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 + 3 k } { 4 k - 1 } \right) ^ { k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
73
Use root test to determine whether the series k=1(1+5k3k1)k\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 + 5 k } { 3 k - 1 } \right) ^ { k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
74
Use root test to determine whether the series k=12kkk\sum _ { k = 1 } ^ { \infty } \frac { 2 ^ { k } } { k ^ { k } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
75
Use any convergence test to determine whether the series k=1(1+k2k+1)k\sum _ { k = 1 } ^ { \infty } \left( \frac { 1 + k } { 2 k + 1 } \right) ^ { k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
76
Use any convergence test to determine whether the series k=1k23k\sum _ { k = 1 } ^ { \infty } \frac { k ^ { 2 } } { 3 ^ { k } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
77
Use any convergence test to determine whether the series k=132+k\sum _ { k = 1 } ^ { \infty } \frac { 3 } { 2 + k } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
78
Use any convergence test to determine whether the series k=12k(1+k)\sum _ { k = 1 } ^ { \infty } \frac { 2 } { k ( 1 + k ) } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
79
Use any convergence test to determine whether the series k=1k1+2k3\sum _ { k = 1 } ^ { \infty } \frac { k } { 1 + 2 k ^ { 3 } } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
80
Use any convergence test to determine whether the series k=13k(k+1)!\sum _ { k = 1 } ^ { \infty } \frac { 3 ^ { k } } { ( k + 1 ) ! } converges or diverges.
Unlock Deck
Unlock for access to all 87 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 87 flashcards in this deck.