Deck 3: Differentiation

Full screen (f)
exit full mode
Question
Find the slope of the tangent line to the curve y = 4x - <strong>Find the slope of the tangent line to the curve y = 4x -   at the point (-1, 0).</strong> A) -1 B) 2 C) 6 D)   E) -2 <div style=padding-top: 35px> at the point (-1, 0).

A) -1
B) 2
C) 6
D) <strong>Find the slope of the tangent line to the curve y = 4x -   at the point (-1, 0).</strong> A) -1 B) 2 C) 6 D)   E) -2 <div style=padding-top: 35px>
E) -2
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the equation of the tangent line to the curve y = 2x - <strong>Find the equation of the tangent line to the curve y = 2x -   at the point (2, 0).</strong> A) 2x + y - 4 = 0 B) 2x + y + 4 = 0 C) 2x - y - 4 = 0 D) 2x - y + 4 = 0 E) 2x + y = 0 <div style=padding-top: 35px> at the point (2, 0).

A) 2x + y - 4 = 0
B) 2x + y + 4 = 0
C) 2x - y - 4 = 0
D) 2x - y + 4 = 0
E) 2x + y = 0
Question
Find an equation of the line tangent to the curve y = 2x - <strong>Find an equation of the line tangent to the curve y = 2x -   at the point where x = 2.</strong> A) 25y = 49x - 1 B) 5y = 49x + 1 C) 25y = 49x + 1 D) 25y = 41x + 1 E) 25x = 49y + 1 <div style=padding-top: 35px> at the point where x = 2.

A) 25y = 49x - 1
B) 5y = 49x + 1
C) 25y = 49x + 1
D) 25y = 41x + 1
E) 25x = 49y + 1
Question
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   + 1 at the point where x = 2.</strong> A) y = 12x + 15 B) y = 12x -15 C) y = -12x -15 D) y = -12x + 15 E) y = 15x + 12 <div style=padding-top: 35px> + 1 at the point where x = 2.

A) y = 12x + 15
B) y = 12x -15
C) y = -12x -15
D) y = -12x + 15
E) y = 15x + 12
Question
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 2.</strong> A) y = -4x + 12 B) y = 4x - 4 C) y = -4x + 4 D) y = 4x + 4 E) y = 4x - 12 <div style=padding-top: 35px> at the point where x = 2.

A) y = -4x + 12
B) y = 4x - 4
C) y = -4x + 4
D) y = 4x + 4
E) y = 4x - 12
Question
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px> at the point where x = 11.

A) y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px> x + <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px>
B) y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px> x - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px>
C) y = 4x - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px>
D) y = 4x + <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px>
E) y = - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px> x - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   <div style=padding-top: 35px>
Question
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px> at the point (1, 3).

A) y = - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px> x + <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px>
B) y = - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px> x - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px>
C) y = <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px> x + <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px>
D) y = <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px> x - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 <div style=padding-top: 35px>
E) y = 3x - 10
Question
Let f(x) be a function such that = <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px> <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px> <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px> - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).

A) 3 <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px>
B) 1 - <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px>
C) -3 <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px>
D) <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px> - 1
E) <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px> <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <div style=padding-top: 35px> - a + C
Question
Find the point(s) on the curve y = <strong>Find the point(s) on the curve y =   such that the tangent lines to the curve at those points pass through (2, -12).</strong> A) (6, 36) and (-2, 4) B) (6, 36) and (2, 4) C) (-6, 36) and (-2, 4) D) (-6, 6) and (-2, 4) E) (6, -36) and (-2, 4) <div style=padding-top: 35px> such that the tangent lines to the curve at those points pass through (2, -12).

A) (6, 36) and (-2, 4)
B) (6, 36) and (2, 4)
C) (-6, 36) and (-2, 4)
D) (-6, 6) and (-2, 4)
E) (6, -36) and (-2, 4)
Question
Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.

A) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> - <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> = 1
B) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> = 9
C) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> = 9
D) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> = 8
E) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 <div style=padding-top: 35px> = 8
Question
If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y = <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <div style=padding-top: 35px> <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <div style=padding-top: 35px> + c, what is the value of c?

A) - <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Using the definition of the derivative, find the derivative of f(x) = <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> .

A) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the derivative <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   <div style=padding-top: 35px> (x) of the function f(x) = <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   <div style=padding-top: 35px> .

A) - <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   <div style=padding-top: 35px>
B) <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   <div style=padding-top: 35px>
C) - <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   <div style=padding-top: 35px>
D) - <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   <div style=padding-top: 35px>
E) <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   <div style=padding-top: 35px>
Question
Find the tangent line to the curve y = <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x <div style=padding-top: 35px> at the origin.

A) y = - <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x <div style=padding-top: 35px> x
B) y = x
C) y = <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x <div style=padding-top: 35px> x
D) y = - <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x <div style=padding-top: 35px> x
E) y = <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x <div style=padding-top: 35px> x
Question
Where is the function f(x) =  <strong>Where is the function f(x) =    differentiable?</strong> A) at every x     (- \infty ,  \infty ) B) at every x     (- \infty , 0)     (0,  \infty ) C) at every x     (- \infty , 3)   (3,  \infty ) D) at every x    (- \infty , 0)   (0, 3)    (3,  \infty ) E) none of the above <div style=padding-top: 35px>  differentiable?

A) at every x  <strong>Where is the function f(x) =    differentiable?</strong> A) at every x     (- \infty ,  \infty ) B) at every x     (- \infty , 0)     (0,  \infty ) C) at every x     (- \infty , 3)   (3,  \infty ) D) at every x    (- \infty , 0)   (0, 3)    (3,  \infty ) E) none of the above <div style=padding-top: 35px>  (- ∞\infty , ∞\infty )
B) at every x 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (- ∞\infty , 0) 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (0, ∞\infty )
C) at every x 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (- ∞\infty , 3)  <strong>Where is the function f(x) =    differentiable?</strong> A) at every x     (- \infty ,  \infty ) B) at every x     (- \infty , 0)     (0,  \infty ) C) at every x     (- \infty , 3)   (3,  \infty ) D) at every x    (- \infty , 0)   (0, 3)    (3,  \infty ) E) none of the above <div style=padding-top: 35px>  (3, ∞\infty )
D) at every x 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (- ∞\infty , 0) 11ee7b09_453f_4329_ae82_2b7669cf7fd7_TB9661_11 (0, 3) 11ee7b09_453f_4329_ae82_2b7669cf7fd7_TB9661_11 (3, ∞\infty )
E) none of the above
Question
Find the equation of the straight line that passes through the point P(0,- 3) and is tangent to the curve <strong>Find the equation of the straight line that passes through the point P(0,- 3) and is tangent to the curve   .</strong> A) y = -3 B) y = 2x - 3 C) y = -3x D) y = -x - 3 E) y = x - 3 <div style=padding-top: 35px> .

A) y = -3
B) y = 2x - 3
C) y = -3x
D) y = -x - 3
E) y = x - 3
Question
If f(x) = <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px> ( <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px> ), calculate f'(5) by using the definition of the derivative.

A) <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px>
B) - <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px>
C) - <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px>
D) - <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px> <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px>
E) <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <div style=padding-top: 35px>
Question
Find the slope of the line tangent to the curve <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   <div style=padding-top: 35px> y = 1 at the point <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   <div style=padding-top: 35px> .

A) <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   <div style=padding-top: 35px>
B) - <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   <div style=padding-top: 35px>
C) - <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   <div style=padding-top: 35px>
Question
If f(x) = <strong>If f(x) =   , calculate f'(-2) directly from the definition of the derivative.</strong> A) 3 B) 3   C) -3 D) 4 E) 2 <div style=padding-top: 35px> , calculate f'(-2) directly from the definition of the derivative.

A) 3
B) 3 <strong>If f(x) =   , calculate f'(-2) directly from the definition of the derivative.</strong> A) 3 B) 3   C) -3 D) 4 E) 2 <div style=padding-top: 35px>
C) -3
D) 4
E) 2
Question
Let g(x) be a function such that <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px> = - <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px> . Find <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px> (x).

A) <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px>
B) - <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px>
C) - <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px>
D) <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px>
E) <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px> <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <div style=padding-top: 35px>
Question
Calculate the derivative of g(t) = <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px> + <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px> using the general power rule.

A) 101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px> - 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px>
B) 101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px> - 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px>
C) -101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px> - 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px>
D) 100 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px> - 98 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px>
E) 101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px> + 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   <div style=padding-top: 35px>
Question
If f(x) is an even, differentiable function, then <strong>If f(x) is an even, differentiable function, then   (x)</strong> A) is an odd function. B) is an even function. C) is neither odd nor even. D) may be either even or odd or neither. <div style=padding-top: 35px> (x)

A) is an odd function.
B) is an even function.
C) is neither odd nor even.
D) may be either even or odd or neither.
Question
If the curve y = f(x) has a tangent line at (a, f(a)), then f is differentiable at x = a.
Question
If =  If =     - \infty , then the graph of f has a tangent line at x = a.<div style=padding-top: 35px>   If =     - \infty , then the graph of f has a tangent line at x = a.<div style=padding-top: 35px>  - ∞\infty , then the graph of f has a tangent line at x = a.
Question
If f is continuous at x = a, then f is differentiable at x = a.
Question
If If     exists, then f is continuous at x = a.<div style=padding-top: 35px> If     exists, then f is continuous at x = a.<div style=padding-top: 35px> exists, then f is continuous at x = a.
Question
The domain of the derivative of a function is the same as the domain of the function.
Question
Differentiate f(x) = 10 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x <div style=padding-top: 35px> .

A) 10 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x <div style=padding-top: 35px>
B) 50 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x <div style=padding-top: 35px>
C) 55 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x <div style=padding-top: 35px>
D) 50 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x <div style=padding-top: 35px>
E) 50x
Question
Find <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> if y = 4 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 3 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + x - 6.

A) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> - 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 1
B) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 1
C) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 1
D) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> - 6
E) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 <div style=padding-top: 35px> - 5
Question
Differentiate the function f(x) = (2 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> + 5)(3 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> - x).

A) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> - 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> + 30x - 5
B) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> - 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> + 30x + 5
C) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> + 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> + 30x - 5
D) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> + 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> - 30x - 5
E) 36 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px> - 6 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   <div style=padding-top: 35px>
Question
Find the equation of the tangent line to the curve y = (2 - <strong>Find the equation of the tangent line to the curve y = (2 -   )(1 +   + 3x) at the point (1, 5).</strong> A) x - y + 4 = 0 B) x + y - 6 = 0 C) x - y - 4 = 0 D) 6x - y - 1 = 0 E) x + y + 4 = 0 <div style=padding-top: 35px> )(1 + <strong>Find the equation of the tangent line to the curve y = (2 -   )(1 +   + 3x) at the point (1, 5).</strong> A) x - y + 4 = 0 B) x + y - 6 = 0 C) x - y - 4 = 0 D) 6x - y - 1 = 0 E) x + y + 4 = 0 <div style=padding-top: 35px> + 3x) at the point (1, 5).

A) x - y + 4 = 0
B) x + y - 6 = 0
C) x - y - 4 = 0
D) 6x - y - 1 = 0
E) x + y + 4 = 0
Question
Find the points on the curve y = <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> - 6 <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> + 4 where the tangent line is horizontal.

A) ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , -5) and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , -5)
B) (0, 4), ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , -5), and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , -5)
C) (0, 4), (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , 5), and ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , -5)
D) (0, 4), ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , -5), and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , -5)
E) ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , 5) and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) <div style=padding-top: 35px> , 5)
Question
Given g(x) = <strong>Given g(x) =   which of the following statements is true?</strong> A) g is differentiable at x = -1 B) g is not differentiable at x = -1 C)   (-1) = -4 D) g is continuous at x = -1 E) g is continuous from the left at x = -1 <div style=padding-top: 35px> which of the following statements is true?

A) g is differentiable at x = -1
B) g is not differentiable at x = -1
C) <strong>Given g(x) =   which of the following statements is true?</strong> A) g is differentiable at x = -1 B) g is not differentiable at x = -1 C)   (-1) = -4 D) g is continuous at x = -1 E) g is continuous from the left at x = -1 <div style=padding-top: 35px> (-1) = -4
D) g is continuous at x = -1
E) g is continuous from the left at x = -1
Question
Lines passing through the point (0, 2) are tangent to the graph of y = - <strong>Lines passing through the point (0, 2) are tangent to the graph of y = -   . Find the points of tangency.</strong> A) (1, -1) and (-1, 1) B) (2, -8) and (-2, -8) C) (1, -1) and (-2, -8) D) (2, -8) and (-1, 1) E) (1, 1) and (-1, -1) <div style=padding-top: 35px> . Find the points of tangency.

A) (1, -1) and (-1, 1)
B) (2, -8) and (-2, -8)
C) (1, -1) and (-2, -8)
D) (2, -8) and (-1, 1)
E) (1, 1) and (-1, -1)
Question
Where does the normal line to the curve y = x - <strong>Where does the normal line to the curve y = x -   at the point (1, 0) intersect the curve a second time?</strong> A) (-2, -6) B) (-   , -   ) C) (-1, -2) D) (0, 0) E) It does not intersect the curve a second time. <div style=padding-top: 35px> at the point (1, 0) intersect the curve a second time?

A) (-2, -6)
B) (- <strong>Where does the normal line to the curve y = x -   at the point (1, 0) intersect the curve a second time?</strong> A) (-2, -6) B) (-   , -   ) C) (-1, -2) D) (0, 0) E) It does not intersect the curve a second time. <div style=padding-top: 35px> , - <strong>Where does the normal line to the curve y = x -   at the point (1, 0) intersect the curve a second time?</strong> A) (-2, -6) B) (-   , -   ) C) (-1, -2) D) (0, 0) E) It does not intersect the curve a second time. <div style=padding-top: 35px> )
C) (-1, -2)
D) (0, 0)
E) It does not intersect the curve a second time.
Question
Which of the following statements is always true?

A) If f is continuous at c, then it must be differentiable at c.
B) If f is differentiable at c, then it must be continuous at c.
C) If f is not differentiable at c, then it must be discontinuous at c.
D) If <strong>Which of the following statements is always true?</strong> A) If f is continuous at c, then it must be differentiable at c. B) If f is differentiable at c, then it must be continuous at c. C) If f is not differentiable at c, then it must be discontinuous at c. D) If   f(c + h) = f(c), then f must be differentiable at c. E) All of the above <div style=padding-top: 35px> f(c + h) = f(c), then f must be differentiable at c.
E) All of the above
Question
How many tangent lines to the graph of y = <strong>How many tangent lines to the graph of y =   -15   - 10 pass through the point (0, 2)?</strong> A) 0 B) 1 C) 2 D) 3 E) 4 <div style=padding-top: 35px> -15 <strong>How many tangent lines to the graph of y =   -15   - 10 pass through the point (0, 2)?</strong> A) 0 B) 1 C) 2 D) 3 E) 4 <div style=padding-top: 35px> - 10 pass through the point (0, 2)?

A) 0
B) 1
C) 2
D) 3
E) 4
Question
Let f(x) = <strong>Let f(x) =   .Find all values of the real number k so that f is differentiable at x = 1.</strong> A) -2 and 1 B) 2 and -1 C) -2 and 2 D) only -2 E) only 2 <div style=padding-top: 35px> .Find all values of the real number k so that f is differentiable at x = 1.

A) -2 and 1
B) 2 and -1
C) -2 and 2
D) only -2
E) only 2
Question
There are lines that pass through the point (-1, 3) and are tangent to the curve xy = 1. Find all their slopes.

A) -1 and -9
B) -1 and 9
C) 1 and 9
D) 1 and -9
E) none of the above
Question
Find the derivative of <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> .

A) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the derivative of f(x) = <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -   <div style=padding-top: 35px> .

A) - <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -   <div style=padding-top: 35px>
B) <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -   <div style=padding-top: 35px>
C) <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -   <div style=padding-top: 35px>
D) - <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -   <div style=padding-top: 35px>
E) - <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -   <div style=padding-top: 35px>
Question
Differentiate the following function: f(x) = <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px> .

A) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
B) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
C) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
D) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above <div style=padding-top: 35px>
E) none of the above
Question
Differentiate the following function: f(x) = <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3   <div style=padding-top: 35px> .

A) 14 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3   <div style=padding-top: 35px>
B) -15 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3   <div style=padding-top: 35px>
C) -16 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3   <div style=padding-top: 35px>
D) 17 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3   <div style=padding-top: 35px>
E) 3 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3   <div style=padding-top: 35px>
Question
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point (-1, 1).</strong> A) 27x - y + 28 = 0 B) 27x + y + 26 = 0 C) 27y - x - 28 = 0 D) 27y + x - 26 = 0 E) 9x - y + 10 = 0 <div style=padding-top: 35px> at the point (-1, 1).

A) 27x - y + 28 = 0
B) 27x + y + 26 = 0
C) 27y - x - 28 = 0
D) 27y + x - 26 = 0
E) 9x - y + 10 = 0
Question
Use the values in the table below to evaluate Use the values in the table below to evaluate   (-2)  <div style=padding-top: 35px> (-2)
Use the values in the table below to evaluate   (-2)  <div style=padding-top: 35px>
Question
Assuming all indicated derivatives exist, ( <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c) is equal to

A) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (g(c)) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c)
B) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c) g(c) + f(c) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c)
C) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c)
D) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c)<strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c)
E) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> ( <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <div style=padding-top: 35px> (c))
Question
Let f(x) = (x - 2)( <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px> + 4x - 7). Find all the points on this curve where the tangent line is horizontal.

A) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px> and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px>
B) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px> and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px>
C) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px> and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px>
D) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px> and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px>
E) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   <div style=padding-top: 35px>
Question
Find <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <div style=padding-top: 35px> <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <div style=padding-top: 35px> . Simplify your answer.

A) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <div style=padding-top: 35px>
B) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <div style=padding-top: 35px>
C) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <div style=padding-top: 35px>
D) - <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <div style=padding-top: 35px>
E) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <div style=padding-top: 35px>
Question
Where does the function f(x) = <strong>Where does the function f(x) =   fail to be differentiable?</strong> A) f(x) is differentiable everywhere. B) at x = 0 C) at x = 1 D) at x = 0 and x = 1 E) none of the above <div style=padding-top: 35px> fail to be differentiable?

A) f(x) is differentiable everywhere.
B) at x = 0
C) at x = 1
D) at x = 0 and x = 1
E) none of the above
Question
The function f(x) = The function f(x) =     is differentiable at x = 0.<div style=padding-top: 35px> The function f(x) =     is differentiable at x = 0.<div style=padding-top: 35px> is differentiable at x = 0.
Question
Differentiate y = sin 4x.

A) 2cos 4x
B) 4cos 2x
C) -4cos 4x
D) 4cos 4x
E) cos 4x
Question
Find the derivative of y = tan(cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> )).

A) <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> (-sin(2x))
B) 2x cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> )
C) <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> (-2x sin( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> ))
D) <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> ( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> ) cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> ) - tan( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> ) sin( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> )
E) -2x <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> (cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> )) sin( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) <div style=padding-top: 35px> )
Question
Find the derivative of f(t) = <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) <div style=padding-top: 35px> (5t).

A) 15 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) <div style=padding-top: 35px> (5t) sin(5t)
B) -3 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) <div style=padding-top: 35px> (5t) sin(5t)
C) -15 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) <div style=padding-top: 35px> (5t) sin(5t)
D) 15 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) <div style=padding-top: 35px> (5t)
E) 3 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) <div style=padding-top: 35px> (5t)
Question
Differentiate <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> sin 2x.

A) <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> sin 2x + <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> cos 2x
B) <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> sin 2x + <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> cos 2x
C) 3 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> sin 2x - 2 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> cos 2x
D) <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> sin 2x + 2 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> cos 2x
E) 3 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) <div style=padding-top: 35px> cos(2x)
Question
 <div style=padding-top: 35px>
Question
Find the derivative of y = tan( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> ).

A) x <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> ( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> )
B) 4x <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> )
C) 2x <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> )
D) 2x sec( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> ) tan( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> )
E) <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> ( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <div style=padding-top: 35px> )
Question
Find the derivative of the following function: y = <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px> (cos x).

A) -2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px> <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px>
B) 2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px> <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px>
C) -2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px> <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px>
D) -2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px> <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <div style=padding-top: 35px>
E) -2tan(x)cos(x)sin(x)
Question
Let y = <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   <div style=padding-top: 35px> . A simplified expression for <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   <div style=padding-top: 35px> is given by

A) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   <div style=padding-top: 35px>
B) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   <div style=padding-top: 35px>
C) - <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   <div style=padding-top: 35px>
D) - sin(x) - (x) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   <div style=padding-top: 35px>
E) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   <div style=padding-top: 35px>
Question
Find the slope of the curve y = cos <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   <div style=padding-top: 35px> at the point where x = <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   <div style=padding-top: 35px> .

A) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   <div style=padding-top: 35px>
B) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   <div style=padding-top: 35px>
C) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   <div style=padding-top: 35px>
D) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   <div style=padding-top: 35px>
E) The slope is not defined at x = . <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   <div style=padding-top: 35px>
Question
Find all points in the interval [0, π\pi
] where the curve y = 2  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>  x - sin(2x) has a horizontal tangent line.

A)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>
B)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>
C)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>
D)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal. <div style=padding-top: 35px>
E) The tangent line is never horizontal.
Question
Find <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   <div style=padding-top: 35px> if y = <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   <div style=padding-top: 35px> .

A) 12 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   <div style=padding-top: 35px>
B) 5 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   <div style=padding-top: 35px>
C) 15 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   <div style=padding-top: 35px>
D) 20 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   <div style=padding-top: 35px>
E) 10 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   <div style=padding-top: 35px>
Question
Find the second derivative of g(x) = <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px> .

A) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px> (t) = 2 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px>
B) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px> (t) = - 3 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px>
C) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px> (t) = 3 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px>
D) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px> (t) = -2 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px>
E) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px> (t) = 4 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   <div style=padding-top: 35px>
Question
  <div style=padding-top: 35px>
Question
Find <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 <div style=padding-top: 35px> (2) given that = <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 <div style=padding-top: 35px> . <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 <div style=padding-top: 35px> <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 <div style=padding-top: 35px> - 7

A) 12
B) 0
C) 6
D) 5
E) 10
Question
let y = let y =     , x > 0. Show that   =   .<div style=padding-top: 35px> let y =     , x > 0. Show that   =   .<div style=padding-top: 35px> , x > 0. Show that let y =     , x > 0. Show that   =   .<div style=padding-top: 35px> = let y =     , x > 0. Show that   =   .<div style=padding-top: 35px> .
Question
Calculate the third derivative of f(x) = <strong>Calculate the third derivative of f(x) =   x.</strong> A) -2sin(2x) B) -4sin(2x) C) -2cos(2x) D) -4sin x E) -2(x)   <div style=padding-top: 35px> x.

A) -2sin(2x)
B) -4sin(2x)
C) -2cos(2x)
D) -4sin x
E) -2(x) <strong>Calculate the third derivative of f(x) =   x.</strong> A) -2sin(2x) B) -4sin(2x) C) -2cos(2x) D) -4sin x E) -2(x)   <div style=padding-top: 35px>
Question
Find a formula for the nth derivative <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> of the function y = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> .

A) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px>
B) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> = - <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px>
C) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px>
D) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px>
E) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px> <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <div style=padding-top: 35px>
Question
Find the second derivative of the function f(x) = <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> .

A) - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px>
B) - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px>
C) - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px>
D) <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px>
E) <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px> - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   <div style=padding-top: 35px>
Question
Find the second derivative of the function f(x) = <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> sin(2x).

A) - 6x sin(2x) + 8 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> cos(2x) - 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> sin(2x)
B) 6x sin(2x) + 8 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> cos(2x) - 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> sin(2x)
C) 6x sin(2x) + 12 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> cos(2x) - 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> sin(2x)
D) - 6x sin(2x) + 12 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> cos(2x) + 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> sin(2x)
E) 6x sin(2x) + 12 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> cos(2x) + 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) <div style=padding-top: 35px> sin(2x)
Question
Find the second derivative of the function f(x) = <strong>Find the second derivative of the function f(x) =   .</strong> A) 1 B) x C) -   D) -   E) 0 <div style=padding-top: 35px> .

A) 1
B) x
C) - <strong>Find the second derivative of the function f(x) =   .</strong> A) 1 B) x C) -   D) -   E) 0 <div style=padding-top: 35px>
D) - <strong>Find the second derivative of the function f(x) =   .</strong> A) 1 B) x C) -   D) -   E) 0 <div style=padding-top: 35px>
E) 0
Question
A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.

A) 200 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm <div style=padding-top: 35px>  /cm
B) 100 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm <div style=padding-top: 35px>  /cm
C) 300 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm <div style=padding-top: 35px>  /cm
D) 400 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm <div style=padding-top: 35px>  /cm
E) 500 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm <div style=padding-top: 35px>  /cm
Question
Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.

A) 40 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m <div style=padding-top: 35px> /m
B) 42 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m <div style=padding-top: 35px> /m
C) 48 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m <div style=padding-top: 35px> /m
D) 50 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m <div style=padding-top: 35px> /m
E) 8 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m <div style=padding-top: 35px> /m
Question
A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m <div style=padding-top: 35px>  ) with respect to the radius when r = 2 m.

A) 16 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m <div style=padding-top: 35px>  /m
B) 8 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m <div style=padding-top: 35px>  /m
C) 12  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m <div style=padding-top: 35px>  /m
D) 24  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m <div style=padding-top: 35px>  /m
E) 4 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m <div style=padding-top: 35px>  /m
Question
Find the rate of change of the area of a circle with respect to its circumference C.

A) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C <div style=padding-top: 35px> C
B) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C <div style=padding-top: 35px> C
C) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C <div style=padding-top: 35px> C
D) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C <div style=padding-top: 35px> C
E) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C <div style=padding-top: 35px> C
Question
The electrical resistance R of a wire of unit length and cross-sectional radius x is given by R = <strong>The electrical resistance R of a wire of unit length and cross-sectional radius x is given by R =   , where K is a non-zero constant real number. By approximately what percentage does the resistance R change if the diameter of the wire is decreased by 6%?</strong> A) -6% B) -9% C) 12% D) 6% E) -12% <div style=padding-top: 35px> , where K is a non-zero constant real number. By approximately what percentage does the resistance R change if the diameter of the wire is decreased by 6%?

A) -6%
B) -9%
C) 12%
D) 6%
E) -12%
Question
The cost in dollars for a company to produce x pairs of shoes is <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px> . Find the marginal cost function.

A) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px> (x) = 1 + 0.02x + 0.0006 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px>
B) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px> (x) = 1 + 0.01x + 0.0002 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px>
C) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px> (x) = 3 + 0.02x + 0.0003 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px>
D) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px> (x) = 3 + 0.02x + 0.0006 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px>
E) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px> (x) = 3 + 0.01x + 0.0006 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   <div style=padding-top: 35px>
Question
The population (in thousands) of the city of Abbotsford is given by <strong>The population (in thousands) of the city of Abbotsford is given by   , with t in years and with   corresponding to 1980. What was the rate of change of P in 1986?</strong> A) 9.6 thousand per year B) 8.6 thousand per year C) 7.6 thousand per year D) 8.9 thousand per year E) 4.4 thousand per year <div style=padding-top: 35px> , with t in years and with <strong>The population (in thousands) of the city of Abbotsford is given by   , with t in years and with   corresponding to 1980. What was the rate of change of P in 1986?</strong> A) 9.6 thousand per year B) 8.6 thousand per year C) 7.6 thousand per year D) 8.9 thousand per year E) 4.4 thousand per year <div style=padding-top: 35px> corresponding to 1980. What was the rate of change of P in 1986?

A) 9.6 thousand per year
B) 8.6 thousand per year
C) 7.6 thousand per year
D) 8.9 thousand per year
E) 4.4 thousand per year
Question
The daily cost of production of x widgets in a widget factory is C dollars, where <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 <div style=padding-top: 35px> . What is the cost per widget, and what value of x will make the cost per widget as small as possible?

A) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 <div style=padding-top: 35px> dollars, x = 2,000
B) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 <div style=padding-top: 35px> dollars, x = 4,000
C) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 <div style=padding-top: 35px> dollars, x = 8,000
D) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 <div style=padding-top: 35px> dollars, x = 400
E) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 <div style=padding-top: 35px> dollars, x = 4,000
Question
If the cost of mining x kg of gold is C(x) = A + Bx + C <strong>If the cost of mining x kg of gold is C(x) = A + Bx + C   dollars where A, B, and C are positive constants, which of the following statements is true for a given positive value of x?</strong> A) The marginal cost C'(x) is greater than the cost C(x + 1) - C(x) of mining 1 more kg. B) The marginal cost C'(x) is less than the cost C(x + 1) - C(x) of mining 1 more kg. C) The marginal cost C'(x) is equal to the cost C(x + 1) - C(x) of mining 1 more kg. D) There is not enough information to make any conclusion. E) None of the above <div style=padding-top: 35px> dollars where A, B, and C are positive constants, which of the following statements is true for a given positive value of x?

A) The marginal cost C'(x) is greater than the cost C(x + 1) - C(x) of mining 1 more kg.
B) The marginal cost C'(x) is less than the cost C(x + 1) - C(x) of mining 1 more kg.
C) The marginal cost C'(x) is equal to the cost C(x + 1) - C(x) of mining 1 more kg.
D) There is not enough information to make any conclusion.
E) None of the above
Question
By approximately what percentage does the volume of a cube change if the edge length changes by 1%?

A) 3%
B) 1%
C) 2%
D) 4%
E) <strong>By approximately what percentage does the volume of a cube change if the edge length changes by 1%?</strong> A) 3% B) 1% C) 2% D) 4% E)   % <div style=padding-top: 35px> %
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/131
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 3: Differentiation
1
Find the slope of the tangent line to the curve y = 4x - <strong>Find the slope of the tangent line to the curve y = 4x -   at the point (-1, 0).</strong> A) -1 B) 2 C) 6 D)   E) -2 at the point (-1, 0).

A) -1
B) 2
C) 6
D) <strong>Find the slope of the tangent line to the curve y = 4x -   at the point (-1, 0).</strong> A) -1 B) 2 C) 6 D)   E) -2
E) -2
6
2
Find the equation of the tangent line to the curve y = 2x - <strong>Find the equation of the tangent line to the curve y = 2x -   at the point (2, 0).</strong> A) 2x + y - 4 = 0 B) 2x + y + 4 = 0 C) 2x - y - 4 = 0 D) 2x - y + 4 = 0 E) 2x + y = 0 at the point (2, 0).

A) 2x + y - 4 = 0
B) 2x + y + 4 = 0
C) 2x - y - 4 = 0
D) 2x - y + 4 = 0
E) 2x + y = 0
2x + y - 4 = 0
3
Find an equation of the line tangent to the curve y = 2x - <strong>Find an equation of the line tangent to the curve y = 2x -   at the point where x = 2.</strong> A) 25y = 49x - 1 B) 5y = 49x + 1 C) 25y = 49x + 1 D) 25y = 41x + 1 E) 25x = 49y + 1 at the point where x = 2.

A) 25y = 49x - 1
B) 5y = 49x + 1
C) 25y = 49x + 1
D) 25y = 41x + 1
E) 25x = 49y + 1
25y = 49x + 1
4
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   + 1 at the point where x = 2.</strong> A) y = 12x + 15 B) y = 12x -15 C) y = -12x -15 D) y = -12x + 15 E) y = 15x + 12 + 1 at the point where x = 2.

A) y = 12x + 15
B) y = 12x -15
C) y = -12x -15
D) y = -12x + 15
E) y = 15x + 12
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
5
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 2.</strong> A) y = -4x + 12 B) y = 4x - 4 C) y = -4x + 4 D) y = 4x + 4 E) y = 4x - 12 at the point where x = 2.

A) y = -4x + 12
B) y = 4x - 4
C) y = -4x + 4
D) y = 4x + 4
E) y = 4x - 12
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
6
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   at the point where x = 11.

A) y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   x + <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -
B) y = <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   x - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -
C) y = 4x - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -
D) y = 4x + <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -
E) y = - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -   x - <strong>Find an equation of the line tangent to the curve y =   at the point where x = 11.</strong> A) y =   x +   B) y =   x -   C) y = 4x -   D) y = 4x +   E) y = -   x -
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
7
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 at the point (1, 3).

A) y = - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 x + <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10
B) y = - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 x - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10
C) y = <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 x + <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10
D) y = <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10 x - <strong>Find an equation of the line tangent to the curve y =   at the point (1, 3).</strong> A) y = -   x +   B) y = -   x -   C) y =   x +   D) y =   x -   E) y = 3x - 10
E) y = 3x - 10
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
8
Let f(x) be a function such that = <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).

A) 3 <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C
B) 1 - <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C
C) -3 <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C
D) <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C - 1
E) <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C <strong>Let f(x) be a function such that =       - 1. Find the slope of the line tangent to the graph of f at the point (a, f(a)).</strong> A) 3   B) 1 -   C) -3   D)   - 1 E)     - a + C - a + C
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
9
Find the point(s) on the curve y = <strong>Find the point(s) on the curve y =   such that the tangent lines to the curve at those points pass through (2, -12).</strong> A) (6, 36) and (-2, 4) B) (6, 36) and (2, 4) C) (-6, 36) and (-2, 4) D) (-6, 6) and (-2, 4) E) (6, -36) and (-2, 4) such that the tangent lines to the curve at those points pass through (2, -12).

A) (6, 36) and (-2, 4)
B) (6, 36) and (2, 4)
C) (-6, 36) and (-2, 4)
D) (-6, 6) and (-2, 4)
E) (6, -36) and (-2, 4)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
10
Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.

A) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 - <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 = 1
B) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 = 9
C) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 = 9
D) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 = 8
E) <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 + <strong>Find the standard equation of the circle with centre at (1, 3) which is tangent to the line 5x - 12y = 8.</strong> A)   -   = 1 B)   +   = 9 C)   +   = 9 D)   +   = 8 E)   +   = 8 = 8
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
11
If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y = <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)   + c, what is the value of c?

A) - <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)
B) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)
C) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)
D) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)
E) <strong>If the line 4x - 9y = 0 is tangent in the first quadrant to the graph of y =     + c, what is the value of c?</strong> A) -   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
12
Using the definition of the derivative, find the derivative of f(x) = <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)   .

A) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)
B) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)
C) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)
D) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)
E) <strong>Using the definition of the derivative, find the derivative of f(x) =   .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
13
Find the derivative <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   (x) of the function f(x) = <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)   .

A) - <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)
B) <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)
C) - <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)
D) - <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)
E) <strong>Find the derivative   (x) of the function f(x) =   .</strong> A) -   B)   C) -   D) -   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
14
Find the tangent line to the curve y = <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x at the origin.

A) y = - <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x x
B) y = x
C) y = <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x x
D) y = - <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x x
E) y = <strong>Find the tangent line to the curve y =   at the origin.</strong> A) y = -   x B) y = x C) y =   x D) y = -   x E) y =   x x
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
15
Where is the function f(x) =  <strong>Where is the function f(x) =    differentiable?</strong> A) at every x     (- \infty ,  \infty ) B) at every x     (- \infty , 0)     (0,  \infty ) C) at every x     (- \infty , 3)   (3,  \infty ) D) at every x    (- \infty , 0)   (0, 3)    (3,  \infty ) E) none of the above  differentiable?

A) at every x  <strong>Where is the function f(x) =    differentiable?</strong> A) at every x     (- \infty ,  \infty ) B) at every x     (- \infty , 0)     (0,  \infty ) C) at every x     (- \infty , 3)   (3,  \infty ) D) at every x    (- \infty , 0)   (0, 3)    (3,  \infty ) E) none of the above  (- ∞\infty , ∞\infty )
B) at every x 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (- ∞\infty , 0) 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (0, ∞\infty )
C) at every x 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (- ∞\infty , 3)  <strong>Where is the function f(x) =    differentiable?</strong> A) at every x     (- \infty ,  \infty ) B) at every x     (- \infty , 0)     (0,  \infty ) C) at every x     (- \infty , 3)   (3,  \infty ) D) at every x    (- \infty , 0)   (0, 3)    (3,  \infty ) E) none of the above  (3, ∞\infty )
D) at every x 11ee7b17_3372_5854_ae82_d19d2ea0c252_TB9661_11 (- ∞\infty , 0) 11ee7b09_453f_4329_ae82_2b7669cf7fd7_TB9661_11 (0, 3) 11ee7b09_453f_4329_ae82_2b7669cf7fd7_TB9661_11 (3, ∞\infty )
E) none of the above
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
16
Find the equation of the straight line that passes through the point P(0,- 3) and is tangent to the curve <strong>Find the equation of the straight line that passes through the point P(0,- 3) and is tangent to the curve   .</strong> A) y = -3 B) y = 2x - 3 C) y = -3x D) y = -x - 3 E) y = x - 3 .

A) y = -3
B) y = 2x - 3
C) y = -3x
D) y = -x - 3
E) y = x - 3
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
17
If f(x) = <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   ( <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   ), calculate f'(5) by using the definition of the derivative.

A) <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)
B) - <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)
C) - <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)
D) - <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)   <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)
E) <strong>If f(x) =   (   ), calculate f'(5) by using the definition of the derivative.</strong> A)   B) -   C) -   D) -     E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
18
Find the slope of the line tangent to the curve <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   y = 1 at the point <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)   .

A) <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)
B) - <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)
C) - <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)
D) <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)
E) <strong>Find the slope of the line tangent to the curve   y = 1 at the point   .</strong> A)   B) -   C) -   D)   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
19
If f(x) = <strong>If f(x) =   , calculate f'(-2) directly from the definition of the derivative.</strong> A) 3 B) 3   C) -3 D) 4 E) 2 , calculate f'(-2) directly from the definition of the derivative.

A) 3
B) 3 <strong>If f(x) =   , calculate f'(-2) directly from the definition of the derivative.</strong> A) 3 B) 3   C) -3 D) 4 E) 2
C) -3
D) 4
E) 2
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
20
Let g(x) be a function such that <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     = - <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     . Find <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     (x).

A) <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)
B) - <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)
C) - <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)
D) <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)
E) <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)     <strong>Let g(x) be a function such that   = -   . Find   (x).</strong> A)   B) -   C) -   D)   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
21
Calculate the derivative of g(t) = <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   + <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   using the general power rule.

A) 101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   - 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99
B) 101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   - 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99
C) -101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   - 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99
D) 100 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   - 98 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99
E) 101 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99   + 99 <strong>Calculate the derivative of g(t) =   +   using the general power rule.</strong> A) 101   - 99   B) 101   - 99   C) -101   - 99   D) 100   - 98   E) 101   + 99
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
22
If f(x) is an even, differentiable function, then <strong>If f(x) is an even, differentiable function, then   (x)</strong> A) is an odd function. B) is an even function. C) is neither odd nor even. D) may be either even or odd or neither. (x)

A) is an odd function.
B) is an even function.
C) is neither odd nor even.
D) may be either even or odd or neither.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
23
If the curve y = f(x) has a tangent line at (a, f(a)), then f is differentiable at x = a.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
24
If =  If =     - \infty , then the graph of f has a tangent line at x = a.  If =     - \infty , then the graph of f has a tangent line at x = a. - ∞\infty , then the graph of f has a tangent line at x = a.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
25
If f is continuous at x = a, then f is differentiable at x = a.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
26
If If     exists, then f is continuous at x = a. If     exists, then f is continuous at x = a. exists, then f is continuous at x = a.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
27
The domain of the derivative of a function is the same as the domain of the function.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
28
Differentiate f(x) = 10 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x .

A) 10 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x
B) 50 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x
C) 55 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x
D) 50 <strong>Differentiate f(x) = 10   .</strong> A) 10   B) 50   C) 55   D) 50   E) 50x
E) 50x
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
29
Find <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 if y = 4 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 3 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + x - 6.

A) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 - 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 1
B) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 1
C) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 1
D) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 - 6
E) 16 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 + 9 <strong>Find   if y = 4   + 3   + x - 6.</strong> A) 16   - 9   + 1 B) 16   + 9   + 1 C) 16   + 9   + 1 D) 16   + 9   - 6 E) 16   + 9   - 5 - 5
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
30
Differentiate the function f(x) = (2 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   + 5)(3 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   - x).

A) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   - 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   + 30x - 5
B) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   - 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   + 30x + 5
C) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   + 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   + 30x - 5
D) 30 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   + 8 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   - 30x - 5
E) 36 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6   - 6 <strong>Differentiate the function f(x) = (2   + 5)(3   - x).</strong> A) 30   - 8   + 30x - 5 B) 30   - 8   + 30x + 5 C) 30   + 8   + 30x - 5 D) 30   + 8   - 30x - 5 E) 36   - 6
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
31
Find the equation of the tangent line to the curve y = (2 - <strong>Find the equation of the tangent line to the curve y = (2 -   )(1 +   + 3x) at the point (1, 5).</strong> A) x - y + 4 = 0 B) x + y - 6 = 0 C) x - y - 4 = 0 D) 6x - y - 1 = 0 E) x + y + 4 = 0 )(1 + <strong>Find the equation of the tangent line to the curve y = (2 -   )(1 +   + 3x) at the point (1, 5).</strong> A) x - y + 4 = 0 B) x + y - 6 = 0 C) x - y - 4 = 0 D) 6x - y - 1 = 0 E) x + y + 4 = 0 + 3x) at the point (1, 5).

A) x - y + 4 = 0
B) x + y - 6 = 0
C) x - y - 4 = 0
D) 6x - y - 1 = 0
E) x + y + 4 = 0
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
32
Find the points on the curve y = <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) - 6 <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) + 4 where the tangent line is horizontal.

A) ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , -5) and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , -5)
B) (0, 4), ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , -5), and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , -5)
C) (0, 4), (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , 5), and ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , -5)
D) (0, 4), ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , -5), and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , -5)
E) ( <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , 5) and (- <strong>Find the points on the curve y =   - 6   + 4 where the tangent line is horizontal.</strong> A) (   , -5) and (-   , -5) B) (0, 4), (   , -5), and (-   , -5) C) (0, 4), (-   , 5), and (   , -5) D) (0, 4), (   , -5), and (-   , -5) E) (   , 5) and (-   , 5) , 5)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
33
Given g(x) = <strong>Given g(x) =   which of the following statements is true?</strong> A) g is differentiable at x = -1 B) g is not differentiable at x = -1 C)   (-1) = -4 D) g is continuous at x = -1 E) g is continuous from the left at x = -1 which of the following statements is true?

A) g is differentiable at x = -1
B) g is not differentiable at x = -1
C) <strong>Given g(x) =   which of the following statements is true?</strong> A) g is differentiable at x = -1 B) g is not differentiable at x = -1 C)   (-1) = -4 D) g is continuous at x = -1 E) g is continuous from the left at x = -1 (-1) = -4
D) g is continuous at x = -1
E) g is continuous from the left at x = -1
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
34
Lines passing through the point (0, 2) are tangent to the graph of y = - <strong>Lines passing through the point (0, 2) are tangent to the graph of y = -   . Find the points of tangency.</strong> A) (1, -1) and (-1, 1) B) (2, -8) and (-2, -8) C) (1, -1) and (-2, -8) D) (2, -8) and (-1, 1) E) (1, 1) and (-1, -1) . Find the points of tangency.

A) (1, -1) and (-1, 1)
B) (2, -8) and (-2, -8)
C) (1, -1) and (-2, -8)
D) (2, -8) and (-1, 1)
E) (1, 1) and (-1, -1)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
35
Where does the normal line to the curve y = x - <strong>Where does the normal line to the curve y = x -   at the point (1, 0) intersect the curve a second time?</strong> A) (-2, -6) B) (-   , -   ) C) (-1, -2) D) (0, 0) E) It does not intersect the curve a second time. at the point (1, 0) intersect the curve a second time?

A) (-2, -6)
B) (- <strong>Where does the normal line to the curve y = x -   at the point (1, 0) intersect the curve a second time?</strong> A) (-2, -6) B) (-   , -   ) C) (-1, -2) D) (0, 0) E) It does not intersect the curve a second time. , - <strong>Where does the normal line to the curve y = x -   at the point (1, 0) intersect the curve a second time?</strong> A) (-2, -6) B) (-   , -   ) C) (-1, -2) D) (0, 0) E) It does not intersect the curve a second time. )
C) (-1, -2)
D) (0, 0)
E) It does not intersect the curve a second time.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
36
Which of the following statements is always true?

A) If f is continuous at c, then it must be differentiable at c.
B) If f is differentiable at c, then it must be continuous at c.
C) If f is not differentiable at c, then it must be discontinuous at c.
D) If <strong>Which of the following statements is always true?</strong> A) If f is continuous at c, then it must be differentiable at c. B) If f is differentiable at c, then it must be continuous at c. C) If f is not differentiable at c, then it must be discontinuous at c. D) If   f(c + h) = f(c), then f must be differentiable at c. E) All of the above f(c + h) = f(c), then f must be differentiable at c.
E) All of the above
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
37
How many tangent lines to the graph of y = <strong>How many tangent lines to the graph of y =   -15   - 10 pass through the point (0, 2)?</strong> A) 0 B) 1 C) 2 D) 3 E) 4 -15 <strong>How many tangent lines to the graph of y =   -15   - 10 pass through the point (0, 2)?</strong> A) 0 B) 1 C) 2 D) 3 E) 4 - 10 pass through the point (0, 2)?

A) 0
B) 1
C) 2
D) 3
E) 4
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
38
Let f(x) = <strong>Let f(x) =   .Find all values of the real number k so that f is differentiable at x = 1.</strong> A) -2 and 1 B) 2 and -1 C) -2 and 2 D) only -2 E) only 2 .Find all values of the real number k so that f is differentiable at x = 1.

A) -2 and 1
B) 2 and -1
C) -2 and 2
D) only -2
E) only 2
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
39
There are lines that pass through the point (-1, 3) and are tangent to the curve xy = 1. Find all their slopes.

A) -1 and -9
B) -1 and 9
C) 1 and 9
D) 1 and -9
E) none of the above
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
40
Find the derivative of <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)   .

A) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)
B) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)
C) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)
D) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)
E) <strong>Find the derivative of   .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
41
Find the derivative of f(x) = <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -   .

A) - <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -
B) <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -
C) <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -
D) - <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -
E) - <strong>Find the derivative of f(x) =   .</strong> A) -   B)   C)   D) -   E) -
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
42
Differentiate the following function: f(x) = <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above .

A) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above
B) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above
C) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above
D) <strong>Differentiate the following function: f(x) =   .</strong> A)   B)   C)   D)   E) none of the above
E) none of the above
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
43
Differentiate the following function: f(x) = <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3   .

A) 14 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3
B) -15 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3
C) -16 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3
D) 17 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3
E) 3 <strong>Differentiate the following function: f(x) =   .</strong> A) 14   B) -15   C) -16   D) 17   E) 3
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
44
Find an equation of the line tangent to the curve y = <strong>Find an equation of the line tangent to the curve y =   at the point (-1, 1).</strong> A) 27x - y + 28 = 0 B) 27x + y + 26 = 0 C) 27y - x - 28 = 0 D) 27y + x - 26 = 0 E) 9x - y + 10 = 0 at the point (-1, 1).

A) 27x - y + 28 = 0
B) 27x + y + 26 = 0
C) 27y - x - 28 = 0
D) 27y + x - 26 = 0
E) 9x - y + 10 = 0
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
45
Use the values in the table below to evaluate Use the values in the table below to evaluate   (-2)  (-2)
Use the values in the table below to evaluate   (-2)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
46
Assuming all indicated derivatives exist, ( <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c) is equal to

A) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (g(c)) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c)
B) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c) g(c) + f(c) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c)
C) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c)
D) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c)<strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c)
E) <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) ( <strong>Assuming all indicated derivatives exist, (   (c) is equal to</strong> A)   (g(c))   (c) B)   (c) g(c) + f(c)   (c) C)   (c)   (c) D)   (c)    (c) E)   (   (c)) (c))
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
47
Let f(x) = (x - 2)( <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.

A) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)
B) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)
C) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)
D) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)   and <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)
E) <strong>Let f(x) = (x - 2)(   + 4x - 7). Find all the points on this curve where the tangent line is horizontal.</strong> A)   and   B)   and   C)   and   D)   and   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
48
Find <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)   . Simplify your answer.

A) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)
B) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)
C) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)
D) - <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)
E) <strong>Find     . Simplify your answer.</strong> A)   B)   C)   D) -   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
49
Where does the function f(x) = <strong>Where does the function f(x) =   fail to be differentiable?</strong> A) f(x) is differentiable everywhere. B) at x = 0 C) at x = 1 D) at x = 0 and x = 1 E) none of the above fail to be differentiable?

A) f(x) is differentiable everywhere.
B) at x = 0
C) at x = 1
D) at x = 0 and x = 1
E) none of the above
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
50
The function f(x) = The function f(x) =     is differentiable at x = 0. The function f(x) =     is differentiable at x = 0. is differentiable at x = 0.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
51
Differentiate y = sin 4x.

A) 2cos 4x
B) 4cos 2x
C) -4cos 4x
D) 4cos 4x
E) cos 4x
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
52
Find the derivative of y = tan(cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) )).

A) <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) (-sin(2x))
B) 2x cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) )
C) <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) (-2x sin( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) ))
D) <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) ( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) ) cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) ) - tan( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) ) sin( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) )
E) -2x <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) (cos( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) )) sin( <strong>Find the derivative of y = tan(cos(   )).</strong> A)   (-sin(2x)) B) 2x cos(   ) C)   (-2x sin(   )) D)   (   ) cos(   ) - tan(   ) sin(   ) E) -2x   (cos(   )) sin(   ) )
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
53
Find the derivative of f(t) = <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) (5t).

A) 15 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) (5t) sin(5t)
B) -3 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) (5t) sin(5t)
C) -15 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) (5t) sin(5t)
D) 15 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) (5t)
E) 3 <strong>Find the derivative of f(t) =   (5t).</strong> A) 15   (5t) sin(5t) B) -3   (5t) sin(5t) C) -15   (5t) sin(5t) D) 15   (5t) E) 3   (5t) (5t)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
54
Differentiate <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) sin 2x.

A) <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) sin 2x + <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) cos 2x
B) <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) sin 2x + <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) cos 2x
C) 3 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) sin 2x - 2 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) cos 2x
D) <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) sin 2x + 2 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) cos 2x
E) 3 <strong>Differentiate   sin 2x.</strong> A)   sin 2x +   cos 2x B)   sin 2x +   cos 2x C) 3   sin 2x - 2   cos 2x D)   sin 2x + 2   cos 2x E) 3   <sub> </sub>cos(2x) cos(2x)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
55
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
56
Find the derivative of y = tan( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) ).

A) x <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) ( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) )
B) 4x <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) )
C) 2x <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) )
D) 2x sec( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) ) tan( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) )
E) <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) ( <strong>Find the derivative of y = tan(   ).</strong> A) x   (   ) B) 4x     ) C) 2x     ) D) 2x sec(   ) tan(   ) E)   (   ) )
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
57
Find the derivative of the following function: y = <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) (cos x).

A) -2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x)
B) 2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x)
C) -2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x)
D) -2sin x <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x) <strong>Find the derivative of the following function: y =   (cos x).</strong> A) -2sin x     B) 2sin x     C) -2sin x     D) -2sin x     E) -2tan(x)cos(x)sin(x)
E) -2tan(x)cos(x)sin(x)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
58
Let y = <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   . A simplified expression for <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)   is given by

A) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)
B) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)
C) - <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)
D) - sin(x) - (x) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)
E) <strong>Let y =   . A simplified expression for   is given by</strong> A)   B)   C) -   D) - sin(x) - (x)   E)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
59
Find the slope of the curve y = cos <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   at the point where x = <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .   .

A) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .
B) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .
C) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .
D) - <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .
E) The slope is not defined at x = . <strong>Find the slope of the curve y = cos   at the point where x =   .</strong> A) -   B) -   C) -   D) -   E) The slope is not defined at x = .
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
60
Find all points in the interval [0, π\pi
] where the curve y = 2  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.  x - sin(2x) has a horizontal tangent line.

A)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.
B)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.
C)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.
D)  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.  and  <strong>Find all points in the interval [0,   \pi  ] where the curve y = 2   x - sin(2x) has a horizontal tangent line.</strong> A)   and   B)   and   C)   and   D)   and   E) The tangent line is never horizontal.
E) The tangent line is never horizontal.
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
61
Find <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   if y = <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10   .

A) 12 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10
B) 5 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10
C) 15 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10
D) 20 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10
E) 10 <strong>Find   if y =   .</strong> A) 12   B) 5   C) 15   D) 20   E) 10
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
62
Find the second derivative of g(x) = <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   .

A) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   (t) = 2 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4
B) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   (t) = - 3 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4
C) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   (t) = 3 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4
D) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   (t) = -2 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4
E) <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4   (t) = 4 <strong>Find the second derivative of g(x) =   .</strong> A)   (t) = 2   B)   (t) = - 3   C)   (t) = 3   D)   (t) = -2   E)   (t) = 4
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
63
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
64
Find <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 (2) given that = <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 . <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 <strong>Find   (2) given that =   .     - 7</strong> A) 12 B) 0 C) 6 D) 5 E) 10 - 7

A) 12
B) 0
C) 6
D) 5
E) 10
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
65
let y = let y =     , x > 0. Show that   =   . let y =     , x > 0. Show that   =   . , x > 0. Show that let y =     , x > 0. Show that   =   . = let y =     , x > 0. Show that   =   . .
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
66
Calculate the third derivative of f(x) = <strong>Calculate the third derivative of f(x) =   x.</strong> A) -2sin(2x) B) -4sin(2x) C) -2cos(2x) D) -4sin x E) -2(x)   x.

A) -2sin(2x)
B) -4sin(2x)
C) -2cos(2x)
D) -4sin x
E) -2(x) <strong>Calculate the third derivative of f(x) =   x.</strong> A) -2sin(2x) B) -4sin(2x) C) -2cos(2x) D) -4sin x E) -2(x)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
67
Find a formula for the nth derivative <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       of the function y = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       .

A) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =
B) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       = - <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =
C) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =
D) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =
E) <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       = <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =       <strong>Find a formula for the nth derivative   of the function y =   .</strong> A)   =       B)   = -     C)   =       D)   =       E)   =
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
68
Find the second derivative of the function f(x) = <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   .

A) - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -
B) - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -
C) - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -
D) <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -
E) <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   + <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -   - <strong>Find the second derivative of the function f(x) =   .</strong> A) -   +   +   B) -   -   +   C) -   +   -   D)   +   +   E)   +   -
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
69
Find the second derivative of the function f(x) = <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) sin(2x).

A) - 6x sin(2x) + 8 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) cos(2x) - 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) sin(2x)
B) 6x sin(2x) + 8 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) cos(2x) - 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) sin(2x)
C) 6x sin(2x) + 12 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) cos(2x) - 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) sin(2x)
D) - 6x sin(2x) + 12 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) cos(2x) + 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) sin(2x)
E) 6x sin(2x) + 12 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) cos(2x) + 4 <strong>Find the second derivative of the function f(x) =   sin(2x).</strong> A) - 6x sin(2x) + 8   cos(2x) - 4   sin(2x) B) 6x sin(2x) + 8   cos(2x) - 4   sin(2x) C) 6x sin(2x) + 12   cos(2x) - 4   sin(2x) D) - 6x sin(2x) + 12   cos(2x) + 4   sin(2x) E) 6x sin(2x) + 12   cos(2x) + 4   sin(2x) sin(2x)
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
70
Find the second derivative of the function f(x) = <strong>Find the second derivative of the function f(x) =   .</strong> A) 1 B) x C) -   D) -   E) 0 .

A) 1
B) x
C) - <strong>Find the second derivative of the function f(x) =   .</strong> A) 1 B) x C) -   D) -   E) 0
D) - <strong>Find the second derivative of the function f(x) =   .</strong> A) 1 B) x C) -   D) -   E) 0
E) 0
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
71
A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.

A) 200 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm  /cm
B) 100 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm  /cm
C) 300 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm  /cm
D) 400 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm  /cm
E) 500 π\pi  <strong>A spherical balloon is being inflated. Find the rate of change of volume with respect to the radius when the radius is 5 cm.</strong> A) 200  \pi    /cm B) 100  \pi    /cm C) 300  \pi   /cm D) 400  \pi    /cm E) 500  \pi   /cm  /cm
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
72
Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.

A) 40 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m /m
B) 42 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m /m
C) 48 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m /m
D) 50 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m /m
E) 8 <strong>Find the rate of change of the volume of a cube with respect to its edge length x when x = 4 m.</strong> A) 40   /m B) 42   /m C) 48   /m D) 50   /m E) 8   /m /m
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
73
A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m  ) with respect to the radius when r = 2 m.

A) 16 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m  /m
B) 8 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m  /m
C) 12  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m  /m
D) 24  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m  /m
E) 4 π\pi  <strong>A spherical balloon is being inflated. Find the rate of increase of the surface area (S = 4  \pi   ) with respect to the radius when r = 2 m.</strong> A) 16  \pi    /m B) 8  \pi   /m C) 12   /m D) 24   /m E) 4  \pi   /m  /m
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
74
Find the rate of change of the area of a circle with respect to its circumference C.

A) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C C
B) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C C
C) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C C
D) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C C
E) <strong>Find the rate of change of the area of a circle with respect to its circumference C.</strong> A)   C B)   C C)   C D)   C E)   C C
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
75
The electrical resistance R of a wire of unit length and cross-sectional radius x is given by R = <strong>The electrical resistance R of a wire of unit length and cross-sectional radius x is given by R =   , where K is a non-zero constant real number. By approximately what percentage does the resistance R change if the diameter of the wire is decreased by 6%?</strong> A) -6% B) -9% C) 12% D) 6% E) -12% , where K is a non-zero constant real number. By approximately what percentage does the resistance R change if the diameter of the wire is decreased by 6%?

A) -6%
B) -9%
C) 12%
D) 6%
E) -12%
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
76
The cost in dollars for a company to produce x pairs of shoes is <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   . Find the marginal cost function.

A) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   (x) = 1 + 0.02x + 0.0006 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006
B) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   (x) = 1 + 0.01x + 0.0002 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006
C) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   (x) = 3 + 0.02x + 0.0003 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006
D) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   (x) = 3 + 0.02x + 0.0006 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006
E) <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006   (x) = 3 + 0.01x + 0.0006 <strong>The cost in dollars for a company to produce x pairs of shoes is   . Find the marginal cost function.</strong> A)   (x) = 1 + 0.02x + 0.0006   B)   (x) = 1 + 0.01x + 0.0002   C)   (x) = 3 + 0.02x + 0.0003   D)   (x) = 3 + 0.02x + 0.0006   E)   (x) = 3 + 0.01x + 0.0006
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
77
The population (in thousands) of the city of Abbotsford is given by <strong>The population (in thousands) of the city of Abbotsford is given by   , with t in years and with   corresponding to 1980. What was the rate of change of P in 1986?</strong> A) 9.6 thousand per year B) 8.6 thousand per year C) 7.6 thousand per year D) 8.9 thousand per year E) 4.4 thousand per year , with t in years and with <strong>The population (in thousands) of the city of Abbotsford is given by   , with t in years and with   corresponding to 1980. What was the rate of change of P in 1986?</strong> A) 9.6 thousand per year B) 8.6 thousand per year C) 7.6 thousand per year D) 8.9 thousand per year E) 4.4 thousand per year corresponding to 1980. What was the rate of change of P in 1986?

A) 9.6 thousand per year
B) 8.6 thousand per year
C) 7.6 thousand per year
D) 8.9 thousand per year
E) 4.4 thousand per year
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
78
The daily cost of production of x widgets in a widget factory is C dollars, where <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 . What is the cost per widget, and what value of x will make the cost per widget as small as possible?

A) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 dollars, x = 2,000
B) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 dollars, x = 4,000
C) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 dollars, x = 8,000
D) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 dollars, x = 400
E) <strong>The daily cost of production of x widgets in a widget factory is C dollars, where   . What is the cost per widget, and what value of x will make the cost per widget as small as possible?</strong> A)   dollars, x = 2,000 B)   dollars, x = 4,000 C)   dollars, x = 8,000 D)   dollars, x = 400 E)   dollars, x = 4,000 dollars, x = 4,000
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
79
If the cost of mining x kg of gold is C(x) = A + Bx + C <strong>If the cost of mining x kg of gold is C(x) = A + Bx + C   dollars where A, B, and C are positive constants, which of the following statements is true for a given positive value of x?</strong> A) The marginal cost C'(x) is greater than the cost C(x + 1) - C(x) of mining 1 more kg. B) The marginal cost C'(x) is less than the cost C(x + 1) - C(x) of mining 1 more kg. C) The marginal cost C'(x) is equal to the cost C(x + 1) - C(x) of mining 1 more kg. D) There is not enough information to make any conclusion. E) None of the above dollars where A, B, and C are positive constants, which of the following statements is true for a given positive value of x?

A) The marginal cost C'(x) is greater than the cost C(x + 1) - C(x) of mining 1 more kg.
B) The marginal cost C'(x) is less than the cost C(x + 1) - C(x) of mining 1 more kg.
C) The marginal cost C'(x) is equal to the cost C(x + 1) - C(x) of mining 1 more kg.
D) There is not enough information to make any conclusion.
E) None of the above
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
80
By approximately what percentage does the volume of a cube change if the edge length changes by 1%?

A) 3%
B) 1%
C) 2%
D) 4%
E) <strong>By approximately what percentage does the volume of a cube change if the edge length changes by 1%?</strong> A) 3% B) 1% C) 2% D) 4% E)   % %
Unlock Deck
Unlock for access to all 131 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 131 flashcards in this deck.