Deck 8: Integration Techniques

Full screen (f)
exit full mode
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C <div style=padding-top: 35px> + C
B) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C <div style=padding-top: 35px> + C
C) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C <div style=padding-top: 35px> + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C <div style=padding-top: 35px> + C
Use Space or
up arrow
down arrow
to flip the card.
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C <div style=padding-top: 35px>

A) -6 sin <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C <div style=padding-top: 35px> + C
B) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C <div style=padding-top: 35px> cos <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C <div style=padding-top: 35px> + C
C) 6 cos <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C <div style=padding-top: 35px> + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C <div style=padding-top: 35px> sin <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C <div style=padding-top: 35px> + C
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 7 B) 2   C) 8 D) 11 <div style=padding-top: 35px>

A) 7
B) 2 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 7 B) 2   C) 8 D) 11 <div style=padding-top: 35px>
C) 8
D) 11
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C <div style=padding-top: 35px> + C
B)- <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C <div style=padding-top: 35px> + C
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C <div style=padding-top: 35px> + C
D) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C <div style=padding-top: 35px> + C
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px> ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px> + C
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px> ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px> + C
C) 4 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px> + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px> ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C <div style=padding-top: 35px> + C
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <div style=padding-top: 35px> <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <div style=padding-top: 35px> + C
B) 2 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <div style=padding-top: 35px> + C
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <div style=padding-top: 35px> <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <div style=padding-top: 35px> + C
D) 2 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <div style=padding-top: 35px> + C
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)    <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)    <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)    <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)    <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)    <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 1   B) 144 C) 2304 D) 144   <div style=padding-top: 35px>

A) 1 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 1   B) 144 C) 2304 D) 144   <div style=padding-top: 35px>
B) 144
C) 2304
D) 144 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 1   B) 144 C) 2304 D) 144   <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)    <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)    <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-dx <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C <div style=padding-top: 35px>

A) x + 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C <div style=padding-top: 35px> + C
B) x - 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C <div style=padding-top: 35px> + C
C) x - 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C <div style=padding-top: 35px> + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C <div style=padding-top: 35px> x + 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C <div style=padding-top: 35px> + C
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)    <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)    <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)    <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)    <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)    <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
Question
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

- <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) tan \theta  + sec  \theta  B)    \theta  - tan  \theta  C) tan  \theta  - sec  \theta  D)   \theta  + sec  \theta  <div style=padding-top: 35px>

A) tan θ\theta + sec θ\theta
B)  <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) tan \theta  + sec  \theta  B)    \theta  - tan  \theta  C) tan  \theta  - sec  \theta  D)   \theta  + sec  \theta  <div style=padding-top: 35px>  θ\theta - tan θ\theta
C) tan θ\theta - sec θ\theta
D)  <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) tan \theta  + sec  \theta  B)    \theta  - tan  \theta  C) tan  \theta  - sec  \theta  D)   \theta  + sec  \theta  <div style=padding-top: 35px>  θ\theta + sec θ\theta
Question
Solve the problem.

-Find the area of the entire region bounded by the curves <strong>Solve the problem.  -Find the area of the entire region bounded by the curves   and  </strong> A) 1 B)   - 6 ln 12 C) 0 D) 9 - 12 ln 12 <div style=padding-top: 35px> and <strong>Solve the problem.  -Find the area of the entire region bounded by the curves   and  </strong> A) 1 B)   - 6 ln 12 C) 0 D) 9 - 12 ln 12 <div style=padding-top: 35px>

A) 1
B) <strong>Solve the problem.  -Find the area of the entire region bounded by the curves   and  </strong> A) 1 B)   - 6 ln 12 C) 0 D) 9 - 12 ln 12 <div style=padding-top: 35px> - 6 ln 12
C) 0
D) 9 - 12 ln 12
Question
Solve the problem.

-Consider the region R bounded by the graph of f(x) = <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)   <div style=padding-top: 35px> on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.

A) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)   <div style=padding-top: 35px> + 15
B) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.

-Consider the region R bounded by the graph of f(x) =  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi   <div style=padding-top: 35px>  on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.

A) π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi   <div style=padding-top: 35px>
B) 2 π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi   <div style=padding-top: 35px>
C) π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi   <div style=padding-top: 35px>
D) 2 π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi   <div style=padding-top: 35px>
Question
Evaluate the integral.

- <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)   <div style=padding-top: 35px> x dx

A) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

- <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)   <div style=padding-top: 35px> 3x dx

A)<strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)    <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 13 sin x - x cos x + C B) 13 sin x + 13x cos x + C C) 13 sin x - 13 cos x + C D) 13 sin x - 13x cos x + C <div style=padding-top: 35px>

A) 13 sin x - x cos x + C
B) 13 sin x + 13x cos x + C
C) 13 sin x - 13 cos x + C
D) 13 sin x - 13x cos x + C
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)   C)   D)   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px> (Give your answer in exact form.)

A) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 40.2 B) 6.70 C) 55.2 D) 9.48 <div style=padding-top: 35px>

A) 40.2
B) 6.70
C) 55.2
D) 9.48
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 6.68 B) 2.68 C) 4.6 D) 0.68 <div style=padding-top: 35px>

A) 6.68
B) 2.68
C) 4.6
D) 0.68
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - ln 2x dx </strong> A) 51.35 B) 37.13 C) 38.91 D) -19.37 <div style=padding-top: 35px> ln 2x dx

A) 51.35
B) 37.13
C) 38.91
D) -19.37
Question
Solve the problem.

-Find the volume of the solid generated by revolving the region bounded by the curve  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1) <div style=padding-top: 35px>  the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1) <div style=padding-top: 35px>  and the vertical line  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1) <div style=padding-top: 35px>  about the x-axis.

A) π\pi e - 1)
B) 2 π\pi (  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1) <div style=padding-top: 35px>  - 1)
C) π\pi e
D) π\pi (  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1) <div style=padding-top: 35px>  - 1)
Question
Solve the problem.

-Find the volume of the solid generated by revolving the region bounded by the curve  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8   <div style=padding-top: 35px>  and the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8   <div style=padding-top: 35px>   <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8   <div style=padding-top: 35px>  about the x-axis.

A) 16  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8   <div style=padding-top: 35px>
B) 16 π\pi
C) 8  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8   <div style=padding-top: 35px>
D) 8  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8   <div style=padding-top: 35px>
Question
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7 <div style=padding-top: 35px>  and the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7 <div style=padding-top: 35px>  from  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7 <div style=padding-top: 35px>  to  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7 <div style=padding-top: 35px>  about the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7 <div style=padding-top: 35px>

A) 14 π\pi ln 7
B) 2 π\pi ( 7ln 7 - 7)
C) 2 π\pi ( 7ln 7 - 6)
D) 7 π\pi ln 7
Question
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = ln 6 about the line x = ln 6.</strong> A) 2 \pi ( 5 + ln 6) B) 2 \pi ( 5 - ln 6) C) 2 \pi ( 6 - ln 6) D) 2 \pi (6 - ln 7) <div style=padding-top: 35px>  , and the line x = ln 6 about the line x = ln 6.

A) 2 π\pi ( 5 + ln 6)
B) 2 π\pi ( 5 - ln 6)
C) 2 π\pi ( 6 - ln 6)
D) 2 π\pi (6 - ln 7)
Question
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  , and the line x = 3 about the y-axis.

A)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  π\pi (1 - 11  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  )
B)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  π\pi (1 - 12  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  )
C) -  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  π\pi (1 + 13  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  )
D)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  π\pi (1 - 13  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   ) <div style=padding-top: 35px>  )
Question
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0 ≤\le x ≤\le π\pi / 3 about the line x = π\pi / 3.

A)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi  <div style=padding-top: 35px>
B)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi  <div style=padding-top: 35px>  π\pi
C)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi  <div style=padding-top: 35px>   <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi  <div style=padding-top: 35px>
D)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi  <div style=padding-top: 35px>   <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi  <div style=padding-top: 35px>  - π\pi
Question
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 ≤\le x ≤\le π\pi /2 about the y-axis.

A)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi  <div style=padding-top: 35px>  - 8 π\pi
B)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi  <div style=padding-top: 35px>  - 4 π\pi
C)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi  <div style=padding-top: 35px>  + 2  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi  <div style=padding-top: 35px>  - 4 π\pi
D)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi  <div style=padding-top: 35px>  - 4 π\pi
Question
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)    <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)   <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)    <div style=padding-top: 35px>  , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)    <div style=padding-top: 35px>
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)    <div style=padding-top: 35px>
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)    <div style=padding-top: 35px>
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)    <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)     <div style=padding-top: 35px>  , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)     <div style=padding-top: 35px>
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)     <div style=padding-top: 35px>
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)     <div style=padding-top: 35px>
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)     <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)    <div style=padding-top: 35px>  , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)    <div style=padding-top: 35px>
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)    <div style=padding-top: 35px>
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)    <div style=padding-top: 35px>
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)    <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)     <div style=padding-top: 35px>  , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)     <div style=padding-top: 35px>
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)     <div style=padding-top: 35px>
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)     <div style=padding-top: 35px>
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)     <div style=padding-top: 35px>
Question
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
Question
Evaluate the integral by using a substitution prior to integration by parts.

-<strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)     <div style=padding-top: 35px>

A) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)     <div style=padding-top: 35px>
B) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)     <div style=padding-top: 35px>
C) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)     <div style=padding-top: 35px>
D) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)     <div style=padding-top: 35px>
Question
Evaluate the integral by using a substitution prior to integration by parts.

-<strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)     <div style=padding-top: 35px>

A) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)     <div style=padding-top: 35px>
B) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)     <div style=padding-top: 35px>
C) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)     <div style=padding-top: 35px>
D) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)     <div style=padding-top: 35px>
Question
Evaluate the integral by using a substitution prior to integration by parts.

-<strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>

A) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
B) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
C) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
D) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)     <div style=padding-top: 35px>
Question
Solve the problem.

-Find the area between y = (x - 2)ex and the x-axis from x = 2 to x = 6.

A) e6 + e2
B) 3e6
C) 3e6 + e2
D) e6 - e2
Question
Solve the problem.

-The charge q (in coulombs) delivered by a current i (in amperes) is given by <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C <div style=padding-top: 35px> where t is the time (in seconds). A damped-out periodic wave form has current given by <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C <div style=padding-top: 35px> Find a formula for the charge delivered over time t.

A) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C <div style=padding-top: 35px> + C
B) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C <div style=padding-top: 35px> + C
C) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C <div style=padding-top: 35px> + C
D) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C <div style=padding-top: 35px> + C
Question
Solve the problem.

-The voltage v (in volts) induced in a tape head is given by <strong>Solve the problem.  -The voltage v (in volts) induced in a tape head is given by   where t is the time (in seconds). Find the average value of v over the interval from t = 0 to t = 4. Round to the nearest volt.</strong> A) 183,853 volts B) 2,559,851 volts C) 28,130 volts D) 30 volts <div style=padding-top: 35px> where t is the time (in seconds). Find the average value of v over the interval from t = 0 to t = 4. Round to the nearest volt.

A) 183,853 volts
B) 2,559,851 volts
C) 28,130 volts
D) 30 volts
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>

A) 0
B) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)  <div style=padding-top: 35px> dx

A)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>

A) 0
B) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -   <div style=padding-top: 35px>
D) - <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-  <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)  <div style=padding-top: 35px>  cos 8 θ\theta d θ\theta

A) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-dx <strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)  <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)  <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px>

A) - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)   C)   D)   <div style=padding-top: 35px>

A)<strong>Evaluate the integral.  - </strong> A)  B)   C)   D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A)  B)   C)   D)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A)  B)   C)   D)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A)  B)   C)   D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   <div style=padding-top: 35px>

A) - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   <div style=padding-top: 35px>
C) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   <div style=padding-top: 35px>
D) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   <div style=padding-top: 35px> - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)  <div style=padding-top: 35px> Give your answer in exact form.

A)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)  <div style=padding-top: 35px>

A) <strong>Evaluate the integral.  - </strong> A)   B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)  <div style=padding-top: 35px>
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 4 B) 2 C) 1 D) 0 <div style=padding-top: 35px>

A) 4
B) 2
C) 1
D) 0
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)   <div style=padding-top: 35px>

A) 2 <strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)   <div style=padding-top: 35px>
C) 2
D) <strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)   <div style=padding-top: 35px>
Question
Evaluate the integral.

- <strong>Evaluate the integral.  -   dx</strong> A)   B)   C) 0 D) 2 <div style=padding-top: 35px> dx

A) <strong>Evaluate the integral.  -   dx</strong> A)   B)   C) 0 D) 2 <div style=padding-top: 35px>
B) <strong>Evaluate the integral.  -   dx</strong> A)   B)   C) 0 D) 2 <div style=padding-top: 35px>
C) 0
D) 2
Question
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 2 B) 1 C) 2 +   D) 2 -   <div style=padding-top: 35px>

A) 2
B) 1
C) 2 + <strong>Evaluate the integral.  - </strong> A) 2 B) 1 C) 2 +   D) 2 -   <div style=padding-top: 35px>
D) 2 - <strong>Evaluate the integral.  - </strong> A) 2 B) 1 C) 2 +   D) 2 -   <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/287
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Integration Techniques
1
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C + C
B) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C + C
C) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B) -   + C C) -   + C D)   + C + C
- -   + C + C
2
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C

A) -6 sin <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C + C
B) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C cos <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C + C
C) 6 cos <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C sin <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) -6 sin   + C B) -   cos   + C C) 6 cos   + C D)   sin   + C + C
  sin   + C sin   sin   + C + C
3
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 7 B) 2   C) 8 D) 11

A) 7
B) 2 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 7 B) 2   C) 8 D) 11
C) 8
D) 11
8
4
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C + C
B)- <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C + C
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C + C
D) - <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   + C B)-   + C C)   + C D) -   + C + C
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
5
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C + C
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C + C
C) 4 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   ln   + C B)   ln   + C C) 4 ln   + C D)   ln   + C + C
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
6
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C + C
B) 2 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C + C
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C + C
D) 2 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     + C B) 2   + C C)     + C D) 2   + C + C
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
7
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)     B)     C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
8
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 1   B) 144 C) 2304 D) 144

A) 1 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 1   B) 144 C) 2304 D) 144
B) 144
C) 2304
D) 144 <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) 1   B) 144 C) 2304 D) 144
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
9
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
10
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
11
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
12
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-dx <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C

A) x + 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C + C
B) x - 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C + C
C) x - 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C + C
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C x + 8 ln <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  -dx  </strong> A) x + 8 ln   + C B) x - 8 ln   + C C) x - 8 ln   + C D)   x + 8 ln   + C + C
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
13
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)   C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
14
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)    B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
15
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
16
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

-<strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)

A) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
B) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
C) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
D) <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A)   B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
17
Choose the one alternative that best completes the statement or answers the question. Evaluate the integral

- <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) tan \theta  + sec  \theta  B)    \theta  - tan  \theta  C) tan  \theta  - sec  \theta  D)   \theta  + sec  \theta

A) tan θ\theta + sec θ\theta
B)  <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) tan \theta  + sec  \theta  B)    \theta  - tan  \theta  C) tan  \theta  - sec  \theta  D)   \theta  + sec  \theta   θ\theta - tan θ\theta
C) tan θ\theta - sec θ\theta
D)  <strong>Choose the one alternative that best completes the statement or answers the question. Evaluate the integral  - </strong> A) tan \theta  + sec  \theta  B)    \theta  - tan  \theta  C) tan  \theta  - sec  \theta  D)   \theta  + sec  \theta   θ\theta + sec θ\theta
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
18
Solve the problem.

-Find the area of the entire region bounded by the curves <strong>Solve the problem.  -Find the area of the entire region bounded by the curves   and  </strong> A) 1 B)   - 6 ln 12 C) 0 D) 9 - 12 ln 12 and <strong>Solve the problem.  -Find the area of the entire region bounded by the curves   and  </strong> A) 1 B)   - 6 ln 12 C) 0 D) 9 - 12 ln 12

A) 1
B) <strong>Solve the problem.  -Find the area of the entire region bounded by the curves   and  </strong> A) 1 B)   - 6 ln 12 C) 0 D) 9 - 12 ln 12 - 6 ln 12
C) 0
D) 9 - 12 ln 12
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
19
Solve the problem.

-Consider the region R bounded by the graph of f(x) = <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.

A) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)   + 15
B) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)
C) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)
D) <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the x-axis.</strong> A)   + 15 B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
20
Solve the problem.

-Consider the region R bounded by the graph of f(x) =  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi    on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.

A) π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi
B) 2 π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi
C) π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi
D) 2 π\pi  <strong>Solve the problem.  -Consider the region R bounded by the graph of f(x) =   on the interval [0, 3]. Find the volume of the solid formed when R is revolved about the y-axis.</strong> A)   \pi   B) 2 \pi    C) \pi    D) 2 \pi
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
21
Evaluate the integral.

- <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)   x dx

A) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)
B) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)
C) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)
D) <strong>Evaluate the integral.  -  x dx</strong> A)     B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate the integral.

- <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)   3x dx

A)<strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)
B) <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)
C) <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)
D) <strong>Evaluate the integral.  -  3x dx</strong> A)  B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
23
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)    C)    D)

A) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
B) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
C) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
D) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
24
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 13 sin x - x cos x + C B) 13 sin x + 13x cos x + C C) 13 sin x - 13 cos x + C D) 13 sin x - 13x cos x + C

A) 13 sin x - x cos x + C
B) 13 sin x + 13x cos x + C
C) 13 sin x - 13 cos x + C
D) 13 sin x - 13x cos x + C
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
25
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)   C)    D)

A) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)
B) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)
C) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)
D) <strong>Evaluate the integral.  - </strong> A)    B)   C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
26
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   C)    D)

A) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)
B) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)
C) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)
D) <strong>Evaluate the integral.  - </strong> A)   B)   C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
27
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)    C)   D)

A) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)
B) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)
C) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)
D) <strong>Evaluate the integral.  - </strong> A)    B)    C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
28
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)    C)    D)

A) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
B) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
C) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
D) <strong>Evaluate the integral.  - </strong> A)    B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)    C)    D)

A) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)
B) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)
C) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)
D) <strong>Evaluate the integral.  - </strong> A)   B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
30
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)    B)   C)   D)

A) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)
B) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)
C) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)
D) <strong>Evaluate the integral.  - </strong> A)    B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
31
Evaluate the integral.

-<strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   (Give your answer in exact form.)

A) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   - <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -
B) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   - <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -
C) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -
D) <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -   - <strong>Evaluate the integral.  -  (Give your answer in exact form.)</strong> A)   -   B)   -   C)   D)   -
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
32
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 40.2 B) 6.70 C) 55.2 D) 9.48

A) 40.2
B) 6.70
C) 55.2
D) 9.48
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
33
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 6.68 B) 2.68 C) 4.6 D) 0.68

A) 6.68
B) 2.68
C) 4.6
D) 0.68
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate the integral.

-<strong>Evaluate the integral.  - ln 2x dx </strong> A) 51.35 B) 37.13 C) 38.91 D) -19.37 ln 2x dx

A) 51.35
B) 37.13
C) 38.91
D) -19.37
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
35
Solve the problem.

-Find the volume of the solid generated by revolving the region bounded by the curve  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1)  the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1)  and the vertical line  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1)  about the x-axis.

A) π\pi e - 1)
B) 2 π\pi (  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1)  - 1)
C) π\pi e
D) π\pi (  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   the   and the vertical line   about the x-axis.</strong> A) \pi e - 1) B) 2 \pi (   - 1) C)  \pi  e D)  \pi (   - 1)  - 1)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
36
Solve the problem.

-Find the volume of the solid generated by revolving the region bounded by the curve  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8    and the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8     <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8    about the x-axis.

A) 16  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8
B) 16 π\pi
C) 8  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8
D) 8  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region bounded by the curve   and the     about the x-axis.</strong> A) 16   B) 16 \pi  C) 8   D) 8
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
37
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7  and the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7  from  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7  to  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7  about the  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by   and the   from   to   about the  </strong> A) 14 \pi ln 7 B) 2 \pi ( 7ln 7 - 7) C) 2 \pi ( 7ln 7 - 6) D) 7 \pi ln 7

A) 14 π\pi ln 7
B) 2 π\pi ( 7ln 7 - 7)
C) 2 π\pi ( 7ln 7 - 6)
D) 7 π\pi ln 7
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
38
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = ln 6 about the line x = ln 6.</strong> A) 2 \pi ( 5 + ln 6) B) 2 \pi ( 5 - ln 6) C) 2 \pi ( 6 - ln 6) D) 2 \pi (6 - ln 7)  , and the line x = ln 6 about the line x = ln 6.

A) 2 π\pi ( 5 + ln 6)
B) 2 π\pi ( 5 - ln 6)
C) 2 π\pi ( 6 - ln 6)
D) 2 π\pi (6 - ln 7)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
39
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  , and the line x = 3 about the y-axis.

A)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  π\pi (1 - 11  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  )
B)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  π\pi (1 - 12  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  )
C) -  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  π\pi (1 + 13  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  )
D)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  π\pi (1 - 13  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y =   , and the line x = 3 about the y-axis.</strong> A)    \pi  (1 - 11    ) B)    \pi  (1 - 12    ) C) -    \pi (1 + 13   ) D)    \pi (1 - 13   )  )
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
40
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0 ≤\le x ≤\le π\pi / 3 about the line x = π\pi / 3.

A)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi
B)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi   π\pi
C)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi    <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi
D)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi    <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = sin 3x, 0  \le  x \le    \pi / 3 about the line x =  \pi / 3.</strong> A)   B)    \pi  C)     D)     -  \pi   - π\pi
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the problem.

-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 ≤\le x ≤\le π\pi /2 about the y-axis.

A)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi   - 8 π\pi
B)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi   - 4 π\pi
C)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi   + 2  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi   - 4 π\pi
D)  <strong>Solve the problem.  -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the x-axis and the curve y = x cos x, 0 \le x  \le    \pi /2 about the y-axis.</strong> A)   - 8   \pi  B)   - 4  \pi  C)   + 2   - 4   \pi  D)   - 4   \pi   - 4 π\pi
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
42
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
43
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
44
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)   B)    C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
45
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
46
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)    C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
47
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)     , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
48
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)      , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
49
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)     , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)    B)     C)     D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
50
Use integration by parts to establish a reduction formula for the integral.

- <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)      , n ≠\neq 1

A)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)
B)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)
C)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)
D)  <strong>Use integration by parts to establish a reduction formula for the integral.  -  , n  \neq 1</strong> A)     B)    C)     D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
51
Use integration by parts to establish a reduction formula for the integral.

-<strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)

A) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)
B) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)
C) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)
D) <strong>Use integration by parts to establish a reduction formula for the integral.  - </strong> A)    B)     C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
52
Evaluate the integral by using a substitution prior to integration by parts.

-<strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)

A) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)
B) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)
C) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)
D) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)     D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
53
Evaluate the integral by using a substitution prior to integration by parts.

-<strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)

A) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)
B) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)
C) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)
D) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)     B)     C)     D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
54
Evaluate the integral by using a substitution prior to integration by parts.

-<strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)

A) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)
B) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)
C) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)
D) <strong>Evaluate the integral by using a substitution prior to integration by parts.  - </strong> A)    B)     C)    D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
55
Solve the problem.

-Find the area between y = (x - 2)ex and the x-axis from x = 2 to x = 6.

A) e6 + e2
B) 3e6
C) 3e6 + e2
D) e6 - e2
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
56
Solve the problem.

-The charge q (in coulombs) delivered by a current i (in amperes) is given by <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C where t is the time (in seconds). A damped-out periodic wave form has current given by <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C Find a formula for the charge delivered over time t.

A) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C + C
B) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C + C
C) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C + C
D) <strong>Solve the problem.  -The charge q (in coulombs) delivered by a current i (in amperes) is given by   where t is the time (in seconds). A damped-out periodic wave form has current given by   Find a formula for the charge delivered over time t.</strong> A)   + C B)   + C C)   + C D)   + C + C
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
57
Solve the problem.

-The voltage v (in volts) induced in a tape head is given by <strong>Solve the problem.  -The voltage v (in volts) induced in a tape head is given by   where t is the time (in seconds). Find the average value of v over the interval from t = 0 to t = 4. Round to the nearest volt.</strong> A) 183,853 volts B) 2,559,851 volts C) 28,130 volts D) 30 volts where t is the time (in seconds). Find the average value of v over the interval from t = 0 to t = 4. Round to the nearest volt.

A) 183,853 volts
B) 2,559,851 volts
C) 28,130 volts
D) 30 volts
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
58
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)

A) 0
B) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)
C) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)
D) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
59
Evaluate the integral.

-<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)  dx

A)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  -  dx </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
60
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)

A) 0
B) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)
C) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)
D) <strong>Evaluate the integral.  - </strong> A) 0 B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -

A) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -
B) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -
C) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -
D) - <strong>Evaluate the integral.  - </strong> A)   B)   C)   D) -
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
62
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
63
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -

A) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -
B) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   - <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -
C) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -
D) <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -   - <strong>Evaluate the integral.  - </strong> A)   B)   -   C)   D)   -
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
64
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)   C)   D)

A) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)
B) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)
C) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)
D) <strong>Evaluate the integral.  - </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
65
Evaluate the integral.

-  <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)   cos 8 θ\theta d θ\theta

A) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)
B) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)
C) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)
D) <strong>Evaluate the integral.  -     cos 8 \theta  d \theta </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
66
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
67
Evaluate the integral.

-dx <strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)

A) <strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)
B) <strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)
C)<strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)
D)<strong>Evaluate the integral.  -dx  </strong> A)   B)   C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
69
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
70
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -

A) - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -
B) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -
C) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -
D) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -   - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   -   D)   -
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
71
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
72
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)   C)   D)

A)<strong>Evaluate the integral.  - </strong> A)  B)   C)   D)
B) <strong>Evaluate the integral.  - </strong> A)  B)   C)   D)
C) <strong>Evaluate the integral.  - </strong> A)  B)   C)   D)
D) <strong>Evaluate the integral.  - </strong> A)  B)   C)   D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
73
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -

A) - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -
B) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -
C) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -
D) <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -   - <strong>Evaluate the integral.  - </strong> A) -   B)   -   C)   D)   -
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
74
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)

A)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  - </strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
75
Evaluate the integral.

-<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)  Give your answer in exact form.

A)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)
B)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)
C)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)
D)<strong>Evaluate the integral.  -  Give your answer in exact form.</strong> A)  B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
76
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)

A) <strong>Evaluate the integral.  - </strong> A)   B)  C)  D)
B)<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)
C)<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)
D)<strong>Evaluate the integral.  - </strong> A)   B)  C)  D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
77
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 4 B) 2 C) 1 D) 0

A) 4
B) 2
C) 1
D) 0
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
78
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)

A) 2 <strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)
B) <strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)
C) 2
D) <strong>Evaluate the integral.  - </strong> A) 2   B)   C) 2 D)
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
79
Evaluate the integral.

- <strong>Evaluate the integral.  -   dx</strong> A)   B)   C) 0 D) 2 dx

A) <strong>Evaluate the integral.  -   dx</strong> A)   B)   C) 0 D) 2
B) <strong>Evaluate the integral.  -   dx</strong> A)   B)   C) 0 D) 2
C) 0
D) 2
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
80
Evaluate the integral.

-<strong>Evaluate the integral.  - </strong> A) 2 B) 1 C) 2 +   D) 2 -

A) 2
B) 1
C) 2 + <strong>Evaluate the integral.  - </strong> A) 2 B) 1 C) 2 +   D) 2 -
D) 2 - <strong>Evaluate the integral.  - </strong> A) 2 B) 1 C) 2 +   D) 2 -
Unlock Deck
Unlock for access to all 287 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 287 flashcards in this deck.