Deck 15: Thermodynamics

Full screen (f)
exit full mode
Question
On a PV\mathrm{PV} diagram where pressure is in atmospheres and V\mathrm{V} is in liters the area is measured in liter-atmospheres. What is the number of Joules in 1.00 liter-atmosphere?

A) 101.3
B) 15.7
C) 65.2
D) 83.1
E) 22.4
Use Space or
up arrow
down arrow
to flip the card.
Question
Using 0.0200 mol0.0200 \mathrm{~mol} of an ideal monatomic gas, an isochoric process from state A(230kPa,1.0 L\mathrm{A}(230 \mathrm{kPa}, 1.0 \mathrm{~L} ) to B(98\mathrm{B}(98 kPa,1.0 L\mathrm{kPa}, 1.0 \mathrm{~L} ) results in what change in internal energy?

A) 375 J-375 \mathrm{~J}
B) 200 J-200 \mathrm{~J}
C) +200 J+200 \mathrm{~J}
D) +375 J+375 \mathrm{~J}
Question

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at a constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . How much heat is absorbed by the gas?

A) 288 J288 \mathrm{~J}
B) 389 J389 \mathrm{~J}
C) 544 J544 \mathrm{~J}
D) 436 J436 \mathrm{~J}

Question

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . What is the change of volume of the gas in this process?

A) 0.86 L0.86 \mathrm{~L}
B) 1.88 L1.88 \mathrm{~L}
C) 2.09 L2.09 \mathrm{~L}
D) 1.23 L1.23 \mathrm{~L}

Question

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . What is the work done by the gas during this expansion?

A) 172 J172 \mathrm{~J}
B) 125 J125 \mathrm{~J}
C) 159 J159 \mathrm{~J}
D) 102 J102 \mathrm{~J}

Question

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . From the first law, calculate the change of internal energy of the gas in this process.

A) 365 J365 \mathrm{~J}
B) 155 J155 \mathrm{~J}
C) 291 J291 \mathrm{~J}
D) 312 J312 \mathrm{~J}

Question
A very efficient engine has the following characteristics-combustion =1,900C=1,900^{\circ} \mathrm{C} , exhaust =430C,5.0×=430^{\circ} \mathrm{C}, 5.0 \times 10610^{6} cal of fuel produces 1.4×107 J1.4 \times 10^{7} \mathrm{~J} of work in one hour. What is the output in hp\mathrm{hp} ? (1hp=745.7 W)(1 \mathrm{hp}=745.7 \mathrm{~W})

A) 7.3hp7.3 \mathrm{hp}
B) 5.2hp5.2 \mathrm{hp}
C) 8.1hp8.1 \mathrm{hp}
D) 6.3hp6.3 \mathrm{hp}
Question
A heat engine has an efficiency of 25.0%25.0 \% and a power output of 600 W600 \mathrm{~W} . What is the rate of heat input?

A) 2.4 kW2.4 \mathrm{~kW} .
B) 1.8 kW1.8 \mathrm{~kW} .
C) 3.0 kW3.0 \mathrm{~kW} .
D) 2.0 kW2.0 \mathrm{~kW} .
Question
A refrigerator uses 40.0 J40.0 \mathrm{~J} of work to extract 90.0 J90.0 \mathrm{~J} from a heat reservoir at 0.00C0.00^{\circ} \mathrm{C} . What is the coefficient of performance for the refrigerator?

A) 2.05
B) 2.85
C) 2.25
D) 1.60
Question
120 J120 \mathrm{~J} of heat flows by thermal conduction from 100C100^{\circ} \mathrm{C} to 0.00C0.00^{\circ} \mathrm{C} . What is the net change in entropy for this process?

A) 0.034 J/K0.034 \mathrm{~J} / \mathrm{K}
B) 0.118 J/K0.118 \mathrm{~J} / \mathrm{K}
C) 0.338 J/K0.338 \mathrm{~J} / \mathrm{K}
D) 0.201 J/K0.201 \mathrm{~J} / \mathrm{K}

Question

When 1.000 kg1.000 \mathrm{~kg} of ice melts, 33.00×104 J/kg33.00 \times 10^{4} \mathrm{~J} / \mathrm{kg} of heat are needed. What is the entropy change of the ice in the melting process?

A) 1,684 J/K1,684 \mathrm{~J} / \mathrm{K}
B) 1,209 J/K1,209 \mathrm{~J} / \mathrm{K}
C) 758.0 J/K758.0 \mathrm{~J} / \mathrm{K}
D) 2,316 J/K2,316 \mathrm{~J} / \mathrm{K}

Question
When 2.000 kg2.000 \mathrm{~kg} of water evaporates, 22.60×105 J/kg22.60 \times 10^{5} \mathrm{~J} / \mathrm{kg} of heat are needed. What is the entropy change of the water in the boiling process?

A) 6,750 J/K6,750 \mathrm{~J} / \mathrm{K}
B) 12,120 J/K12,120 \mathrm{~J} / \mathrm{K}
C) 5,844 J/K5,844 \mathrm{~J} / \mathrm{K}
D) 8,566 J/K8,566 \mathrm{~J} / \mathrm{K}
Question
It can be shown that the change in entropy in heating or cooling a sample is given by the relation ΔS=mcln\Delta \mathrm{S}=\mathrm{mc} \ln (TF/Ti)\left(\mathrm{T}_{\mathrm{F}} / \mathrm{T}_{\mathrm{i}}\right) , where m\mathrm{m} is the mass of the sample, c\mathrm{c} is the specific heat of the sample, and TF\mathrm{T}_{\mathrm{F}} and Ti\mathrm{T}_{\mathrm{i}} are the final and initial temperatures, respectively. What is the change in entropy when 10.0 grams of lead with a specific heat of 0.452 J/gK0.452 \mathrm{~J} / \mathrm{g} \mathrm{K} is heated from 10.0C10.0^{\circ} \mathrm{C} to 50.0C50.0^{\circ} \mathrm{C} ?

A) 0.90 J/K0.90 \mathrm{~J} / \mathrm{K}
B) 0.30 J/K0.30 \mathrm{~J} / \mathrm{K}
C) 0.60 J/K0.60 \mathrm{~J} / \mathrm{K}
D) 0.45 J/K0.45 \mathrm{~J} / \mathrm{K}
Question
It can be shown that the change in entropy in heating or cooling a sample is given by the relation ΔS=mcln\Delta \mathrm{S}=\mathrm{mc} \ln (TF/Ti)\left(\mathrm{T}_{\mathrm{F}} / \mathrm{T}_{\mathrm{i}}\right) , where m\mathrm{m} is the mass of the sample, c\mathrm{c} is the specific heat of the sample, and TF\mathrm{T}_{\mathrm{F}} and Ti\mathrm{T}_{\mathrm{i}} are the final and initial temperatures, respectively. What is the change in entropy when 20.0 grams of aluminum with a specific heat of 0.900 J/gK0.900 \mathrm{~J} / \mathrm{g} \mathrm{K} is cooled from 60.0C60.0^{\circ} \mathrm{C} to 10.0C10.0^{\circ} \mathrm{C} ?

A) +2.93 J/K+2.93 \mathrm{~J} / \mathrm{K}
B) 0.00 J/K0.00 \mathrm{~J} / \mathrm{K}
C) +2.50 J/K+2.50 \mathrm{~J} / \mathrm{K}
D) 2.93 J/K-2.93 \mathrm{~J} / \mathrm{K}
Question
It can be shown that the change in entropy in heating or cooling a sample is given by the relation ΔS=mcln\Delta \mathrm{S}=\mathrm{mc} \ln (TF/Ti)\left(T_{F} / T_{i}\right) , where mm is the mass of the sample, cc is the specific heat of the sample, and TFT_{F} and TiT_{i} are the final and initial temperatures, respectively. What is the change in entropy when 20.0 grams of aluminum with a specific heat of 0.900 J/gK0.900 \mathrm{~J} / \mathrm{g} \mathrm{K} is heated from 10.0C10.0^{\circ} \mathrm{C} to 60.0C60.0^{\circ} \mathrm{C} ?

A) 2.93 J/K-2.93 \mathrm{~J} / \mathrm{K}
B) +2.50 J/K+2.50 \mathrm{~J} / \mathrm{K}
C) +2.93 J/K+2.93 \mathrm{~J} / \mathrm{K}
D) 0 J/K0 \mathrm{~J} / \mathrm{K}
Question
2.00 moles of an ideal gas freely expands from 1.50 liters to 4.00 liters. The change in entropy in the expansion is

A) 16.3 J/K16.3 \mathrm{~J} / \mathrm{K}
B) 5.80 J/K5.80 \mathrm{~J} / \mathrm{K}
C) 18.7 J/K18.7 \mathrm{~J} / \mathrm{K}
D) 8.50 J/K8.50 \mathrm{~J} / \mathrm{K}
Question
1.50 moles of an ideal gas freely expands from 1.00 liter to 4.50 liters. The change in entropy of the gas in the expansion is

A) 5.80 J/K5.80 \mathrm{~J} / \mathrm{K}
B) 8.50 J/K8.50 \mathrm{~J} / \mathrm{K}
C) 18.7 J/K18.7 \mathrm{~J} / \mathrm{K}
D) 16.3 J/K16.3 \mathrm{~J} / \mathrm{K}
Question
One mole of an ideal gas freely expands from 1.00 liter to 2.00 liters. The change in entropy of the gas in the expansion is

A) 5.80 J/K5.80 \mathrm{~J} / \mathrm{K}
B) 8.50 J/K8.50 \mathrm{~J} / \mathrm{K}
C) 18.7 J/K18.7 \mathrm{~J} / \mathrm{K}
D) 16.3 J/K16.3 \mathrm{~J} / \mathrm{K}
Question
A system in a certain macrostate has 1.2×1031.2 \times 10^{3} microstates. Through some process, the system changes the number of microstates to 3×1043 \times 10^{4} . What is the change in entropy for the process?

A) 1.1×1023 J/K1.1 \times 10^{-23} \mathrm{~J} / \mathrm{K}
B) 4.4×1023 J/K4.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}
C) 5.6×1023 J/K5.6 \times 10^{-23} \mathrm{~J} / \mathrm{K}
D) 2.1×1023 J/K2.1 \times 10^{-23} \mathrm{~J} / \mathrm{K}
Question
On a PV diagram, what kind of process is represented by a horizontal line with an arrow left to right?

A) Isobaric compression
B) Isothermal compression
C) Adiabatic process
D) Isothermal expansion
E) Isobaric expansion
F) Isochoric process
Question
On a PV diagram, what kind of process is represented by a vertical line with an arrow pointing downward?

A) Isobaric compression
B) Isothermal expansion
C) Isothermal compression
D) Adiabatic process
E) Isochoric process
F) Isobaric expansion
Question
For a system undergoing an adiabatic process,

A) Q=ΔUQ=\Delta U
B) Q=W\mathrm{Q}=-\mathrm{W}
C) Q=ΔU\mathrm{Q}=-\Delta \mathrm{U}
D) Q=W\mathrm{Q}=\mathrm{W}
E) Q=0\mathrm{Q}=0
Question
For a system undergoing an isothermal process,

A) Q=W\mathrm{Q}=-\mathrm{W}
B) Q=ΔU\mathrm{Q}=-\Delta \mathrm{U}
C) Q=W\mathrm{Q}=\mathrm{W}
D) Q=ΔU\mathrm{Q}=\Delta \mathrm{U}
E) Q=0\mathrm{Q}=0
Question
A friend tells you that he knows of a situation in which heat is passed from one body to another body with a higher temperature. He explains that he thinks the 2nd law of thermodynamics must have been violated. Is he correct?

A) No. The cooler body can give up energy to the hotter body by radioactivity or another natural process.
B) No. If the temperature difference is small enough, heat can spontaneously flow from the cooler to the hotter body.
C) Yes. Heat cannot pass from a cooler body to a hotter body.
D) No. He forgot that if external work is done on the system this is possible.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/24
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 15: Thermodynamics
1
On a PV\mathrm{PV} diagram where pressure is in atmospheres and V\mathrm{V} is in liters the area is measured in liter-atmospheres. What is the number of Joules in 1.00 liter-atmosphere?

A) 101.3
B) 15.7
C) 65.2
D) 83.1
E) 22.4
101.3
2
Using 0.0200 mol0.0200 \mathrm{~mol} of an ideal monatomic gas, an isochoric process from state A(230kPa,1.0 L\mathrm{A}(230 \mathrm{kPa}, 1.0 \mathrm{~L} ) to B(98\mathrm{B}(98 kPa,1.0 L\mathrm{kPa}, 1.0 \mathrm{~L} ) results in what change in internal energy?

A) 375 J-375 \mathrm{~J}
B) 200 J-200 \mathrm{~J}
C) +200 J+200 \mathrm{~J}
D) +375 J+375 \mathrm{~J}
200 J-200 \mathrm{~J}
3

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at a constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . How much heat is absorbed by the gas?

A) 288 J288 \mathrm{~J}
B) 389 J389 \mathrm{~J}
C) 544 J544 \mathrm{~J}
D) 436 J436 \mathrm{~J}

436 J436 \mathrm{~J}
4

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . What is the change of volume of the gas in this process?

A) 0.86 L0.86 \mathrm{~L}
B) 1.88 L1.88 \mathrm{~L}
C) 2.09 L2.09 \mathrm{~L}
D) 1.23 L1.23 \mathrm{~L}

Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
5

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . What is the work done by the gas during this expansion?

A) 172 J172 \mathrm{~J}
B) 125 J125 \mathrm{~J}
C) 159 J159 \mathrm{~J}
D) 102 J102 \mathrm{~J}

Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
6

1.00 mol1.00 \mathrm{~mol} of oxygen gas (O2)\left(\mathrm{O}_{2}\right) is heated at constant pressure of 1.00 atm1.00 \mathrm{~atm} from 10.0C10.0^{\circ} \mathrm{C} to 25.0C25.0^{\circ} \mathrm{C} . From the first law, calculate the change of internal energy of the gas in this process.

A) 365 J365 \mathrm{~J}
B) 155 J155 \mathrm{~J}
C) 291 J291 \mathrm{~J}
D) 312 J312 \mathrm{~J}

Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
7
A very efficient engine has the following characteristics-combustion =1,900C=1,900^{\circ} \mathrm{C} , exhaust =430C,5.0×=430^{\circ} \mathrm{C}, 5.0 \times 10610^{6} cal of fuel produces 1.4×107 J1.4 \times 10^{7} \mathrm{~J} of work in one hour. What is the output in hp\mathrm{hp} ? (1hp=745.7 W)(1 \mathrm{hp}=745.7 \mathrm{~W})

A) 7.3hp7.3 \mathrm{hp}
B) 5.2hp5.2 \mathrm{hp}
C) 8.1hp8.1 \mathrm{hp}
D) 6.3hp6.3 \mathrm{hp}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
8
A heat engine has an efficiency of 25.0%25.0 \% and a power output of 600 W600 \mathrm{~W} . What is the rate of heat input?

A) 2.4 kW2.4 \mathrm{~kW} .
B) 1.8 kW1.8 \mathrm{~kW} .
C) 3.0 kW3.0 \mathrm{~kW} .
D) 2.0 kW2.0 \mathrm{~kW} .
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
9
A refrigerator uses 40.0 J40.0 \mathrm{~J} of work to extract 90.0 J90.0 \mathrm{~J} from a heat reservoir at 0.00C0.00^{\circ} \mathrm{C} . What is the coefficient of performance for the refrigerator?

A) 2.05
B) 2.85
C) 2.25
D) 1.60
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
10
120 J120 \mathrm{~J} of heat flows by thermal conduction from 100C100^{\circ} \mathrm{C} to 0.00C0.00^{\circ} \mathrm{C} . What is the net change in entropy for this process?

A) 0.034 J/K0.034 \mathrm{~J} / \mathrm{K}
B) 0.118 J/K0.118 \mathrm{~J} / \mathrm{K}
C) 0.338 J/K0.338 \mathrm{~J} / \mathrm{K}
D) 0.201 J/K0.201 \mathrm{~J} / \mathrm{K}

Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
11

When 1.000 kg1.000 \mathrm{~kg} of ice melts, 33.00×104 J/kg33.00 \times 10^{4} \mathrm{~J} / \mathrm{kg} of heat are needed. What is the entropy change of the ice in the melting process?

A) 1,684 J/K1,684 \mathrm{~J} / \mathrm{K}
B) 1,209 J/K1,209 \mathrm{~J} / \mathrm{K}
C) 758.0 J/K758.0 \mathrm{~J} / \mathrm{K}
D) 2,316 J/K2,316 \mathrm{~J} / \mathrm{K}

Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
12
When 2.000 kg2.000 \mathrm{~kg} of water evaporates, 22.60×105 J/kg22.60 \times 10^{5} \mathrm{~J} / \mathrm{kg} of heat are needed. What is the entropy change of the water in the boiling process?

A) 6,750 J/K6,750 \mathrm{~J} / \mathrm{K}
B) 12,120 J/K12,120 \mathrm{~J} / \mathrm{K}
C) 5,844 J/K5,844 \mathrm{~J} / \mathrm{K}
D) 8,566 J/K8,566 \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
13
It can be shown that the change in entropy in heating or cooling a sample is given by the relation ΔS=mcln\Delta \mathrm{S}=\mathrm{mc} \ln (TF/Ti)\left(\mathrm{T}_{\mathrm{F}} / \mathrm{T}_{\mathrm{i}}\right) , where m\mathrm{m} is the mass of the sample, c\mathrm{c} is the specific heat of the sample, and TF\mathrm{T}_{\mathrm{F}} and Ti\mathrm{T}_{\mathrm{i}} are the final and initial temperatures, respectively. What is the change in entropy when 10.0 grams of lead with a specific heat of 0.452 J/gK0.452 \mathrm{~J} / \mathrm{g} \mathrm{K} is heated from 10.0C10.0^{\circ} \mathrm{C} to 50.0C50.0^{\circ} \mathrm{C} ?

A) 0.90 J/K0.90 \mathrm{~J} / \mathrm{K}
B) 0.30 J/K0.30 \mathrm{~J} / \mathrm{K}
C) 0.60 J/K0.60 \mathrm{~J} / \mathrm{K}
D) 0.45 J/K0.45 \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
14
It can be shown that the change in entropy in heating or cooling a sample is given by the relation ΔS=mcln\Delta \mathrm{S}=\mathrm{mc} \ln (TF/Ti)\left(\mathrm{T}_{\mathrm{F}} / \mathrm{T}_{\mathrm{i}}\right) , where m\mathrm{m} is the mass of the sample, c\mathrm{c} is the specific heat of the sample, and TF\mathrm{T}_{\mathrm{F}} and Ti\mathrm{T}_{\mathrm{i}} are the final and initial temperatures, respectively. What is the change in entropy when 20.0 grams of aluminum with a specific heat of 0.900 J/gK0.900 \mathrm{~J} / \mathrm{g} \mathrm{K} is cooled from 60.0C60.0^{\circ} \mathrm{C} to 10.0C10.0^{\circ} \mathrm{C} ?

A) +2.93 J/K+2.93 \mathrm{~J} / \mathrm{K}
B) 0.00 J/K0.00 \mathrm{~J} / \mathrm{K}
C) +2.50 J/K+2.50 \mathrm{~J} / \mathrm{K}
D) 2.93 J/K-2.93 \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
15
It can be shown that the change in entropy in heating or cooling a sample is given by the relation ΔS=mcln\Delta \mathrm{S}=\mathrm{mc} \ln (TF/Ti)\left(T_{F} / T_{i}\right) , where mm is the mass of the sample, cc is the specific heat of the sample, and TFT_{F} and TiT_{i} are the final and initial temperatures, respectively. What is the change in entropy when 20.0 grams of aluminum with a specific heat of 0.900 J/gK0.900 \mathrm{~J} / \mathrm{g} \mathrm{K} is heated from 10.0C10.0^{\circ} \mathrm{C} to 60.0C60.0^{\circ} \mathrm{C} ?

A) 2.93 J/K-2.93 \mathrm{~J} / \mathrm{K}
B) +2.50 J/K+2.50 \mathrm{~J} / \mathrm{K}
C) +2.93 J/K+2.93 \mathrm{~J} / \mathrm{K}
D) 0 J/K0 \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
16
2.00 moles of an ideal gas freely expands from 1.50 liters to 4.00 liters. The change in entropy in the expansion is

A) 16.3 J/K16.3 \mathrm{~J} / \mathrm{K}
B) 5.80 J/K5.80 \mathrm{~J} / \mathrm{K}
C) 18.7 J/K18.7 \mathrm{~J} / \mathrm{K}
D) 8.50 J/K8.50 \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
17
1.50 moles of an ideal gas freely expands from 1.00 liter to 4.50 liters. The change in entropy of the gas in the expansion is

A) 5.80 J/K5.80 \mathrm{~J} / \mathrm{K}
B) 8.50 J/K8.50 \mathrm{~J} / \mathrm{K}
C) 18.7 J/K18.7 \mathrm{~J} / \mathrm{K}
D) 16.3 J/K16.3 \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
18
One mole of an ideal gas freely expands from 1.00 liter to 2.00 liters. The change in entropy of the gas in the expansion is

A) 5.80 J/K5.80 \mathrm{~J} / \mathrm{K}
B) 8.50 J/K8.50 \mathrm{~J} / \mathrm{K}
C) 18.7 J/K18.7 \mathrm{~J} / \mathrm{K}
D) 16.3 J/K16.3 \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
19
A system in a certain macrostate has 1.2×1031.2 \times 10^{3} microstates. Through some process, the system changes the number of microstates to 3×1043 \times 10^{4} . What is the change in entropy for the process?

A) 1.1×1023 J/K1.1 \times 10^{-23} \mathrm{~J} / \mathrm{K}
B) 4.4×1023 J/K4.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}
C) 5.6×1023 J/K5.6 \times 10^{-23} \mathrm{~J} / \mathrm{K}
D) 2.1×1023 J/K2.1 \times 10^{-23} \mathrm{~J} / \mathrm{K}
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
20
On a PV diagram, what kind of process is represented by a horizontal line with an arrow left to right?

A) Isobaric compression
B) Isothermal compression
C) Adiabatic process
D) Isothermal expansion
E) Isobaric expansion
F) Isochoric process
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
21
On a PV diagram, what kind of process is represented by a vertical line with an arrow pointing downward?

A) Isobaric compression
B) Isothermal expansion
C) Isothermal compression
D) Adiabatic process
E) Isochoric process
F) Isobaric expansion
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
22
For a system undergoing an adiabatic process,

A) Q=ΔUQ=\Delta U
B) Q=W\mathrm{Q}=-\mathrm{W}
C) Q=ΔU\mathrm{Q}=-\Delta \mathrm{U}
D) Q=W\mathrm{Q}=\mathrm{W}
E) Q=0\mathrm{Q}=0
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
23
For a system undergoing an isothermal process,

A) Q=W\mathrm{Q}=-\mathrm{W}
B) Q=ΔU\mathrm{Q}=-\Delta \mathrm{U}
C) Q=W\mathrm{Q}=\mathrm{W}
D) Q=ΔU\mathrm{Q}=\Delta \mathrm{U}
E) Q=0\mathrm{Q}=0
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
24
A friend tells you that he knows of a situation in which heat is passed from one body to another body with a higher temperature. He explains that he thinks the 2nd law of thermodynamics must have been violated. Is he correct?

A) No. The cooler body can give up energy to the hotter body by radioactivity or another natural process.
B) No. If the temperature difference is small enough, heat can spontaneously flow from the cooler to the hotter body.
C) Yes. Heat cannot pass from a cooler body to a hotter body.
D) No. He forgot that if external work is done on the system this is possible.
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 24 flashcards in this deck.