Deck 22: Electromagnetic Waves

Full screen (f)
exit full mode
Question
ε0μ0=\varepsilon_{0} \mu_{0}= ?

A) C2\mathrm{C}^{-2}
B) C\mathrm{C}
C) c2\mathrm{c}^{2}
D) C1\mathrm{C}^{-1}
E) C1/2\mathrm{C}^{1 / 2}
Use Space or
up arrow
down arrow
to flip the card.
Question
How long does it take for a radio signal to travel to a spacecraft 1.5×10111.5 \times 1011 m away?

A) 1.0×103 s1.0 \times 10^{3} \mathrm{~s}
B) 5.0×102 s5.0 \times 10^{2} \mathrm{~s}
C) 5.0 s5.0 \mathrm{~s}
D) 5.0×103 s5.0 \times 10^{3} \mathrm{~s}
E) 50 s50 \mathrm{~s}
Question
What is a light-year in SI units?

A) 3.0×1015 m3.0 \times 1015 \mathrm{~m}
B) 3.0×1011 m3.0 \times 1011 \mathrm{~m}
C) 1.1×1011 m1.1 \times 10^{11} \mathrm{~m}
D) 4.5×1037 m4.5 \times 1037 \mathrm{~m}
E) 9.5×1015 m9.5 \times 1015 \mathrm{~m}
Question
What is the speed of light in a material that has an index of refraction of 2.0?

A) 1.5×108 m/s1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}
B) 2.0×108 m/s2.0 \times 10^{8}\mathrm{~m} / \mathrm{s}
C) 5.0×108 m/s5.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
D) 6.0×108 m/s6.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
E) No such index can exist.
Question
Household wiring can emit electromagnetic waves of frequency 60 Hz60 \mathrm{~Hz} . What is the wavelength of these waves?

A) 5.0×106 m5.0 \times 10^{6} \mathrm{~m}
B) 5.0×104 m5.0 \times 10^{4} \mathrm{~m}
C) 5.0×103 m5.0 \times 10^{3} \mathrm{~m}
D) 5.0×102 m5.0 \times 10^{2} \mathrm{~m}
E) 5.0×105 m5.0 \times 10^{5} \mathrm{~m}
Question
The Sun is 1.50×108 km1.50 \times 10^{8} \mathrm{~km} from the Earth. How long does it take for light to reach us from the Sun?

A) 8.33 min8.33 \mathrm{~min}
B) 2.00 s2.00 \mathrm{~s}
C) 0.50 s0.50 \mathrm{~s}
D) 2.00 ms2.00 \mathrm{~ms}
E) almost instantaneous
Question
What iindex of refraction halves the wavelength that light has in a vacuum?

A) 2.00
B) 1.33
C) 5.00
D) 1.41
E) 1.50
Question
Light passes from medium one ( v1)\left.\mathrm{v}_{1}\right) to medium two (v2)\left(\mathrm{v}_{2}\right) . If v1<v2\mathrm{v}_{1}<\mathrm{v}_{2} then at the boundary

A) ff does not change, λ\lambda increases.
B) ff increases, λ\lambda decreases.
C) ff decreases, λ\lambda increases.
D) ff does not change, λ\lambda decreases.
Question
Which of the following is the direction of an electromagnetic wave having electric and magnetic field vectors E\mathbf{E} and B\mathbf{B} ?

A) B×E\mathbf{B} \times \mathbf{E}
B) E×B\mathbf{E} \times \mathbf{B}
C) B\mathbf{B}
D) E\mathbf{E}
E) E+B\mathbf{E}+\mathbf{B}
Question
What is the wave number for a wavelength of 600 nm600 \mathrm{~nm} ?

A) 9.55×108 m9.55 \times 10^{-8} \mathrm{~m}
B) 600 nm600 \mathrm{~nm}
C) 9.55×108 m19.55 \times 10^{-8} \mathrm{~m}^{-1}
D) 1.05×107 m11.05 \times 10^{7} \mathrm{~m}^{-1}
E) 1.67×106 m11.67 \times 10^{6} \mathrm{~m}^{-1}
Question
In vacuum, the components of an EM2\mathrm{EM}^{2} wave are Ey=(50 V/m)cos[(5.00 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.00 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and Ez=0\mathrm{E}_{\mathrm{z}}=0 . In what direction is this wave moving?

A) positive yy -direction
B) negative xx -direction
C) positive xx -direction
D) positive or negative z-direction
E) negative y-direction
Question
In vacuum, the components of an EM\mathrm{EM} wave are Ey=(50 V/m)cos[(5.00 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.00 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and EZ=0\mathrm{E}_{\mathrm{Z}}=0 . What is the wavelength of the wave?

A) 1.26 m1.26 \mathrm{~m}
B) 2.52 m2.52 \mathrm{~m}
C) 5.00 m5.00 \mathrm{~m}
D) 0.200 m0.200 \mathrm{~m}
E) 0.796 m0.796 \mathrm{~m}
Question
In vacuum, the components of an EM\mathrm{EM} wave are Ey=(50 V/m)cos[(5.00 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.00 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and Ez=0\mathrm{E}_{\mathrm{z}}=0 . What is ω\omega ?

A) 1.00×109rad/s1.00 \times 10^{9} \mathrm{rad} / \mathrm{s}
B) 1.50×109rad/s1.50 \times 10^{9} \mathrm{rad} / \mathrm{s}
C) 8.00×108rad/s8.00 \times 10^{8} \mathrm{rad} / \mathrm{s}
D) 1.20×109rad/s1.20 \times 10^{9} \mathrm{rad} / \mathrm{s}
E) More information is needed.
Question
In vacuum, the components of an EM\mathrm{EM} wave are Ey=(50 V/m)cos[(5.0 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.0 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and EZ=0\mathrm{E}_{\mathrm{Z}}=0 . What is the amplitude of the magnetic field for this wave?

A) 1.50×106 T1.50 \times 10^{-6} \mathrm{~T}
B) 1.67×107 T1.67 \times 10^{-7} \mathrm{~T}
C) 2.00×107 T2.00 \times 10^{-7} \mathrm{~T}
D) 5.00×107 T5.00 \times 10^{-7} \mathrm{~T}
E) 1.33×106 T1.33 \times 10^{-6} \mathrm{~T}
Question
If the intensity of radiation from the Sun is 1.4 kW/m21.4 \mathrm{~kW} / \mathrm{m}^{2} at a distance of 150×106 km150 \times 10^{6} \mathrm{~km} , at what distance is the intensity 5.6 kW/m25.6 \mathrm{~kW} / \mathrm{m}^{2} ?

A) 75×106 km75 \times 10^{6} \mathrm{~km}
B) 38×106 km38 \times 106 \mathrm{~km}
C) 100×106 km100 \times 10^{6} \mathrm{~km}
D) 300×106 km300 \times 10^{6} \mathrm{~km}
E) less than 30×106 km30 \times 10^{6} \mathrm{~km}
Question
If a 20 W20 \mathrm{~W} laser beam, which has an initial diameter of 2.0 mm2.0 \mathrm{~mm} , spreads out to a diameter of 2.0 m2.0 \mathrm{~m} after traveling 10,000 m10,000 \mathrm{~m} , what is the final intensity of the beam?

A) 20×106 W/m220 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}
B) 6.4×106 W/m26.4 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}
C) 20×104 W/m220 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}
D) 20×108 W/m220 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}
E) 6.4 W/m26.4 \mathrm{~W} / \mathrm{m}^{2}
Question
A 20 W20 \mathrm{~W} laser beam, with an initial diameter of 2.0 mm2.0 \mathrm{~mm} , spreads out to a diameter of 2.0 m2.0 \mathrm{~m} after traveling 10,000 m10,000 \mathrm{~m} . What is the initial intensity of the beam?

A) 6.4×106 W/m26.4 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}
B) 1.0×105 W/m21.0 \times 105 \mathrm{~W} / \mathrm{m}^{2}
C) 2.0×105 W/m22.0 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}
D) 3.2×106 W/m23.2 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}
E) 20×106 W/m220 \times 106 \mathrm{~W} / \mathrm{m}^{2}
Question
A 20 W20 \mathrm{~W} laser beam, with an initial diameter of 2.0 mm2.0 \mathrm{~mm} , spreads out to a diameter of 2.0 m2.0 \mathrm{~m} after traveling 10,000 m10,000 \mathrm{~m} . What is the initial Erms\mathrm{E}_{\mathrm{rms}} of the beam?

A) 1.9×102 V/m1.9 \times 10^{2} \mathrm{~V} / \mathrm{m}
B) 1.2×103 V/m1.2 \times 10^{3} \mathrm{~V} / \mathrm{m}
C) 4.9×104 V/m4.9 \times 10^{4} \mathrm{~V} / \mathrm{m}
D) 2.5×103 V/m2.5 \times 10^{3} \mathrm{~V} / \mathrm{m}
E) 1.7×102 V/m1.7 \times 10^{2} \mathrm{~V} / \mathrm{m}
Question
What is the intensity of the electromagnetic radiation 2.00 m2.00 \mathrm{~m} from a 100 W100 \mathrm{~W} isotropic source?

A) 1.99 W/m21.99 \mathrm{~W} / \mathrm{m}^{2}
B) 6.25 W/m26.25 \mathrm{~W} / \mathrm{m}^{2}
C) 25.0 W/m225.0 \mathrm{~W} / \mathrm{m}^{2}
D) 4.00 W/m24.00 \mathrm{~W} / \mathrm{m}^{2}
E) 1.00 W/m21.00 \mathrm{~W} / \mathrm{m}^{2}
Question
For electromagnetic radiation of intensity of 1.00 W/m21.00 \mathrm{~W} / \mathrm{m}^{2} , what is the rms value of the electric field?

A) 6.45×108 V/m6.45 \times 10^{-8} \mathrm{~V} / \mathrm{m}
B) 9.11×108 V/m9.11 \times 10^{-8} \mathrm{~V} / \mathrm{m}
C) 9.69 V/m9.69 \mathrm{~V} / \mathrm{m}
D) 3.00×107 V/m3.00 \times 10^{7} \mathrm{~V} / \mathrm{m}
E) 19.4 V/m19.4 \mathrm{~V} / \mathrm{m}
Question
At the summer solstice in June, at what latitude is the Sun directly overhead at solar noon?

A) 23.5S23.5^{\circ} \mathrm{S}
B) 23.5N23.5^{\circ} \mathrm{N}
C) 40.0N40.0^{\circ} \mathrm{N}
D) 66.5N66.5^{\circ} \mathrm{N}
E) 0.00.0^{\circ} (the equator)
Question
Plane-polarized light of intensity I0I_{0} is passed through a polarizer oriented at 4545^{\circ} to the original plane of polarization. What is the intensity transmitted?

A) 0.35I00.35 \mathrm{I}_{0}
B) 0.00
C) 0.70I00.70 \mathrm{I}_{0}
D) 0.50I00.50 \mathrm{I}_{0}
E) 0.25I00.25 \mathrm{I}_{0}
Question
If unpolarized light with Erms=20 V/m\mathrm{E}_{\mathrm{rms}}=20 \mathrm{~V} / \mathrm{m} is passed through a polarizer, what is the transmitted Erms\mathrm{E}_{\mathrm{rms}} ?

A) 20 V/m20 \mathrm{~V} / \mathrm{m}
B) 5.0 V/m5.0 \mathrm{~V} / \mathrm{m}
C) 10 V/m10 \mathrm{~V} / \mathrm{m}
D) 7.1 V/m7.1 \mathrm{~V} / \mathrm{m}
E) 14 V/m14 \mathrm{~V} / \mathrm{m}
Question
Using the approximate formula for the Doppler shift, fofS(1+vrel/c)\mathrm{f}_{\mathrm{o}} \approx \mathrm{f}_{\mathrm{S}}\left(1+\mathrm{v}_{\mathrm{rel}} / \mathrm{c}\right) one finds that a source is moving away at 0.60c0.60 \mathrm{c} . What result would the exact formula yield for the recession speed?

A) 0.40c0.40 \mathrm{c}
B) 0.84c0.84 \mathrm{c}
C) 0.54c0.54 \mathrm{c}
D) 0.72c0.72 \mathrm{c}
E) 0.60c0.60 \mathrm{c}
Question
How fast would you have to drive in order to see a red light as green? Assume λ=630 nm\lambda=630 \mathrm{~nm} for red and λ=\lambda= 530 nm530 \mathrm{~nm} for green.

A) 5×107 m/s5 \times 10^{7} \mathrm{~m} / \mathrm{s}
B) 5×105 m/s5 \times 105 \mathrm{~m} / \mathrm{s}
C) 5×106 m/s5 \times 106 \mathrm{~m} / \mathrm{s}
D) 5×104 m/s5 \times 104 \mathrm{~m} / \mathrm{s}
Question
It is possible to detect Doppler shifts in the light emitted from each side of a rapidly spinning star. Suppose the light from a nearby star of radius 2.5×108 km2.5 \times 10^{8} \mathrm{~km} is blue-shifted on one side of the star and red-shifted on the other side. Assume the center of mass of the star is stationary relative to Earth. If the star emits light of wavelength 525 nm525 \mathrm{~nm} that is shifted, in the received light, to 523 nm523 \mathrm{~nm} on one side of the star and to 527 nm527 \mathrm{~nm} on the other side, what is the rotational period of the star?

A) 34 days
B) 24 days
C) 32 days
D) 16 days
Question
It is possible to detect Doppler shifts in the light emitted from each side of a rapidly spinning star. Suppose the light from a nearby star of radius 2.5×108 km2.5 \times 10^{8} \mathrm{~km} is blue-shifted on one side of the star and red-shifted on the other side. Assume the center of mass of the star is stationary relative to Earth. If the rotational period of the star is 72 h72 \mathrm{~h} and the star emits (unshifted) light of wavelength 525 nm525 \mathrm{~nm} , what is the wavelength of the light received on Earth from the side of the star rotating toward us?

A) 504 nm504 \mathrm{~nm}
B) 520 nm520 \mathrm{~nm}
C) 546 nm546 \mathrm{~nm}
D) 530 nm530 \mathrm{~nm}
E) 514 nm514 \mathrm{~nm}
F) 536 nm536 \mathrm{~nm}
Question
Nexrad radar uses electromagnetic radiation of frequency of 2.7GHz2.7 \mathrm{GHz} to measure the speed of cloud systems. Radio waves from a transmitter are sent outward toward a cloud system, and the waves are reflected back toward the source. If the cloud system is moving, the reflected waves will be Doppler shifted. Suppose a Nexrad system observes clouds moving toward the transmitter at 21 m/s21 \mathrm{~m} / \mathrm{s} . What is the difference between the transmitted and received frequencies of the radar in this case?

A) 570 Hz570 \mathrm{~Hz}
B) 190 Hz190 \mathrm{~Hz}
C) 380 Hz380 \mathrm{~Hz}
D) 760 Hz760 \mathrm{~Hz}
Question
At the Earth's surface, the intensity of solar radiation is approximately 1000 W/m21000 \mathrm{~W} / \mathrm{m}^{2} . If 1390 W1390 \mathrm{~W} are incident upon a 1.0 m×1.5 m1.0 \mathrm{~m} \times 1.5 \mathrm{~m} window in a vertical, south-facing wall, what is the angle with respect to the vertical of the Sun's rays?

A) 6868^{\circ}
B) 2222^{\circ}
C) 4444^{\circ}
D) 6161^{\circ}
E) 2929^{\circ}
F) 4646^{\circ}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/29
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 22: Electromagnetic Waves
1
ε0μ0=\varepsilon_{0} \mu_{0}= ?

A) C2\mathrm{C}^{-2}
B) C\mathrm{C}
C) c2\mathrm{c}^{2}
D) C1\mathrm{C}^{-1}
E) C1/2\mathrm{C}^{1 / 2}
C2\mathrm{C}^{-2}
2
How long does it take for a radio signal to travel to a spacecraft 1.5×10111.5 \times 1011 m away?

A) 1.0×103 s1.0 \times 10^{3} \mathrm{~s}
B) 5.0×102 s5.0 \times 10^{2} \mathrm{~s}
C) 5.0 s5.0 \mathrm{~s}
D) 5.0×103 s5.0 \times 10^{3} \mathrm{~s}
E) 50 s50 \mathrm{~s}
5.0×102 s5.0 \times 10^{2} \mathrm{~s}
3
What is a light-year in SI units?

A) 3.0×1015 m3.0 \times 1015 \mathrm{~m}
B) 3.0×1011 m3.0 \times 1011 \mathrm{~m}
C) 1.1×1011 m1.1 \times 10^{11} \mathrm{~m}
D) 4.5×1037 m4.5 \times 1037 \mathrm{~m}
E) 9.5×1015 m9.5 \times 1015 \mathrm{~m}
9.5×1015 m9.5 \times 1015 \mathrm{~m}
4
What is the speed of light in a material that has an index of refraction of 2.0?

A) 1.5×108 m/s1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}
B) 2.0×108 m/s2.0 \times 10^{8}\mathrm{~m} / \mathrm{s}
C) 5.0×108 m/s5.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
D) 6.0×108 m/s6.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
E) No such index can exist.
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
5
Household wiring can emit electromagnetic waves of frequency 60 Hz60 \mathrm{~Hz} . What is the wavelength of these waves?

A) 5.0×106 m5.0 \times 10^{6} \mathrm{~m}
B) 5.0×104 m5.0 \times 10^{4} \mathrm{~m}
C) 5.0×103 m5.0 \times 10^{3} \mathrm{~m}
D) 5.0×102 m5.0 \times 10^{2} \mathrm{~m}
E) 5.0×105 m5.0 \times 10^{5} \mathrm{~m}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
6
The Sun is 1.50×108 km1.50 \times 10^{8} \mathrm{~km} from the Earth. How long does it take for light to reach us from the Sun?

A) 8.33 min8.33 \mathrm{~min}
B) 2.00 s2.00 \mathrm{~s}
C) 0.50 s0.50 \mathrm{~s}
D) 2.00 ms2.00 \mathrm{~ms}
E) almost instantaneous
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
7
What iindex of refraction halves the wavelength that light has in a vacuum?

A) 2.00
B) 1.33
C) 5.00
D) 1.41
E) 1.50
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
8
Light passes from medium one ( v1)\left.\mathrm{v}_{1}\right) to medium two (v2)\left(\mathrm{v}_{2}\right) . If v1<v2\mathrm{v}_{1}<\mathrm{v}_{2} then at the boundary

A) ff does not change, λ\lambda increases.
B) ff increases, λ\lambda decreases.
C) ff decreases, λ\lambda increases.
D) ff does not change, λ\lambda decreases.
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
9
Which of the following is the direction of an electromagnetic wave having electric and magnetic field vectors E\mathbf{E} and B\mathbf{B} ?

A) B×E\mathbf{B} \times \mathbf{E}
B) E×B\mathbf{E} \times \mathbf{B}
C) B\mathbf{B}
D) E\mathbf{E}
E) E+B\mathbf{E}+\mathbf{B}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
10
What is the wave number for a wavelength of 600 nm600 \mathrm{~nm} ?

A) 9.55×108 m9.55 \times 10^{-8} \mathrm{~m}
B) 600 nm600 \mathrm{~nm}
C) 9.55×108 m19.55 \times 10^{-8} \mathrm{~m}^{-1}
D) 1.05×107 m11.05 \times 10^{7} \mathrm{~m}^{-1}
E) 1.67×106 m11.67 \times 10^{6} \mathrm{~m}^{-1}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
11
In vacuum, the components of an EM2\mathrm{EM}^{2} wave are Ey=(50 V/m)cos[(5.00 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.00 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and Ez=0\mathrm{E}_{\mathrm{z}}=0 . In what direction is this wave moving?

A) positive yy -direction
B) negative xx -direction
C) positive xx -direction
D) positive or negative z-direction
E) negative y-direction
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
12
In vacuum, the components of an EM\mathrm{EM} wave are Ey=(50 V/m)cos[(5.00 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.00 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and EZ=0\mathrm{E}_{\mathrm{Z}}=0 . What is the wavelength of the wave?

A) 1.26 m1.26 \mathrm{~m}
B) 2.52 m2.52 \mathrm{~m}
C) 5.00 m5.00 \mathrm{~m}
D) 0.200 m0.200 \mathrm{~m}
E) 0.796 m0.796 \mathrm{~m}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
13
In vacuum, the components of an EM\mathrm{EM} wave are Ey=(50 V/m)cos[(5.00 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.00 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and Ez=0\mathrm{E}_{\mathrm{z}}=0 . What is ω\omega ?

A) 1.00×109rad/s1.00 \times 10^{9} \mathrm{rad} / \mathrm{s}
B) 1.50×109rad/s1.50 \times 10^{9} \mathrm{rad} / \mathrm{s}
C) 8.00×108rad/s8.00 \times 10^{8} \mathrm{rad} / \mathrm{s}
D) 1.20×109rad/s1.20 \times 10^{9} \mathrm{rad} / \mathrm{s}
E) More information is needed.
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
14
In vacuum, the components of an EM\mathrm{EM} wave are Ey=(50 V/m)cos[(5.0 m1)x+ωt],Ex=0\mathrm{E}_{\mathrm{y}}=(50 \mathrm{~V} / \mathrm{m}) \cos \left[\left(5.0 \mathrm{~m}^{-1}\right) \mathrm{x}+\omega \mathrm{t}\right], \mathrm{E}_{\mathrm{x}}=0 , and EZ=0\mathrm{E}_{\mathrm{Z}}=0 . What is the amplitude of the magnetic field for this wave?

A) 1.50×106 T1.50 \times 10^{-6} \mathrm{~T}
B) 1.67×107 T1.67 \times 10^{-7} \mathrm{~T}
C) 2.00×107 T2.00 \times 10^{-7} \mathrm{~T}
D) 5.00×107 T5.00 \times 10^{-7} \mathrm{~T}
E) 1.33×106 T1.33 \times 10^{-6} \mathrm{~T}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
15
If the intensity of radiation from the Sun is 1.4 kW/m21.4 \mathrm{~kW} / \mathrm{m}^{2} at a distance of 150×106 km150 \times 10^{6} \mathrm{~km} , at what distance is the intensity 5.6 kW/m25.6 \mathrm{~kW} / \mathrm{m}^{2} ?

A) 75×106 km75 \times 10^{6} \mathrm{~km}
B) 38×106 km38 \times 106 \mathrm{~km}
C) 100×106 km100 \times 10^{6} \mathrm{~km}
D) 300×106 km300 \times 10^{6} \mathrm{~km}
E) less than 30×106 km30 \times 10^{6} \mathrm{~km}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
16
If a 20 W20 \mathrm{~W} laser beam, which has an initial diameter of 2.0 mm2.0 \mathrm{~mm} , spreads out to a diameter of 2.0 m2.0 \mathrm{~m} after traveling 10,000 m10,000 \mathrm{~m} , what is the final intensity of the beam?

A) 20×106 W/m220 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}
B) 6.4×106 W/m26.4 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}
C) 20×104 W/m220 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}
D) 20×108 W/m220 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}
E) 6.4 W/m26.4 \mathrm{~W} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
17
A 20 W20 \mathrm{~W} laser beam, with an initial diameter of 2.0 mm2.0 \mathrm{~mm} , spreads out to a diameter of 2.0 m2.0 \mathrm{~m} after traveling 10,000 m10,000 \mathrm{~m} . What is the initial intensity of the beam?

A) 6.4×106 W/m26.4 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}
B) 1.0×105 W/m21.0 \times 105 \mathrm{~W} / \mathrm{m}^{2}
C) 2.0×105 W/m22.0 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}
D) 3.2×106 W/m23.2 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}
E) 20×106 W/m220 \times 106 \mathrm{~W} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
18
A 20 W20 \mathrm{~W} laser beam, with an initial diameter of 2.0 mm2.0 \mathrm{~mm} , spreads out to a diameter of 2.0 m2.0 \mathrm{~m} after traveling 10,000 m10,000 \mathrm{~m} . What is the initial Erms\mathrm{E}_{\mathrm{rms}} of the beam?

A) 1.9×102 V/m1.9 \times 10^{2} \mathrm{~V} / \mathrm{m}
B) 1.2×103 V/m1.2 \times 10^{3} \mathrm{~V} / \mathrm{m}
C) 4.9×104 V/m4.9 \times 10^{4} \mathrm{~V} / \mathrm{m}
D) 2.5×103 V/m2.5 \times 10^{3} \mathrm{~V} / \mathrm{m}
E) 1.7×102 V/m1.7 \times 10^{2} \mathrm{~V} / \mathrm{m}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
19
What is the intensity of the electromagnetic radiation 2.00 m2.00 \mathrm{~m} from a 100 W100 \mathrm{~W} isotropic source?

A) 1.99 W/m21.99 \mathrm{~W} / \mathrm{m}^{2}
B) 6.25 W/m26.25 \mathrm{~W} / \mathrm{m}^{2}
C) 25.0 W/m225.0 \mathrm{~W} / \mathrm{m}^{2}
D) 4.00 W/m24.00 \mathrm{~W} / \mathrm{m}^{2}
E) 1.00 W/m21.00 \mathrm{~W} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
20
For electromagnetic radiation of intensity of 1.00 W/m21.00 \mathrm{~W} / \mathrm{m}^{2} , what is the rms value of the electric field?

A) 6.45×108 V/m6.45 \times 10^{-8} \mathrm{~V} / \mathrm{m}
B) 9.11×108 V/m9.11 \times 10^{-8} \mathrm{~V} / \mathrm{m}
C) 9.69 V/m9.69 \mathrm{~V} / \mathrm{m}
D) 3.00×107 V/m3.00 \times 10^{7} \mathrm{~V} / \mathrm{m}
E) 19.4 V/m19.4 \mathrm{~V} / \mathrm{m}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
21
At the summer solstice in June, at what latitude is the Sun directly overhead at solar noon?

A) 23.5S23.5^{\circ} \mathrm{S}
B) 23.5N23.5^{\circ} \mathrm{N}
C) 40.0N40.0^{\circ} \mathrm{N}
D) 66.5N66.5^{\circ} \mathrm{N}
E) 0.00.0^{\circ} (the equator)
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
22
Plane-polarized light of intensity I0I_{0} is passed through a polarizer oriented at 4545^{\circ} to the original plane of polarization. What is the intensity transmitted?

A) 0.35I00.35 \mathrm{I}_{0}
B) 0.00
C) 0.70I00.70 \mathrm{I}_{0}
D) 0.50I00.50 \mathrm{I}_{0}
E) 0.25I00.25 \mathrm{I}_{0}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
23
If unpolarized light with Erms=20 V/m\mathrm{E}_{\mathrm{rms}}=20 \mathrm{~V} / \mathrm{m} is passed through a polarizer, what is the transmitted Erms\mathrm{E}_{\mathrm{rms}} ?

A) 20 V/m20 \mathrm{~V} / \mathrm{m}
B) 5.0 V/m5.0 \mathrm{~V} / \mathrm{m}
C) 10 V/m10 \mathrm{~V} / \mathrm{m}
D) 7.1 V/m7.1 \mathrm{~V} / \mathrm{m}
E) 14 V/m14 \mathrm{~V} / \mathrm{m}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
24
Using the approximate formula for the Doppler shift, fofS(1+vrel/c)\mathrm{f}_{\mathrm{o}} \approx \mathrm{f}_{\mathrm{S}}\left(1+\mathrm{v}_{\mathrm{rel}} / \mathrm{c}\right) one finds that a source is moving away at 0.60c0.60 \mathrm{c} . What result would the exact formula yield for the recession speed?

A) 0.40c0.40 \mathrm{c}
B) 0.84c0.84 \mathrm{c}
C) 0.54c0.54 \mathrm{c}
D) 0.72c0.72 \mathrm{c}
E) 0.60c0.60 \mathrm{c}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
25
How fast would you have to drive in order to see a red light as green? Assume λ=630 nm\lambda=630 \mathrm{~nm} for red and λ=\lambda= 530 nm530 \mathrm{~nm} for green.

A) 5×107 m/s5 \times 10^{7} \mathrm{~m} / \mathrm{s}
B) 5×105 m/s5 \times 105 \mathrm{~m} / \mathrm{s}
C) 5×106 m/s5 \times 106 \mathrm{~m} / \mathrm{s}
D) 5×104 m/s5 \times 104 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
26
It is possible to detect Doppler shifts in the light emitted from each side of a rapidly spinning star. Suppose the light from a nearby star of radius 2.5×108 km2.5 \times 10^{8} \mathrm{~km} is blue-shifted on one side of the star and red-shifted on the other side. Assume the center of mass of the star is stationary relative to Earth. If the star emits light of wavelength 525 nm525 \mathrm{~nm} that is shifted, in the received light, to 523 nm523 \mathrm{~nm} on one side of the star and to 527 nm527 \mathrm{~nm} on the other side, what is the rotational period of the star?

A) 34 days
B) 24 days
C) 32 days
D) 16 days
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
27
It is possible to detect Doppler shifts in the light emitted from each side of a rapidly spinning star. Suppose the light from a nearby star of radius 2.5×108 km2.5 \times 10^{8} \mathrm{~km} is blue-shifted on one side of the star and red-shifted on the other side. Assume the center of mass of the star is stationary relative to Earth. If the rotational period of the star is 72 h72 \mathrm{~h} and the star emits (unshifted) light of wavelength 525 nm525 \mathrm{~nm} , what is the wavelength of the light received on Earth from the side of the star rotating toward us?

A) 504 nm504 \mathrm{~nm}
B) 520 nm520 \mathrm{~nm}
C) 546 nm546 \mathrm{~nm}
D) 530 nm530 \mathrm{~nm}
E) 514 nm514 \mathrm{~nm}
F) 536 nm536 \mathrm{~nm}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
28
Nexrad radar uses electromagnetic radiation of frequency of 2.7GHz2.7 \mathrm{GHz} to measure the speed of cloud systems. Radio waves from a transmitter are sent outward toward a cloud system, and the waves are reflected back toward the source. If the cloud system is moving, the reflected waves will be Doppler shifted. Suppose a Nexrad system observes clouds moving toward the transmitter at 21 m/s21 \mathrm{~m} / \mathrm{s} . What is the difference between the transmitted and received frequencies of the radar in this case?

A) 570 Hz570 \mathrm{~Hz}
B) 190 Hz190 \mathrm{~Hz}
C) 380 Hz380 \mathrm{~Hz}
D) 760 Hz760 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
29
At the Earth's surface, the intensity of solar radiation is approximately 1000 W/m21000 \mathrm{~W} / \mathrm{m}^{2} . If 1390 W1390 \mathrm{~W} are incident upon a 1.0 m×1.5 m1.0 \mathrm{~m} \times 1.5 \mathrm{~m} window in a vertical, south-facing wall, what is the angle with respect to the vertical of the Sun's rays?

A) 6868^{\circ}
B) 2222^{\circ}
C) 4444^{\circ}
D) 6161^{\circ}
E) 2929^{\circ}
F) 4646^{\circ}
Unlock Deck
Unlock for access to all 29 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 29 flashcards in this deck.