Deck 6: Conservation of Energy

Full screen (f)
exit full mode
Question
A 20.0 N20.0 \mathrm{~N} force is applied at an angle of 40.0 degrees above the horizontal to a 4.00 kg4.00 \mathrm{~kg} box. The box moves a horizontal distance of 4.00 meters. Friction is negligible. The work done by the 20.0 N20.0 \mathrm{~N} force is

A) 46.3 J46.3 \mathrm{~J} .
B) 50.1 J50.1 \mathrm{~J} .
C) 75.0 J75.0 \mathrm{~J} .
D) 40.5 J40.5 \mathrm{~J} .
E) 61.3 J61.3 \mathrm{~J} .
Use Space or
up arrow
down arrow
to flip the card.
Question
A 6.00 kg6.00 \mathrm{~kg} box is pulled up an 8.00 m8.00 \mathrm{~m} long incline (with friction) at an angle of 30.0 degrees by a force of 50.0 N50.0 \mathrm{~N} parallel to the incline. The coefficient of kinetic friction is 0.100 . The work done against friction is

A) 40.7 J40.7 \mathrm{~J} .
B) 30.3 J30.3 \mathrm{~J} .
C) 22.0 J22.0 \mathrm{~J} .
D) 26.5 J26.5 \mathrm{~J} .
E) 35.2 J35.2 \mathrm{~J}
Question
The graph shows the force on an object as it moves a distance xx . What is the work done by the force as the object moves from 2.0 m2.0 \mathrm{~m} to 8.0 m8.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  x . What is the work done by the force as the object moves from  2.0 \mathrm{~m}  to  8.0 \mathrm{~m}  ?  </strong> A)  52 \mathrm{~J}  B)  50 \mathrm{~J}  C)  35 \mathrm{~J}  D)  60 \mathrm{~J}  E)  48 \mathrm{~J}  <div style=padding-top: 35px>

A) 52 J52 \mathrm{~J}
B) 50 J50 \mathrm{~J}
C) 35 J35 \mathrm{~J}
D) 60 J60 \mathrm{~J}
E) 48 J48 \mathrm{~J}
Question
The graph shows the force on an object as it moves a distance x\mathrm{x} . What is the work done by the force as the object moves from 0.0 m0.0 \mathrm{~m} to 6.0 m6.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  \mathrm{x} . What is the work done by the force as the object moves from  0.0 \mathrm{~m}  to  6.0 \mathrm{~m}  ?  </strong> A)  8.0 \mathrm{~J}  B)  14 \mathrm{~J}  C)  12 \mathrm{~J}  D)  6.0 \mathrm{~J}  E)  10 \mathrm{~J}  <div style=padding-top: 35px>

A) 8.0 J8.0 \mathrm{~J}
B) 14 J14 \mathrm{~J}
C) 12 J12 \mathrm{~J}
D) 6.0 J6.0 \mathrm{~J}
E) 10 J10 \mathrm{~J}
Question
A 5.00 gram bullet has a velocity of 300 m/s300 \mathrm{~m} / \mathrm{s} . It strikes a block of wood and penetrates to a depth of 2.00 cm\mathrm{cm} . The average force of the block of wood on the bullet is

A) 21,400 N21,400 \mathrm{~N} .
B) 11,250 N11,250 \mathrm{~N} .
C) 15,200 N15,200 \mathrm{~N} .
D) 9,340 N9,340 \mathrm{~N} .
E) 19,500 N19,500 \mathrm{~N} .
Question
A 2,000 kg2,000 \mathrm{~kg} car traveling at 30.0mi/h30.0 \mathrm{mi} / \mathrm{h} skids to a stop in 60.0 meters. The force of friction during the skid is (1.0mi/h=0.447 m/s)(1.0 \mathrm{mi} / \mathrm{h}=0.447 \mathrm{~m} / \mathrm{s})

A) 2,400 N2,400 \mathrm{~N} .
B) 3,000 N3,000 \mathrm{~N} .
C) 4,200 N4,200 \mathrm{~N} .
D) 3,750 N3,750 \mathrm{~N}
E) 4,500 N4,500 \mathrm{~N}
Question
The explosion in a cannon exerts an average force of 30,000 N30,000 \mathrm{~N} for L\mathrm{L} meters, the length of the cannon. What length of the cannon would be necessary to shoot a 2.0 kg2.0 \mathrm{~kg} projectile from the surface of the Earth to a distance of 6.84×108 m6.84 \times 10^{8} \mathrm{~m} from the center of the Earth (the same as the distance to the Moon)? (G=6.67×(\mathrm{G}=6.67 \times 1011 Nm2/kg2,ME=5.97×1024 kg10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg} 2, \mathrm{ME}=5.97 \times 10^{24} \mathrm{~kg} , and RE=6.37×106 m\mathrm{RE}=6.37 \times 10^{6} \mathrm{~m} .)

A) 3.9 km3.9 \mathrm{~km} .
B) 4.1 km4.1 \mathrm{~km} .
C) 5.0 km5.0 \mathrm{~km} .
D) 3.0 km3.0 \mathrm{~km} .
E) 2.7 km2.7 \mathrm{~km} .
Question
A 20.0 kg20.0 \mathrm{~kg} box slides down a 12.0 m12.0 \mathrm{~m} long incline at an angle of 30.0 degrees with the horizontal. A force of 50.0 N50.0 \mathrm{~N} is applied to the box to try to prevent it from sliding down the incline. The applied force makes an angle of 10.00 degrees to the incline and above the incline. If the incline has a coefficient of kinetic friction of 0.100 , then the increase in the kinetic energy of the box is

A) 392 J392 \mathrm{~J} .
B) 300 J300 \mathrm{~J} .
C) 275 J275 \mathrm{~J} .
D) 203 J203 \mathrm{~J} .
E) 425 J425 \mathrm{~J} .
Question
A 20.0 kg20.0 \mathrm{~kg} box slides down a 12.0 m12.0 \mathrm{~m} long incline at an angle of 3.0 degrees with the horizontal. A force of 50.0 N50.0 \mathrm{~N} is applied to the box to try to prevent it from sliding down the incline. The applied force makes an angle of 0.00 degrees to the incline. If the incline has a coefficient of kinetic friction of 0.100 , then the increase in the kinetic energy of the box is

A) 525 J525 \mathrm{~J} .
B) 455 J455 \mathrm{~J} .
C) 300 J300 \mathrm{~J} .
D) 372 J372 \mathrm{~J} .
E) 410 J410 \mathrm{~J} .
Question
A 20.0 kg20.0 \mathrm{~kg} box slides down a 12.0 m12.0 \mathrm{~m} long incline at an angle of 30.0 degrees with the horizontal. A force of 50.0 N50.0 \mathrm{~N} is applied to the box in the upward direction to try to prevent it from sliding down the incline. The applied force makes an angle of 10.0 degrees to the incline. If the incline has no friction, then the increase in the kinetic energy of the box is

A) 420 J420 \mathrm{~J} .
B) 475 J475 \mathrm{~J} .
C) 585 J585 \mathrm{~J} .
D) 521 J521 \mathrm{~J} .
E) 620 J620 \mathrm{~J} .
Question
A 2500 kg2500 \mathrm{~kg} car accelerates from rest to a velocity of 30.0 m/s30.0 \mathrm{~m} / \mathrm{s} in 8.00 seconds. The work done by the engine to accelerate the car is

A) 1.13×106 J1.13 \times 106 \mathrm{~J} .
B) 2.01×106 J2.01 \times 106 \mathrm{~J} .
C) 1.85×106 J1.85 \times 106 \mathrm{~J} .
D) 3.10×106 J3.10 \times 106 \mathrm{~J} .
E) 2.56×106 J2.56 \times 106 \mathrm{~J} .
Question
A 3.00 kg3.00 \mathrm{~kg} pendulum bob on a string 2.00 m2.00 \mathrm{~m} long is released with a velocity of 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the tension in the string at the highest point of its motion?

A) 31.6 N31.6 \mathrm{~N}
B) 12.5 N12.5 \mathrm{~N}
C) 28.9 N28.9 \mathrm{~N}
D) 17.8 N17.8 \mathrm{~N}
E) 21.4 N21.4 \mathrm{~N}
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 3.00 m3.00 \mathrm{~m} long is released with a velocity of 1.00 m/s1.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the tension in the string at the highest point of its motion?

A) 30.8 N30.8 \mathrm{~N}
B) 10.5 N10.5 \mathrm{~N}
C) 27.5 N27.5 \mathrm{~N}
D) 16.6 N16.6 \mathrm{~N}
E) 20.1 N20.1 \mathrm{~N}
Question
A 3.00 kg3.00 \mathrm{~kg} pendulum bob on a string 2.00 m2.00 \mathrm{~m} long, is released with a velocity of 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the tangential acceleration of the bob at the highest point of its motion?

A) 6.04 m/s26.04 \mathrm{~m} / \mathrm{s}^{2}
B) 7.80 m/s27.80 \mathrm{~m} / \mathrm{s}^{2}
C) 6.89 m/s26.89 \mathrm{~m} / \mathrm{s}^{2}
D) 8.20 m/s28.20 \mathrm{~m} / \mathrm{s}^{2}
E) 9.02 m/s29.02 \mathrm{~m} / \mathrm{s}^{2}
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 2.00 m2.00 \mathrm{~m} long, is released with a velocity of 1.50 m/s1.50 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the tangential acceleration of the bob at the highest point of its motion?

A) 6.25 m/s26.25 \mathrm{~m} / \mathrm{s}^{2}
B) 7.25 m/s27.25 \mathrm{~m} / \mathrm{s}^{2}
C) 5.33 m/s25.33 \mathrm{~m} / \mathrm{s}^{2}
D) 7.00 m/s27.00 \mathrm{~m} / \mathrm{s}^{2}
E) 5.77 m/s25.77 \mathrm{~m} / \mathrm{s}^{2}
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the speed of the bob at the bottom of the swing?

A) 4.32 m/s4.32 \mathrm{~m} / \mathrm{s}
B) 3.75 m/s3.75 \mathrm{~m} / \mathrm{s}
C) 3.04 m/s3.04 \mathrm{~m} / \mathrm{s}
D) 4.00 m/s4.00 \mathrm{~m} / \mathrm{s}
E) 2.82 m/s2.82 \mathrm{~m} / \mathrm{s}
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 4.00 m/s4.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the angle with the vertical the bob makes at the highest point of its motion?

A) 56.7 degrees
B) 60.3 degrees
C) 45.0 degrees
D) 71.2 degrees
E) 85.3 degrees
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 4.00 m/s4.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the speed of the bob at the bottom of the swing?

A) 4.47 m/s4.47 \mathrm{~m} / \mathrm{s}
B) 4.02 m/s4.02 \mathrm{~m} / \mathrm{s}
C) 3.75 m/s3.75 \mathrm{~m} / \mathrm{s}
D) 2.85 m/s2.85 \mathrm{~m} / \mathrm{s}
E) 3.50 m/s3.50 \mathrm{~m} / \mathrm{s}
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 3.00 m/s3.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the angle with the vertical the bob makes at the highest point of its motion?

A) 50.0 degrees
B) 75.3 degrees
C) 66.4 degrees
D) 47.5 degrees
E) 59.8 degrees
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 3.00 m/s3.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the tension in the string at the bottom of the swing?

A) 49.8 N49.8 \mathrm{~N}
B) 37.5 N37.5 \mathrm{~N}
C) 30.2 N30.2 \mathrm{~N}
D) 53.5 N53.5 \mathrm{~N}
E) 43.1 N43.1 \mathrm{~N}
Question
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long is released with a velocity of 0.00 m/s0.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 60.0 degrees with the vertical. What is the tension in the string at the bottom of the swing?

A) 50.1 N50.1 \mathrm{~N}
B) 55.6 N55.6 \mathrm{~N}
C) 42.6 N42.6 \mathrm{~N}
D) 39.2 N39.2 \mathrm{~N}
E) 60.4 N60.4 \mathrm{~N}
Question
A 75.0 kg75.0 \mathrm{~kg} skier, starting from rest, slides down a 75.0 m75.0 \mathrm{~m} high slope without friction. The velocity of the skier at the bottom of the slope is

A) 40.5 m/s40.5 \mathrm{~m} / \mathrm{s} .
B) 50.0 m/s50.0 \mathrm{~m} / \mathrm{s} .
C) 20.6 m/s20.6 \mathrm{~m} / \mathrm{s} .
D) 29.7 m/s29.7 \mathrm{~m} / \mathrm{s} .
E) 38.3 m/s38.3 \mathrm{~m} / \mathrm{s}
Question
A student lifts a weight of 10.0 N10.0 \mathrm{~N} a distance of 0.500 meters. The energy needed to do this work in calories is (1cal=4.186(1 \mathrm{cal}=4.186 Joules)

A) 1.19cal1.19 \mathrm{cal} .
B) 2.30cal2.30 \mathrm{cal} .
C) 0.570cal0.570 \mathrm{cal} .
D) 0.750cal0.750 \mathrm{cal} .
E) 1.75cal1.75 \mathrm{cal} .
Question
An 8000 kg8000 \mathrm{~kg} satellite is launched from the surface of the Earth and injected into a circular orbit at an altitude of 100 km100 \mathrm{~km} above the surface of the Earth. The gravitational potential energy of the satellite in the circular orbit is (G=6.67×1011 Nm2/kg2,ME=5.97×1024 kg,RE=6.37×106 m)\left(\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}, \mathrm{M}_{\mathrm{E}}=5.97 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}\right)

A) 5.01×1011 J-5.01 \times 1011 \mathrm{~J} .
B) 4.75×1011 J-4.75 \times 1011 \mathrm{~J} .
C) 4.02×1011 J-4.02 \times 1011 \mathrm{~J} .
D) 4.92×1011 J-4.92 \times 1011 \mathrm{~J} .
E) 3.85×1011 J-3.85 \times 1011 \mathrm{~J}
Question
An 8000 kg8000 \mathrm{~kg} satellite is launched from the surface of the Earth and injected into a circular orbit at an altitude of 100 km100 \mathrm{~km} above the surface of the Earth. The kinetic energy of the satellite in the circular orbit is (G=6.67×(G=6.67 \times 1011 Nm2/kg2,ME=5.97×1024 kg,RE=6.37×106 m10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}, \mathrm{M}_{\mathrm{E}}=5.97 \times 1024 \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m} )

A) 5.02×1011 J5.02 \times 1011 \mathrm{~J} .
B) 3.45×1011 J3.45 \times 1011 \mathrm{~J} .
C) 2.01×1011 J2.01 \times 1011 \mathrm{~J} .
D) 4.25×1011 J4.25 \times 1011 \mathrm{~J} .
E) 2.46×1011 J2.46 \times 10^{11} \mathrm{~J} .
Question
An 8000 kg8000 \mathrm{~kg} satellite is launched from the surface of the Earth into outer space. What initial kinetic energy is needed by the satellite in order to reach a great (i.e., infinite) distance from the Earth, neglecting the effects of air resistance in the atmosphere? (G=6.67×1011 Nm2/kg2,ME=5.97×1024 kg,RE=6.37×106 m\left(\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}, \mathrm{M}_{\mathrm{E}}=5.97 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}\right. .)

A) 5.00×1011 J5.00 \times 1011 \mathrm{~J} .
B) 3.00×1011 J3.00 \times 1011 \mathrm{~J} .
C) 2.35×1011 J2.35 \times 1011 \mathrm{~J} .
D) 4.03×1011 J4.03 \times 1011 \mathrm{~J} .
E) 3.57×1011 J3.57 \times 1011 \mathrm{~J} .
Question
The graph shows the force on an object as it moves a distance x\mathrm{x} . What is the work done by the force as the object moves from 0.0 m0.0 \mathrm{~m} to 10.0 m10.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  \mathrm{x} . What is the work done by the force as the object moves from  0.0 \mathrm{~m}  to  10.0 \mathrm{~m}  ?  </strong> A)  52 \mathrm{~J}  B)  75 \mathrm{~J}  C)  34 \mathrm{~J}  D)  45 \mathrm{~J}  E)  64 \mathrm{~J}  <div style=padding-top: 35px>

A) 52 J52 \mathrm{~J}
B) 75 J75 \mathrm{~J}
C) 34 J34 \mathrm{~J}
D) 45 J45 \mathrm{~J}
E) 64 J64 \mathrm{~J}
Question
The graph shows the force on an object as it moves a distance x\mathrm{x} . What is the work done by the force as the object moves from 0.0 m0.0 \mathrm{~m} to 4.0 m4.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  \mathrm{x} . What is the work done by the force as the object moves from  0.0 \mathrm{~m}  to  4.0 \mathrm{~m}  ?  </strong> A)  10 \mathrm{~J}  B)  6.0 \mathrm{~J}  C)  8.0 \mathrm{~J}  D)  14 \mathrm{~J}  E)  12 \mathrm{~J}  <div style=padding-top: 35px>

A) 10 J10 \mathrm{~J}
B) 6.0 J6.0 \mathrm{~J}
C) 8.0 J8.0 \mathrm{~J}
D) 14 J14 \mathrm{~J}
E) 12 J12 \mathrm{~J}
Question
A spring is stretched from 0.500 m0.500 \mathrm{~m} to 0.800 m0.800 \mathrm{~m} . Assume the unstretched position is 0.00 m0.00 \mathrm{~m} . If the spring constant of the spring is 10.0 N/m10.0 \mathrm{~N} / \mathrm{m} , what is the work done on the spring?

A) 3.01 J3.01 \mathrm{~J}
B) 1.95 J1.95 \mathrm{~J}
C) 2.21 J2.21 \mathrm{~J}
D) 2.45 J2.45 \mathrm{~J}
E) 2.75 J2.75 \mathrm{~J}
Question
A car has a mass of 2,000 kg and travels at 20.0 m/s20.0 \mathrm{~m} / \mathrm{s} . If the drag force is 100 N100 \mathrm{~N} , then the power the engines have to provide to keep moving at constant speed is

A) 3.9 kW3.9 \mathrm{~kW} .
B) 2.0 kW2.0 \mathrm{~kW} .
C) 4.2 kW4.2 \mathrm{~kW} .
D) 2.9 kW2.9 \mathrm{~kW} .
E) 3.4 kW3.4 \mathrm{~kW} .
Question
During a basketball game, a player shoots a ball from half-court. When the ball reaches its maximum height of 4.5 m4.5 \mathrm{~m} above the floor, it is moving at 5.0 m/s5.0 \mathrm{~m} / \mathrm{s} . If the ball was released from 2.5 m2.5 \mathrm{~m} above the floor, what was the angle above the horizontal of the ball's initial velocity?

A) 5858^{\circ}
B) 5454^{\circ}
C) 3939^{\circ}
D) 5151^{\circ}
E) 3232^{\circ}
F) 3636^{\circ}
Question
An asteroid of mass 1.4×1014 kg1.4 \times 10^{14} \mathrm{~kg} is observed to have an escape speed equal to a typical person's maximum jumping speed, 3.0 m/s3.0 \mathrm{~m} / \mathrm{s} . What is its radius?

A) 1.0 km1.0 \mathrm{~km}
B) 0.5 km0.5 \mathrm{~km}
C) 2.1 km2.1 \mathrm{~km}
D) 6.3 km6.3 \mathrm{~km}
Question
An asteroid of radius 2.1 km2.1 \mathrm{~km} is observed to have an escape speed equal to a typical person's maximum jumping speed, 3.0 m/s3.0 \mathrm{~m} / \mathrm{s} . What is its mass?

A) 2.8×1014 kg2.8 \times 1014 \mathrm{~kg}
B) 4.2×1014 kg4.2 \times 1014 \mathrm{~kg}
C) 0.5×1014 kg0.5 \times 1014 \mathrm{~kg}
D) 1.4×1014 kg1.4 \times 1014 \mathrm{~kg}
E) 5.7×1014 kg5.7 \times 10^{14} \mathrm{~kg}
Question
A comet is observed to pass 1.50×108 m1.50 \times 10^{8} \mathrm{~m} from the surface of the Sun. The Sun's radius is 6.96×1086.96 \times 10^{8} m\mathrm{m} . What is the speed of the comet at this point, if its speed when passing the Earth's orbit, 1.50×1011 m1.50 \times 10^{11} \mathrm{~m} from the Sun's center, is 25 km/s25 \mathrm{~km} / \mathrm{s} ? (MS=1.989×1030 kg\left(\mathrm{M}_{\mathrm{S}}=1.989 \times 10^{30} \mathrm{~kg}\right. . ))

A) 562 km/s562 \mathrm{~km} / \mathrm{s}
B) 585 km/s585 \mathrm{~km} / \mathrm{s}
C) 618 km/s618 \mathrm{~km} / \mathrm{s}
D) 559 km/s559 \mathrm{~km} / \mathrm{s}
Question
An 0.10 g0.10 \mathrm{~g} flea, having leapt from the surface of a dog's cranium, is observed to be moving at 1.25 m/s1.25 \mathrm{~m} / \mathrm{s} when it is 5.00 cm5.00 \mathrm{~cm} above the position from which it leapt. What was the elastic potential energy stored in its legs before its leap?

A) 4.9×105 J4.9 \times 10^{-5} \mathrm{~J}
B) 5.7×103 J5.7 \times 10^{-3} \mathrm{~J}
C) 1.3×104 J1.3 \times 10^{-4} \mathrm{~J}
D) 5.7×104 J5.7 \times 10^{-4} \mathrm{~J}
E) 1.3×103 J1.3 \times 10^{-3} \mathrm{~J}
F) 7.8×105 J7.8 \times 10^{-5} \mathrm{~J}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/35
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: Conservation of Energy
1
A 20.0 N20.0 \mathrm{~N} force is applied at an angle of 40.0 degrees above the horizontal to a 4.00 kg4.00 \mathrm{~kg} box. The box moves a horizontal distance of 4.00 meters. Friction is negligible. The work done by the 20.0 N20.0 \mathrm{~N} force is

A) 46.3 J46.3 \mathrm{~J} .
B) 50.1 J50.1 \mathrm{~J} .
C) 75.0 J75.0 \mathrm{~J} .
D) 40.5 J40.5 \mathrm{~J} .
E) 61.3 J61.3 \mathrm{~J} .
61.3 J61.3 \mathrm{~J} .
2
A 6.00 kg6.00 \mathrm{~kg} box is pulled up an 8.00 m8.00 \mathrm{~m} long incline (with friction) at an angle of 30.0 degrees by a force of 50.0 N50.0 \mathrm{~N} parallel to the incline. The coefficient of kinetic friction is 0.100 . The work done against friction is

A) 40.7 J40.7 \mathrm{~J} .
B) 30.3 J30.3 \mathrm{~J} .
C) 22.0 J22.0 \mathrm{~J} .
D) 26.5 J26.5 \mathrm{~J} .
E) 35.2 J35.2 \mathrm{~J}
40.7 J40.7 \mathrm{~J} .
3
The graph shows the force on an object as it moves a distance xx . What is the work done by the force as the object moves from 2.0 m2.0 \mathrm{~m} to 8.0 m8.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  x . What is the work done by the force as the object moves from  2.0 \mathrm{~m}  to  8.0 \mathrm{~m}  ?  </strong> A)  52 \mathrm{~J}  B)  50 \mathrm{~J}  C)  35 \mathrm{~J}  D)  60 \mathrm{~J}  E)  48 \mathrm{~J}

A) 52 J52 \mathrm{~J}
B) 50 J50 \mathrm{~J}
C) 35 J35 \mathrm{~J}
D) 60 J60 \mathrm{~J}
E) 48 J48 \mathrm{~J}
48 J48 \mathrm{~J}
4
The graph shows the force on an object as it moves a distance x\mathrm{x} . What is the work done by the force as the object moves from 0.0 m0.0 \mathrm{~m} to 6.0 m6.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  \mathrm{x} . What is the work done by the force as the object moves from  0.0 \mathrm{~m}  to  6.0 \mathrm{~m}  ?  </strong> A)  8.0 \mathrm{~J}  B)  14 \mathrm{~J}  C)  12 \mathrm{~J}  D)  6.0 \mathrm{~J}  E)  10 \mathrm{~J}

A) 8.0 J8.0 \mathrm{~J}
B) 14 J14 \mathrm{~J}
C) 12 J12 \mathrm{~J}
D) 6.0 J6.0 \mathrm{~J}
E) 10 J10 \mathrm{~J}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
5
A 5.00 gram bullet has a velocity of 300 m/s300 \mathrm{~m} / \mathrm{s} . It strikes a block of wood and penetrates to a depth of 2.00 cm\mathrm{cm} . The average force of the block of wood on the bullet is

A) 21,400 N21,400 \mathrm{~N} .
B) 11,250 N11,250 \mathrm{~N} .
C) 15,200 N15,200 \mathrm{~N} .
D) 9,340 N9,340 \mathrm{~N} .
E) 19,500 N19,500 \mathrm{~N} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
6
A 2,000 kg2,000 \mathrm{~kg} car traveling at 30.0mi/h30.0 \mathrm{mi} / \mathrm{h} skids to a stop in 60.0 meters. The force of friction during the skid is (1.0mi/h=0.447 m/s)(1.0 \mathrm{mi} / \mathrm{h}=0.447 \mathrm{~m} / \mathrm{s})

A) 2,400 N2,400 \mathrm{~N} .
B) 3,000 N3,000 \mathrm{~N} .
C) 4,200 N4,200 \mathrm{~N} .
D) 3,750 N3,750 \mathrm{~N}
E) 4,500 N4,500 \mathrm{~N}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
7
The explosion in a cannon exerts an average force of 30,000 N30,000 \mathrm{~N} for L\mathrm{L} meters, the length of the cannon. What length of the cannon would be necessary to shoot a 2.0 kg2.0 \mathrm{~kg} projectile from the surface of the Earth to a distance of 6.84×108 m6.84 \times 10^{8} \mathrm{~m} from the center of the Earth (the same as the distance to the Moon)? (G=6.67×(\mathrm{G}=6.67 \times 1011 Nm2/kg2,ME=5.97×1024 kg10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg} 2, \mathrm{ME}=5.97 \times 10^{24} \mathrm{~kg} , and RE=6.37×106 m\mathrm{RE}=6.37 \times 10^{6} \mathrm{~m} .)

A) 3.9 km3.9 \mathrm{~km} .
B) 4.1 km4.1 \mathrm{~km} .
C) 5.0 km5.0 \mathrm{~km} .
D) 3.0 km3.0 \mathrm{~km} .
E) 2.7 km2.7 \mathrm{~km} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
8
A 20.0 kg20.0 \mathrm{~kg} box slides down a 12.0 m12.0 \mathrm{~m} long incline at an angle of 30.0 degrees with the horizontal. A force of 50.0 N50.0 \mathrm{~N} is applied to the box to try to prevent it from sliding down the incline. The applied force makes an angle of 10.00 degrees to the incline and above the incline. If the incline has a coefficient of kinetic friction of 0.100 , then the increase in the kinetic energy of the box is

A) 392 J392 \mathrm{~J} .
B) 300 J300 \mathrm{~J} .
C) 275 J275 \mathrm{~J} .
D) 203 J203 \mathrm{~J} .
E) 425 J425 \mathrm{~J} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
9
A 20.0 kg20.0 \mathrm{~kg} box slides down a 12.0 m12.0 \mathrm{~m} long incline at an angle of 3.0 degrees with the horizontal. A force of 50.0 N50.0 \mathrm{~N} is applied to the box to try to prevent it from sliding down the incline. The applied force makes an angle of 0.00 degrees to the incline. If the incline has a coefficient of kinetic friction of 0.100 , then the increase in the kinetic energy of the box is

A) 525 J525 \mathrm{~J} .
B) 455 J455 \mathrm{~J} .
C) 300 J300 \mathrm{~J} .
D) 372 J372 \mathrm{~J} .
E) 410 J410 \mathrm{~J} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
10
A 20.0 kg20.0 \mathrm{~kg} box slides down a 12.0 m12.0 \mathrm{~m} long incline at an angle of 30.0 degrees with the horizontal. A force of 50.0 N50.0 \mathrm{~N} is applied to the box in the upward direction to try to prevent it from sliding down the incline. The applied force makes an angle of 10.0 degrees to the incline. If the incline has no friction, then the increase in the kinetic energy of the box is

A) 420 J420 \mathrm{~J} .
B) 475 J475 \mathrm{~J} .
C) 585 J585 \mathrm{~J} .
D) 521 J521 \mathrm{~J} .
E) 620 J620 \mathrm{~J} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
11
A 2500 kg2500 \mathrm{~kg} car accelerates from rest to a velocity of 30.0 m/s30.0 \mathrm{~m} / \mathrm{s} in 8.00 seconds. The work done by the engine to accelerate the car is

A) 1.13×106 J1.13 \times 106 \mathrm{~J} .
B) 2.01×106 J2.01 \times 106 \mathrm{~J} .
C) 1.85×106 J1.85 \times 106 \mathrm{~J} .
D) 3.10×106 J3.10 \times 106 \mathrm{~J} .
E) 2.56×106 J2.56 \times 106 \mathrm{~J} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
12
A 3.00 kg3.00 \mathrm{~kg} pendulum bob on a string 2.00 m2.00 \mathrm{~m} long is released with a velocity of 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the tension in the string at the highest point of its motion?

A) 31.6 N31.6 \mathrm{~N}
B) 12.5 N12.5 \mathrm{~N}
C) 28.9 N28.9 \mathrm{~N}
D) 17.8 N17.8 \mathrm{~N}
E) 21.4 N21.4 \mathrm{~N}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
13
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 3.00 m3.00 \mathrm{~m} long is released with a velocity of 1.00 m/s1.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the tension in the string at the highest point of its motion?

A) 30.8 N30.8 \mathrm{~N}
B) 10.5 N10.5 \mathrm{~N}
C) 27.5 N27.5 \mathrm{~N}
D) 16.6 N16.6 \mathrm{~N}
E) 20.1 N20.1 \mathrm{~N}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
14
A 3.00 kg3.00 \mathrm{~kg} pendulum bob on a string 2.00 m2.00 \mathrm{~m} long, is released with a velocity of 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the tangential acceleration of the bob at the highest point of its motion?

A) 6.04 m/s26.04 \mathrm{~m} / \mathrm{s}^{2}
B) 7.80 m/s27.80 \mathrm{~m} / \mathrm{s}^{2}
C) 6.89 m/s26.89 \mathrm{~m} / \mathrm{s}^{2}
D) 8.20 m/s28.20 \mathrm{~m} / \mathrm{s}^{2}
E) 9.02 m/s29.02 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
15
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 2.00 m2.00 \mathrm{~m} long, is released with a velocity of 1.50 m/s1.50 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the tangential acceleration of the bob at the highest point of its motion?

A) 6.25 m/s26.25 \mathrm{~m} / \mathrm{s}^{2}
B) 7.25 m/s27.25 \mathrm{~m} / \mathrm{s}^{2}
C) 5.33 m/s25.33 \mathrm{~m} / \mathrm{s}^{2}
D) 7.00 m/s27.00 \mathrm{~m} / \mathrm{s}^{2}
E) 5.77 m/s25.77 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
16
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the speed of the bob at the bottom of the swing?

A) 4.32 m/s4.32 \mathrm{~m} / \mathrm{s}
B) 3.75 m/s3.75 \mathrm{~m} / \mathrm{s}
C) 3.04 m/s3.04 \mathrm{~m} / \mathrm{s}
D) 4.00 m/s4.00 \mathrm{~m} / \mathrm{s}
E) 2.82 m/s2.82 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
17
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 4.00 m/s4.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the angle with the vertical the bob makes at the highest point of its motion?

A) 56.7 degrees
B) 60.3 degrees
C) 45.0 degrees
D) 71.2 degrees
E) 85.3 degrees
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
18
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 4.00 m/s4.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 30.0 degrees with the vertical. What is the speed of the bob at the bottom of the swing?

A) 4.47 m/s4.47 \mathrm{~m} / \mathrm{s}
B) 4.02 m/s4.02 \mathrm{~m} / \mathrm{s}
C) 3.75 m/s3.75 \mathrm{~m} / \mathrm{s}
D) 2.85 m/s2.85 \mathrm{~m} / \mathrm{s}
E) 3.50 m/s3.50 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
19
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 3.00 m/s3.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the angle with the vertical the bob makes at the highest point of its motion?

A) 50.0 degrees
B) 75.3 degrees
C) 66.4 degrees
D) 47.5 degrees
E) 59.8 degrees
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
20
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long, is released with a velocity of 3.00 m/s3.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 45.0 degrees with the vertical. What is the tension in the string at the bottom of the swing?

A) 49.8 N49.8 \mathrm{~N}
B) 37.5 N37.5 \mathrm{~N}
C) 30.2 N30.2 \mathrm{~N}
D) 53.5 N53.5 \mathrm{~N}
E) 43.1 N43.1 \mathrm{~N}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
21
A 2.00 kg2.00 \mathrm{~kg} pendulum bob on a string 1.50 m1.50 \mathrm{~m} long is released with a velocity of 0.00 m/s0.00 \mathrm{~m} / \mathrm{s} when the support string makes an angle of 60.0 degrees with the vertical. What is the tension in the string at the bottom of the swing?

A) 50.1 N50.1 \mathrm{~N}
B) 55.6 N55.6 \mathrm{~N}
C) 42.6 N42.6 \mathrm{~N}
D) 39.2 N39.2 \mathrm{~N}
E) 60.4 N60.4 \mathrm{~N}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
22
A 75.0 kg75.0 \mathrm{~kg} skier, starting from rest, slides down a 75.0 m75.0 \mathrm{~m} high slope without friction. The velocity of the skier at the bottom of the slope is

A) 40.5 m/s40.5 \mathrm{~m} / \mathrm{s} .
B) 50.0 m/s50.0 \mathrm{~m} / \mathrm{s} .
C) 20.6 m/s20.6 \mathrm{~m} / \mathrm{s} .
D) 29.7 m/s29.7 \mathrm{~m} / \mathrm{s} .
E) 38.3 m/s38.3 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
23
A student lifts a weight of 10.0 N10.0 \mathrm{~N} a distance of 0.500 meters. The energy needed to do this work in calories is (1cal=4.186(1 \mathrm{cal}=4.186 Joules)

A) 1.19cal1.19 \mathrm{cal} .
B) 2.30cal2.30 \mathrm{cal} .
C) 0.570cal0.570 \mathrm{cal} .
D) 0.750cal0.750 \mathrm{cal} .
E) 1.75cal1.75 \mathrm{cal} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
24
An 8000 kg8000 \mathrm{~kg} satellite is launched from the surface of the Earth and injected into a circular orbit at an altitude of 100 km100 \mathrm{~km} above the surface of the Earth. The gravitational potential energy of the satellite in the circular orbit is (G=6.67×1011 Nm2/kg2,ME=5.97×1024 kg,RE=6.37×106 m)\left(\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}, \mathrm{M}_{\mathrm{E}}=5.97 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}\right)

A) 5.01×1011 J-5.01 \times 1011 \mathrm{~J} .
B) 4.75×1011 J-4.75 \times 1011 \mathrm{~J} .
C) 4.02×1011 J-4.02 \times 1011 \mathrm{~J} .
D) 4.92×1011 J-4.92 \times 1011 \mathrm{~J} .
E) 3.85×1011 J-3.85 \times 1011 \mathrm{~J}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
25
An 8000 kg8000 \mathrm{~kg} satellite is launched from the surface of the Earth and injected into a circular orbit at an altitude of 100 km100 \mathrm{~km} above the surface of the Earth. The kinetic energy of the satellite in the circular orbit is (G=6.67×(G=6.67 \times 1011 Nm2/kg2,ME=5.97×1024 kg,RE=6.37×106 m10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}, \mathrm{M}_{\mathrm{E}}=5.97 \times 1024 \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m} )

A) 5.02×1011 J5.02 \times 1011 \mathrm{~J} .
B) 3.45×1011 J3.45 \times 1011 \mathrm{~J} .
C) 2.01×1011 J2.01 \times 1011 \mathrm{~J} .
D) 4.25×1011 J4.25 \times 1011 \mathrm{~J} .
E) 2.46×1011 J2.46 \times 10^{11} \mathrm{~J} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
26
An 8000 kg8000 \mathrm{~kg} satellite is launched from the surface of the Earth into outer space. What initial kinetic energy is needed by the satellite in order to reach a great (i.e., infinite) distance from the Earth, neglecting the effects of air resistance in the atmosphere? (G=6.67×1011 Nm2/kg2,ME=5.97×1024 kg,RE=6.37×106 m\left(\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}, \mathrm{M}_{\mathrm{E}}=5.97 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}\right. .)

A) 5.00×1011 J5.00 \times 1011 \mathrm{~J} .
B) 3.00×1011 J3.00 \times 1011 \mathrm{~J} .
C) 2.35×1011 J2.35 \times 1011 \mathrm{~J} .
D) 4.03×1011 J4.03 \times 1011 \mathrm{~J} .
E) 3.57×1011 J3.57 \times 1011 \mathrm{~J} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
27
The graph shows the force on an object as it moves a distance x\mathrm{x} . What is the work done by the force as the object moves from 0.0 m0.0 \mathrm{~m} to 10.0 m10.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  \mathrm{x} . What is the work done by the force as the object moves from  0.0 \mathrm{~m}  to  10.0 \mathrm{~m}  ?  </strong> A)  52 \mathrm{~J}  B)  75 \mathrm{~J}  C)  34 \mathrm{~J}  D)  45 \mathrm{~J}  E)  64 \mathrm{~J}

A) 52 J52 \mathrm{~J}
B) 75 J75 \mathrm{~J}
C) 34 J34 \mathrm{~J}
D) 45 J45 \mathrm{~J}
E) 64 J64 \mathrm{~J}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
28
The graph shows the force on an object as it moves a distance x\mathrm{x} . What is the work done by the force as the object moves from 0.0 m0.0 \mathrm{~m} to 4.0 m4.0 \mathrm{~m} ?
 <strong> The graph shows the force on an object as it moves a distance  \mathrm{x} . What is the work done by the force as the object moves from  0.0 \mathrm{~m}  to  4.0 \mathrm{~m}  ?  </strong> A)  10 \mathrm{~J}  B)  6.0 \mathrm{~J}  C)  8.0 \mathrm{~J}  D)  14 \mathrm{~J}  E)  12 \mathrm{~J}

A) 10 J10 \mathrm{~J}
B) 6.0 J6.0 \mathrm{~J}
C) 8.0 J8.0 \mathrm{~J}
D) 14 J14 \mathrm{~J}
E) 12 J12 \mathrm{~J}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
29
A spring is stretched from 0.500 m0.500 \mathrm{~m} to 0.800 m0.800 \mathrm{~m} . Assume the unstretched position is 0.00 m0.00 \mathrm{~m} . If the spring constant of the spring is 10.0 N/m10.0 \mathrm{~N} / \mathrm{m} , what is the work done on the spring?

A) 3.01 J3.01 \mathrm{~J}
B) 1.95 J1.95 \mathrm{~J}
C) 2.21 J2.21 \mathrm{~J}
D) 2.45 J2.45 \mathrm{~J}
E) 2.75 J2.75 \mathrm{~J}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
30
A car has a mass of 2,000 kg and travels at 20.0 m/s20.0 \mathrm{~m} / \mathrm{s} . If the drag force is 100 N100 \mathrm{~N} , then the power the engines have to provide to keep moving at constant speed is

A) 3.9 kW3.9 \mathrm{~kW} .
B) 2.0 kW2.0 \mathrm{~kW} .
C) 4.2 kW4.2 \mathrm{~kW} .
D) 2.9 kW2.9 \mathrm{~kW} .
E) 3.4 kW3.4 \mathrm{~kW} .
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
31
During a basketball game, a player shoots a ball from half-court. When the ball reaches its maximum height of 4.5 m4.5 \mathrm{~m} above the floor, it is moving at 5.0 m/s5.0 \mathrm{~m} / \mathrm{s} . If the ball was released from 2.5 m2.5 \mathrm{~m} above the floor, what was the angle above the horizontal of the ball's initial velocity?

A) 5858^{\circ}
B) 5454^{\circ}
C) 3939^{\circ}
D) 5151^{\circ}
E) 3232^{\circ}
F) 3636^{\circ}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
32
An asteroid of mass 1.4×1014 kg1.4 \times 10^{14} \mathrm{~kg} is observed to have an escape speed equal to a typical person's maximum jumping speed, 3.0 m/s3.0 \mathrm{~m} / \mathrm{s} . What is its radius?

A) 1.0 km1.0 \mathrm{~km}
B) 0.5 km0.5 \mathrm{~km}
C) 2.1 km2.1 \mathrm{~km}
D) 6.3 km6.3 \mathrm{~km}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
33
An asteroid of radius 2.1 km2.1 \mathrm{~km} is observed to have an escape speed equal to a typical person's maximum jumping speed, 3.0 m/s3.0 \mathrm{~m} / \mathrm{s} . What is its mass?

A) 2.8×1014 kg2.8 \times 1014 \mathrm{~kg}
B) 4.2×1014 kg4.2 \times 1014 \mathrm{~kg}
C) 0.5×1014 kg0.5 \times 1014 \mathrm{~kg}
D) 1.4×1014 kg1.4 \times 1014 \mathrm{~kg}
E) 5.7×1014 kg5.7 \times 10^{14} \mathrm{~kg}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
34
A comet is observed to pass 1.50×108 m1.50 \times 10^{8} \mathrm{~m} from the surface of the Sun. The Sun's radius is 6.96×1086.96 \times 10^{8} m\mathrm{m} . What is the speed of the comet at this point, if its speed when passing the Earth's orbit, 1.50×1011 m1.50 \times 10^{11} \mathrm{~m} from the Sun's center, is 25 km/s25 \mathrm{~km} / \mathrm{s} ? (MS=1.989×1030 kg\left(\mathrm{M}_{\mathrm{S}}=1.989 \times 10^{30} \mathrm{~kg}\right. . ))

A) 562 km/s562 \mathrm{~km} / \mathrm{s}
B) 585 km/s585 \mathrm{~km} / \mathrm{s}
C) 618 km/s618 \mathrm{~km} / \mathrm{s}
D) 559 km/s559 \mathrm{~km} / \mathrm{s}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
35
An 0.10 g0.10 \mathrm{~g} flea, having leapt from the surface of a dog's cranium, is observed to be moving at 1.25 m/s1.25 \mathrm{~m} / \mathrm{s} when it is 5.00 cm5.00 \mathrm{~cm} above the position from which it leapt. What was the elastic potential energy stored in its legs before its leap?

A) 4.9×105 J4.9 \times 10^{-5} \mathrm{~J}
B) 5.7×103 J5.7 \times 10^{-3} \mathrm{~J}
C) 1.3×104 J1.3 \times 10^{-4} \mathrm{~J}
D) 5.7×104 J5.7 \times 10^{-4} \mathrm{~J}
E) 1.3×103 J1.3 \times 10^{-3} \mathrm{~J}
F) 7.8×105 J7.8 \times 10^{-5} \mathrm{~J}
Unlock Deck
Unlock for access to all 35 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 35 flashcards in this deck.