Deck 7: Radical Expressions and Equations

Full screen (f)
exit full mode
Question
Simplify the radical expression. Indicate if the expression is not a real number.

- 8116\sqrt{\frac{81}{16}}

A) 94\frac{\sqrt{9}}{4}

B) 94\frac{\sqrt{9}}{\sqrt{4}}

C) 94\frac{9}{4}

D) 2
Use Space or
up arrow
down arrow
to flip the card.
Question
Simplify the radical expression. Indicate if the expression is not a real number.

- 361-\sqrt{361}

A) -19
B) Not a real number
C) -180
D) 19
Question
Simplify the radical expression. Indicate if the expression is not a real number.

- 62536-\sqrt{\frac{625}{36}}

A) 256\frac{25}{6}

B) 256-\frac{25}{6}

C) Not a real number

D) 31218-\frac{312}{18}
Question
Simplify the radical expression. Indicate if the expression is not a real number.

- 48425\sqrt{\frac{484}{25}}

A) 226\frac{22}{6}

B) 235\frac{23}{5}

C) 225\frac{22}{5}

D) 24212\frac{242}{12}
Question
Simplify the radical expression. Indicate if the expression is not a real number.

- 361\sqrt{-361}

A) 19
B) -19
C) Not a real number
D) 180
Question
Simplify the radical expression. Indicate if the expression is not a real number.

- 36136\sqrt{-\frac{361}{36}}

A) 196\frac{19}{6}
B) Not a real number
C) - 10
D) 196-\frac{19}{6}
Question
Simplify the radical expression. If appropriate, include absolute values.

- x284-\sqrt[4]{x^{28}}

A) x7x^{7}
B) x7-x^{7}
C) x7\left|-x^{7}\right|
D) x7-\left|x^{7}\right|
Question
Simplify the radical expression. If appropriate, include absolute values.

- 144x2\sqrt{144 x^{2}}

A) 144x144 \mathrm{x}
B) - 12|x|
C) 12x12 x
D) 12x12|x|
Question
Simplify the radical expression. If appropriate, include absolute values.

- 196y6\sqrt{196 y^{6}}

A) 14y314 y^{3}
B) 14y14|\mathrm{y}|
C) 14y214 y^{2}
D) 14y314\left|y^{3}\right|
Question
Simplify the radical expression. If appropriate, include absolute values.

- (b+6)2\sqrt{(b+6)^{2}}

A) b+6|b+6|
B) b+36b+36
C) b6|b-6|
D) b+6\sqrt{b}+6
Question
Simplify the radical expression. If appropriate, include absolute values.

- 4x2+24x+36\sqrt{4 x^{2}+24 x+36}

A) 2x+6|2 x+6|
B) 2x+6+24x2 x+6+\sqrt{24 x}
C) 2x6|2 x-6|
D) 2x+8-2 x+8
Question
Simplify the radical expression. If appropriate, include absolute values.

- z220z+100\sqrt{z^{2}-20 z+100}

A) z+10-z+10
B) z10z-10 \mid
C) z10\mathrm{z}-10
D) z10|z|-10
Question
Simplify the radical expression. If appropriate, include absolute values.

- 25x2+40x+16\sqrt{25 x^{2}+40 x+16}

A) 5x+4|5 x+4|
B) 5x+4|5 x|+4
C) 5x+45 x+4
D) 5x+20x5 x+\sqrt{20 x}
Question
Find the missing number

- ?=17\sqrt{?}=17

A) 19
B) 34
C) 578
D) 289
Question
Find the missing number

- ?=5x\sqrt{?}=5 x

A) 5x-5 x
B) 25x225 x^{2}
C) 5x25 x^{2}
D) 25x25 x
Question
Find the missing number

- ?=12y3\sqrt{?}=12 \mathrm{y}^{3}

A) 12y312 y^{3}
B) 12y612 y^{6}
C) 144y6144 y^{6}
D) 144y3144 y^{3}
Question
Find the missing number

- 20?=10\sqrt{20} \cdot \sqrt{?}=10

A) 52\frac{5}{2}
B) 10
C) 12\frac{1}{2}
D) 5
Question
Find the missing number

- ?5=8\frac{\sqrt{?}}{\sqrt{5}}=8

A) 858 \sqrt{5}
B) 40
C) 85\frac{8}{5}
D) 320
Question
Approximate to the nearest thousandth, using a calculator

- 7\sqrt{7}

A) 2.646
B) 2.643
C) 2.651
D) 7.000
Question
Approximate to the nearest thousandth, using a calculator

- 77-\sqrt{77}

A) -8.772
B) -8.780
C) -77.000
D) -8.775
Question
Approximate to the nearest thousandth, using a calculator

- 417\sqrt{417}

A) 417.000
B) 20.426
C) 20.421
D) 20.418
Question
Approximate to the nearest thousandth, using a calculator

- 9791-\sqrt{9791}

A) -98.949
B) -98.946
C) -98.954
D) -9791.000
Question
Approximate to the nearest thousandth, using a calculator

- 1.09\sqrt{1.09}

A) 1.000
B) 1.044
C) 1.059
D) 1.031
Question
Approximate to the nearest thousandth, using a calculator

- 0.000113\sqrt{0.000113}

A) 0.011
B) 0.001
C) 1.100
D) 0.110
Question
Approximate to the nearest thousandth, using a calculator

- 0.00227\sqrt{0.00227}

A) 4.800
B) 0.048
C) 0.480
D) 0.005
Question
Use the Babylonian method to approximate the given square root to the nearest thousandth.

- 47\sqrt{47}

A) 6.928
B) 6.782
C) 6.856
D) 7.071
Question
Use the Babylonian method to approximate the given square root to the nearest thousandth.

- 600\sqrt{600}

A) 24.454
B) 24.474
C) 24.495
D) 24.597
Question
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 2163\sqrt[3]{216}

A) 15
B) -6
C) 36
D) 6
Question
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 643-\sqrt[3]{64}

A) 16
B) -4
C) 4
D) - 64
Question
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 5123-\sqrt[3]{-512}

A) -64
B) 23
C) -8
D) 8
Question
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 2564\sqrt[4]{256}

A) 3
B) 4
C) 16
D) 5
Question
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 64x33-\sqrt[3]{-64 \mathrm{x}^{3}}

A) 4x-4 x
B) 4x4 x
C) 4x34 x^{3}
D) 64x-64 x
Question
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 81x84\sqrt[4]{81 x^{8}}

A) 324
B) 3x23 x^{2}
C) 3x2-3 x^{2}
D) 9x29 x^{2}
Question
Simplify.

- 250\sqrt{2} \cdot \sqrt{50}

A) 100
B) 200
C) 20
D) 10
Question
Simplify.

- 82\sqrt{8} \cdot \sqrt{2}

A) 242 \sqrt{4}
B) 16
C) 4
D) 222 \sqrt{2}
Question
Simplify.

- 7299\frac{\sqrt{729}}{\sqrt{9}}

A) 3
B) 81
C) 9
D) 27
Question
Simplify.

- 102\frac{\sqrt{10}}{\sqrt{2}}

A) 2\sqrt{2}
B) 5
C) 5\sqrt{5}
D) 2
Question
Simplify.

- 49373\sqrt[3]{49} \cdot \sqrt[3]{7}

A) 3433\sqrt[3]{343}
B) 7
C) 18
D) 7737 \sqrt[3]{7}
Question
Simplify.

- 6403103\frac{\sqrt[3]{640}}{\sqrt[3]{10}}

A) 3
B) 4
C) 5
D) 6
Question
Evaluate the radical function at the given value of the variable.

- f(x)=x+9+xf(x)=\sqrt{x+9}+\sqrt{x} ; find f(16)f(16) .

A) 7
B) 3
C) 9
D) 6
Question
Evaluate the radical function at the given value of the variable.

- f(x)=x2+2x+1f(x)=-\sqrt{x^{2}+2 x+1} ; find f(9)f(-9) .

A) 8
B) -8
C) 9
D) -9
Question
Evaluate the radical function at the given value of the variable.

- f(x)=x2+2x+1f(x)=\sqrt{x^{2}+2 x+1} ; find f(7)f(7) .

A) 7
B) 6
C) 8
D) 5
Question
The rms velocity (or average velocity) of a gas particle in meters per second is given by the formula μrms=24.9435 TM\mu_{\mathrm{rms}}=\sqrt{\frac{24.9435 \mathrm{~T}}{\mathrm{M}}} , where T\mathrm{T} is the absolute temperature in kelvin (T=TC+273)\left(\mathrm{T}=\mathrm{T}_{\mathrm{C}}+273\right) and M\mathrm{M} is the molar mass (mass of 1 mole) of the gas in kilograms. Find the rms velocity for a molecule of Hydrogen (H2)\left(\mathrm{H}_{2}\right) with molar mass 0.002 kilogram at a temperature of 70C70^{\circ} \mathrm{C} . Round to the nearest tenth of a meter per second.

A) 414.1 m/s414.1 \mathrm{~m} / \mathrm{s}
B) 2068.3 m/s2068.3 \mathrm{~m} / \mathrm{s}
C) 1759.9 m/s1759.9 \mathrm{~m} / \mathrm{s}
D) 934.4 m/s934.4 \mathrm{~m} / \mathrm{s}
Question
An oil platform is 7 miles off the coast, and a pipeline needs to run to a refinery that is 15 miles north of the platform along the coast. This requires that some of the pipeline will be offshore and some will run on land along the coast. If the pipeline comes on shore xx miles north of the platform, the underwater distance is given by f(x)=49+x2f(x)=\sqrt{49+x^{2}} , and the distance on land is given by g(x)=15g(x)=15 - x\mathrm{x} . The cost of the underwater pipeline is $500,000\$ 500,000 per mile, and the cost of the pipeline on land is $350,000\$ 350,000 per mile. If the pipeline comes on shore 6 miles north of the platform, what is the total cost of the pipeline? Do not round until the final step and then round to the nearest cent.

A) $7,759,772.23\$ 7,759,772.23
B) $6,709,772.23\$ 6,709,772.23
C) $7,287,817.78\$ 7,287,817.78
D) $7,726,840.56\$ 7,726,840.56
Question
The distance dd in miles that can be seen on the surface of the ocean is given by d=1.2hd=1.2 \sqrt{h} , where hh is the height in feet above the surface. How high (to the nearest foot) would a platform have to be to see a distance of 16.5 miles?

A) 138ft138 \mathrm{ft}
B) 189ft189 \mathrm{ft}
C) 326ft326 \mathrm{ft}
D) 272ft272 \mathrm{ft}
Question
The radius of a sphere depends on its surface area, SS , and is given by the formula r=S4πr=\sqrt{\frac{\mathrm{S}}{4 \pi}}
What is the surface area of a sphere with radius of 7.1 inches? Use 3.14 for π\pi . Round to the nearest tenth of a square inch.

A) 89.2 square inches
B) 22.3 square inches
C) 158.3 square inches
D) 633.1 square inches
Question
The length a spring is stretched from its natural length with work, W foot- pounds, is given by L=2 Wk\mathrm{L}=\sqrt{\frac{2 \mathrm{~W}}{\mathrm{k}}}
Where k\mathrm{k} is a constant for the given spring. If a certain spring has a constant of 54.9, and the spring is to be stretched 4.3 feet from its natural length, how much work will be necessary? Round to the nearest tenth of a foot- pound.

A) 1015.1 foot- pounds
B) 118 foot- pounds
C) 507.6 foot-pounds
D) 56.9 foot- pounds
Question
Police use a formula s=SlLs=S \sqrt{\frac{l}{L}} , where Sis the test- car speed and LL is the test- skid length, to find the actual speed s\mathrm{s} in an accident which left a skid mark of 1 . Find the speed (nearest whole mph) when S=45mph,l=150ft,L=100ft\mathrm{S}=45 \mathrm{mph}, \mathrm{l}=150 \mathrm{ft}, \mathrm{L}=100 \mathrm{ft} .

A) 37mph37 \mathrm{mph}
B) 68mph68 \mathrm{mph}
C) 55mph55 \mathrm{mph}
D) 95mph95 \mathrm{mph}
Question
The length of the diagonal of a rectangle is given by D=L2+W2D=\sqrt{L^{2}+W^{2}} where LL and WW are the length and width of the rectangle. What is the length of the diagonal, D, of a rectangle that is 16 inches long and 2 inches wide? Round your answer to the nearest tenth of an inch, if necessary.

A) 15.9 inches
B) 5.7 inches
C) 4.2 inches
D) 16.1 inches
Question
The length of the diagonal of a box is given by D=L2+W2+H2D=\sqrt{L^{2}+W^{2}+H^{2}} where L,WL, W , and HH are the length, width, and height of the box. Find the length of the diagonal, D, of a box that is 1ft1 \mathrm{ft} long, 5ft5 \mathrm{ft} high, and 4ft4 \mathrm{ft} wide. Give the exact value.

A) 25ft2 \sqrt{5} \mathrm{ft}
B) 10ft10 \mathrm{ft}
C) 20ft20 \mathrm{ft}
D) 42ft\sqrt{42} \mathrm{ft}
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=x+13f(x)=\sqrt{x+13}

A) (,13)(-\infty, 13)
B) [13,)[13, \infty)
C) (,13)(-\infty,-13)
D) [13,)[-13, \infty)
Question
Find the domain of the function. Express the answer in interval notation.

- g(x)=5x2+10g(x)=\sqrt{5 x^{2}+10}

A) (2,)(-2, \infty)
B) (,)(-\infty, \infty)
C) [2,)[-2, \infty)
D) [0,)[0, \infty)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=2x+2f(x)=\sqrt{2 x+2}

A) [1,)[-1, \infty)
B) (1,)(-1, \infty)
C) (1,)(1, \infty)
D) (,1)(-\infty,-1)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=92xf(x)=\sqrt{9-2 x}

A) [92,)\left[\frac{9}{2}, \infty\right)
B) [,92]\left[-\infty, \frac{9}{2}\right]
C) [92,)\left[-\frac{9}{2}, \infty\right)
D) (,92)\left(-\infty, \frac{9}{2}\right)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=x+86f(x)=\sqrt[6]{x+8}

A) (,8)(-\infty,-8)
B) (,8)(-\infty, 8)
C) [8,)[8, \infty)
D) [8,)[-8, \infty)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=x194f(x)=\sqrt[4]{x-19}

A) [19,)[19, \infty)
B) [0,)[0, \infty)
C) [19,)[-19, \infty)
D) (,)(-\infty, \infty)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=x183f(x)=\sqrt[3]{x-18}

A) (,18)(-\infty, 18)
B) [18,)[18, \infty)
C) (,18)(-\infty,-18)
D) (,)(-\infty, \infty)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=353t+304f(x)=3-5 \sqrt[4]{3 t+30}

A) [10,)[-10, \infty)
B) (,)(-\infty, \infty)
C) (,10)(-\infty,-10)
D) [10,)[10, \infty)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=5+23t426f(x)=5+2 \sqrt[6]{3 t-42}

A) [14,)[14, \infty)
B) (,14)(-\infty, 14)
C) (,)(-\infty, \infty)
D) [14,)[-14, \infty)
Question
Find the domain of the function. Express the answer in interval notation.

- f(x)=2x45f(x)=\sqrt[5]{2 x-4}

A) [2,)[2, \infty)
B) (,2)(-\infty, 2)
C) (,)(-\infty, \infty)
D) [2,)[-2, \infty)
Question
How many real square roots does any negative number have?

A) It depends on the number
B) None
C) One
D) Two
Question
How many real cube roots does any negative number have?

A) None
B) Two
C) Three
D) One
Question
If nn is odd, under what condition is an\sqrt[n]{a} negative?

A) When a is negative
B) When a is zero
C) When a is positive
D) Never
Question
Explain in your own words why a2a\sqrt{\mathrm{a}^{2}} \neq \mathrm{a} when a is negative.
Question
Explain why xkk=x\sqrt[k]{\mathrm{x}^{\mathrm{k}}}=|\mathrm{x}| when k\mathrm{k} is even but xkk=x\sqrt[k]{\mathrm{x}^{\mathrm{k}}}=\mathrm{x} when k\mathrm{k} is odd.
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- 174\sqrt[4]{17}

A) 171/4-171 / 4
B) 171/4171 / 4
C) 1174\frac{1}{17^{4}}
D) 41/174^{1 / 17}
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- mn6\sqrt[6]{\mathrm{mn}}

A) 1(mn)6\frac{1}{(\mathrm{mn})^{6}}
B) (mn)1/6(\mathrm{mn})^{1 / 6}
C) m1/6nm^{1 / 6} n
D) mn1/6\mathrm{mn}^{1 / 6}
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- x9\sqrt{\mathrm{x}^{9}}

A) x9/2x 9 / 2
B) x2/9-x^{2 / 9}
C) x2/9x^{-2 / 9}
D) x9/2x^{-9 / 2}
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- (b9)7(\sqrt[9]{b})^{7}

A) b7/9b^{7 / 9}
B) b9/7b^{-9 / 7}
C) b7/9b^{-7 / 9}
D) b9/7b^{9 / 7}
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- m78\sqrt[8]{m^{7}}

A) m7/8m^{7 / 8}
B) 1(mn)8\frac{1}{(m n)^{8}}
C) m7/8-m^{7 / 8}
D) m8/7m^{8 / 7}
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- (5x3y5)2\left(\sqrt[5]{5 x^{3} y}\right)^{2}

A) (5xy)6/5(5 x y)^{6 / 5}
B) (5x3y)5/2\left(5 x^{3} y\right)^{5 / 2}
C) (5x3y)2/5\left(5 x^{3} y\right)^{2 / 5}
D) (5x3y)10\left(5 x^{3} y\right)^{10}
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- x5y72\sqrt[2]{x^{5} y^{7}}

A) (x5yz7)1/2\left(x^{5} y z^{7}\right)^{1 / 2}
B) x3y1z5x^{3} y^{-1} z^{5}
C) (x5yz7)2\left(x^{5} y z^{7}\right)^{2}
D) (x5yz7)2\left(x^{5} y z^{7}\right)^{-2}
Question
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- (5x4y9)7\left(\sqrt[9]{5 x^{4} y}\right)^{7}

A) (5x4y)7/9\left(5 x^{4} y\right)^{7 / 9}
B) (5xy)19(5 x y)^{19}
C) (5x4y)9/7\left(5 x^{4} y\right)^{9 / 7}
D) (5x4y)2\left(5 x^{4} y\right)^{2}
Question
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- 4001/2400^{1 / 2}

A) 80
B) 40
C) 10
D) 20
Question
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- 3431/3343^{1 / 3}

A) 7
B) 2401
C) 21
D) 7203
Question
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (36)1/2(-36)^{1 / 2}

A) 6
B) -3
C) -6
D) Not a real number
Question
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (y20)1/4\left(y^{20}\right)^{1 / 4}

A) y20y^{20}
B) 7y7 \mathrm{y}
C) y5y^{5}
D) y7y^{7}
Question
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (x4y6)1/2\left(x^{4} y^{6}\right)^{1 / 2}

A) x2y3x^{2} y^{3}
B) 2x4y62 x^{4} y^{6}
C) x8y12x^{8} y^{12}
D) x3y2x^{3} y^{2}
Question
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (169r14)1/2\left(169 r^{14}\right)^{1 / 2}

A) 169r14\sqrt{169 r^{14}}
B) 13r713 r^{7}
C) 13r1413 \sqrt{r^{14}}
D) 13r1413 r^{14}
Question
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (4x4y4)1/2\left(4 x^{4} y^{4}\right)^{1 / 2}

A) 2x4y22 x^{4} y^{2}
B) 2x2y2 x^{2} y
C) 2x2y22 x^{2} y^{2}
D) x2y2x^{2} y^{2}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/361
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Radical Expressions and Equations
1
Simplify the radical expression. Indicate if the expression is not a real number.

- 8116\sqrt{\frac{81}{16}}

A) 94\frac{\sqrt{9}}{4}

B) 94\frac{\sqrt{9}}{\sqrt{4}}

C) 94\frac{9}{4}

D) 2
94\frac{9}{4}
2
Simplify the radical expression. Indicate if the expression is not a real number.

- 361-\sqrt{361}

A) -19
B) Not a real number
C) -180
D) 19
-19
3
Simplify the radical expression. Indicate if the expression is not a real number.

- 62536-\sqrt{\frac{625}{36}}

A) 256\frac{25}{6}

B) 256-\frac{25}{6}

C) Not a real number

D) 31218-\frac{312}{18}
256-\frac{25}{6}
4
Simplify the radical expression. Indicate if the expression is not a real number.

- 48425\sqrt{\frac{484}{25}}

A) 226\frac{22}{6}

B) 235\frac{23}{5}

C) 225\frac{22}{5}

D) 24212\frac{242}{12}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
5
Simplify the radical expression. Indicate if the expression is not a real number.

- 361\sqrt{-361}

A) 19
B) -19
C) Not a real number
D) 180
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
6
Simplify the radical expression. Indicate if the expression is not a real number.

- 36136\sqrt{-\frac{361}{36}}

A) 196\frac{19}{6}
B) Not a real number
C) - 10
D) 196-\frac{19}{6}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
7
Simplify the radical expression. If appropriate, include absolute values.

- x284-\sqrt[4]{x^{28}}

A) x7x^{7}
B) x7-x^{7}
C) x7\left|-x^{7}\right|
D) x7-\left|x^{7}\right|
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
8
Simplify the radical expression. If appropriate, include absolute values.

- 144x2\sqrt{144 x^{2}}

A) 144x144 \mathrm{x}
B) - 12|x|
C) 12x12 x
D) 12x12|x|
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
9
Simplify the radical expression. If appropriate, include absolute values.

- 196y6\sqrt{196 y^{6}}

A) 14y314 y^{3}
B) 14y14|\mathrm{y}|
C) 14y214 y^{2}
D) 14y314\left|y^{3}\right|
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
10
Simplify the radical expression. If appropriate, include absolute values.

- (b+6)2\sqrt{(b+6)^{2}}

A) b+6|b+6|
B) b+36b+36
C) b6|b-6|
D) b+6\sqrt{b}+6
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
11
Simplify the radical expression. If appropriate, include absolute values.

- 4x2+24x+36\sqrt{4 x^{2}+24 x+36}

A) 2x+6|2 x+6|
B) 2x+6+24x2 x+6+\sqrt{24 x}
C) 2x6|2 x-6|
D) 2x+8-2 x+8
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
12
Simplify the radical expression. If appropriate, include absolute values.

- z220z+100\sqrt{z^{2}-20 z+100}

A) z+10-z+10
B) z10z-10 \mid
C) z10\mathrm{z}-10
D) z10|z|-10
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
13
Simplify the radical expression. If appropriate, include absolute values.

- 25x2+40x+16\sqrt{25 x^{2}+40 x+16}

A) 5x+4|5 x+4|
B) 5x+4|5 x|+4
C) 5x+45 x+4
D) 5x+20x5 x+\sqrt{20 x}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
14
Find the missing number

- ?=17\sqrt{?}=17

A) 19
B) 34
C) 578
D) 289
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
15
Find the missing number

- ?=5x\sqrt{?}=5 x

A) 5x-5 x
B) 25x225 x^{2}
C) 5x25 x^{2}
D) 25x25 x
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
16
Find the missing number

- ?=12y3\sqrt{?}=12 \mathrm{y}^{3}

A) 12y312 y^{3}
B) 12y612 y^{6}
C) 144y6144 y^{6}
D) 144y3144 y^{3}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
17
Find the missing number

- 20?=10\sqrt{20} \cdot \sqrt{?}=10

A) 52\frac{5}{2}
B) 10
C) 12\frac{1}{2}
D) 5
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
18
Find the missing number

- ?5=8\frac{\sqrt{?}}{\sqrt{5}}=8

A) 858 \sqrt{5}
B) 40
C) 85\frac{8}{5}
D) 320
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
19
Approximate to the nearest thousandth, using a calculator

- 7\sqrt{7}

A) 2.646
B) 2.643
C) 2.651
D) 7.000
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
20
Approximate to the nearest thousandth, using a calculator

- 77-\sqrt{77}

A) -8.772
B) -8.780
C) -77.000
D) -8.775
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
21
Approximate to the nearest thousandth, using a calculator

- 417\sqrt{417}

A) 417.000
B) 20.426
C) 20.421
D) 20.418
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
22
Approximate to the nearest thousandth, using a calculator

- 9791-\sqrt{9791}

A) -98.949
B) -98.946
C) -98.954
D) -9791.000
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
23
Approximate to the nearest thousandth, using a calculator

- 1.09\sqrt{1.09}

A) 1.000
B) 1.044
C) 1.059
D) 1.031
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
24
Approximate to the nearest thousandth, using a calculator

- 0.000113\sqrt{0.000113}

A) 0.011
B) 0.001
C) 1.100
D) 0.110
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
25
Approximate to the nearest thousandth, using a calculator

- 0.00227\sqrt{0.00227}

A) 4.800
B) 0.048
C) 0.480
D) 0.005
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
26
Use the Babylonian method to approximate the given square root to the nearest thousandth.

- 47\sqrt{47}

A) 6.928
B) 6.782
C) 6.856
D) 7.071
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
27
Use the Babylonian method to approximate the given square root to the nearest thousandth.

- 600\sqrt{600}

A) 24.454
B) 24.474
C) 24.495
D) 24.597
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
28
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 2163\sqrt[3]{216}

A) 15
B) -6
C) 36
D) 6
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
29
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 643-\sqrt[3]{64}

A) 16
B) -4
C) 4
D) - 64
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
30
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 5123-\sqrt[3]{-512}

A) -64
B) 23
C) -8
D) 8
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
31
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 2564\sqrt[4]{256}

A) 3
B) 4
C) 16
D) 5
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
32
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 64x33-\sqrt[3]{-64 \mathrm{x}^{3}}

A) 4x-4 x
B) 4x4 x
C) 4x34 x^{3}
D) 64x-64 x
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
33
Simplify the radical expression. Assume all variables represent nonnegative real numbers.

- 81x84\sqrt[4]{81 x^{8}}

A) 324
B) 3x23 x^{2}
C) 3x2-3 x^{2}
D) 9x29 x^{2}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
34
Simplify.

- 250\sqrt{2} \cdot \sqrt{50}

A) 100
B) 200
C) 20
D) 10
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
35
Simplify.

- 82\sqrt{8} \cdot \sqrt{2}

A) 242 \sqrt{4}
B) 16
C) 4
D) 222 \sqrt{2}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
36
Simplify.

- 7299\frac{\sqrt{729}}{\sqrt{9}}

A) 3
B) 81
C) 9
D) 27
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
37
Simplify.

- 102\frac{\sqrt{10}}{\sqrt{2}}

A) 2\sqrt{2}
B) 5
C) 5\sqrt{5}
D) 2
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
38
Simplify.

- 49373\sqrt[3]{49} \cdot \sqrt[3]{7}

A) 3433\sqrt[3]{343}
B) 7
C) 18
D) 7737 \sqrt[3]{7}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
39
Simplify.

- 6403103\frac{\sqrt[3]{640}}{\sqrt[3]{10}}

A) 3
B) 4
C) 5
D) 6
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
40
Evaluate the radical function at the given value of the variable.

- f(x)=x+9+xf(x)=\sqrt{x+9}+\sqrt{x} ; find f(16)f(16) .

A) 7
B) 3
C) 9
D) 6
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
41
Evaluate the radical function at the given value of the variable.

- f(x)=x2+2x+1f(x)=-\sqrt{x^{2}+2 x+1} ; find f(9)f(-9) .

A) 8
B) -8
C) 9
D) -9
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
42
Evaluate the radical function at the given value of the variable.

- f(x)=x2+2x+1f(x)=\sqrt{x^{2}+2 x+1} ; find f(7)f(7) .

A) 7
B) 6
C) 8
D) 5
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
43
The rms velocity (or average velocity) of a gas particle in meters per second is given by the formula μrms=24.9435 TM\mu_{\mathrm{rms}}=\sqrt{\frac{24.9435 \mathrm{~T}}{\mathrm{M}}} , where T\mathrm{T} is the absolute temperature in kelvin (T=TC+273)\left(\mathrm{T}=\mathrm{T}_{\mathrm{C}}+273\right) and M\mathrm{M} is the molar mass (mass of 1 mole) of the gas in kilograms. Find the rms velocity for a molecule of Hydrogen (H2)\left(\mathrm{H}_{2}\right) with molar mass 0.002 kilogram at a temperature of 70C70^{\circ} \mathrm{C} . Round to the nearest tenth of a meter per second.

A) 414.1 m/s414.1 \mathrm{~m} / \mathrm{s}
B) 2068.3 m/s2068.3 \mathrm{~m} / \mathrm{s}
C) 1759.9 m/s1759.9 \mathrm{~m} / \mathrm{s}
D) 934.4 m/s934.4 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
44
An oil platform is 7 miles off the coast, and a pipeline needs to run to a refinery that is 15 miles north of the platform along the coast. This requires that some of the pipeline will be offshore and some will run on land along the coast. If the pipeline comes on shore xx miles north of the platform, the underwater distance is given by f(x)=49+x2f(x)=\sqrt{49+x^{2}} , and the distance on land is given by g(x)=15g(x)=15 - x\mathrm{x} . The cost of the underwater pipeline is $500,000\$ 500,000 per mile, and the cost of the pipeline on land is $350,000\$ 350,000 per mile. If the pipeline comes on shore 6 miles north of the platform, what is the total cost of the pipeline? Do not round until the final step and then round to the nearest cent.

A) $7,759,772.23\$ 7,759,772.23
B) $6,709,772.23\$ 6,709,772.23
C) $7,287,817.78\$ 7,287,817.78
D) $7,726,840.56\$ 7,726,840.56
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
45
The distance dd in miles that can be seen on the surface of the ocean is given by d=1.2hd=1.2 \sqrt{h} , where hh is the height in feet above the surface. How high (to the nearest foot) would a platform have to be to see a distance of 16.5 miles?

A) 138ft138 \mathrm{ft}
B) 189ft189 \mathrm{ft}
C) 326ft326 \mathrm{ft}
D) 272ft272 \mathrm{ft}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
46
The radius of a sphere depends on its surface area, SS , and is given by the formula r=S4πr=\sqrt{\frac{\mathrm{S}}{4 \pi}}
What is the surface area of a sphere with radius of 7.1 inches? Use 3.14 for π\pi . Round to the nearest tenth of a square inch.

A) 89.2 square inches
B) 22.3 square inches
C) 158.3 square inches
D) 633.1 square inches
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
47
The length a spring is stretched from its natural length with work, W foot- pounds, is given by L=2 Wk\mathrm{L}=\sqrt{\frac{2 \mathrm{~W}}{\mathrm{k}}}
Where k\mathrm{k} is a constant for the given spring. If a certain spring has a constant of 54.9, and the spring is to be stretched 4.3 feet from its natural length, how much work will be necessary? Round to the nearest tenth of a foot- pound.

A) 1015.1 foot- pounds
B) 118 foot- pounds
C) 507.6 foot-pounds
D) 56.9 foot- pounds
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
48
Police use a formula s=SlLs=S \sqrt{\frac{l}{L}} , where Sis the test- car speed and LL is the test- skid length, to find the actual speed s\mathrm{s} in an accident which left a skid mark of 1 . Find the speed (nearest whole mph) when S=45mph,l=150ft,L=100ft\mathrm{S}=45 \mathrm{mph}, \mathrm{l}=150 \mathrm{ft}, \mathrm{L}=100 \mathrm{ft} .

A) 37mph37 \mathrm{mph}
B) 68mph68 \mathrm{mph}
C) 55mph55 \mathrm{mph}
D) 95mph95 \mathrm{mph}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
49
The length of the diagonal of a rectangle is given by D=L2+W2D=\sqrt{L^{2}+W^{2}} where LL and WW are the length and width of the rectangle. What is the length of the diagonal, D, of a rectangle that is 16 inches long and 2 inches wide? Round your answer to the nearest tenth of an inch, if necessary.

A) 15.9 inches
B) 5.7 inches
C) 4.2 inches
D) 16.1 inches
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
50
The length of the diagonal of a box is given by D=L2+W2+H2D=\sqrt{L^{2}+W^{2}+H^{2}} where L,WL, W , and HH are the length, width, and height of the box. Find the length of the diagonal, D, of a box that is 1ft1 \mathrm{ft} long, 5ft5 \mathrm{ft} high, and 4ft4 \mathrm{ft} wide. Give the exact value.

A) 25ft2 \sqrt{5} \mathrm{ft}
B) 10ft10 \mathrm{ft}
C) 20ft20 \mathrm{ft}
D) 42ft\sqrt{42} \mathrm{ft}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
51
Find the domain of the function. Express the answer in interval notation.

- f(x)=x+13f(x)=\sqrt{x+13}

A) (,13)(-\infty, 13)
B) [13,)[13, \infty)
C) (,13)(-\infty,-13)
D) [13,)[-13, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
52
Find the domain of the function. Express the answer in interval notation.

- g(x)=5x2+10g(x)=\sqrt{5 x^{2}+10}

A) (2,)(-2, \infty)
B) (,)(-\infty, \infty)
C) [2,)[-2, \infty)
D) [0,)[0, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
53
Find the domain of the function. Express the answer in interval notation.

- f(x)=2x+2f(x)=\sqrt{2 x+2}

A) [1,)[-1, \infty)
B) (1,)(-1, \infty)
C) (1,)(1, \infty)
D) (,1)(-\infty,-1)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
54
Find the domain of the function. Express the answer in interval notation.

- f(x)=92xf(x)=\sqrt{9-2 x}

A) [92,)\left[\frac{9}{2}, \infty\right)
B) [,92]\left[-\infty, \frac{9}{2}\right]
C) [92,)\left[-\frac{9}{2}, \infty\right)
D) (,92)\left(-\infty, \frac{9}{2}\right)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
55
Find the domain of the function. Express the answer in interval notation.

- f(x)=x+86f(x)=\sqrt[6]{x+8}

A) (,8)(-\infty,-8)
B) (,8)(-\infty, 8)
C) [8,)[8, \infty)
D) [8,)[-8, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
56
Find the domain of the function. Express the answer in interval notation.

- f(x)=x194f(x)=\sqrt[4]{x-19}

A) [19,)[19, \infty)
B) [0,)[0, \infty)
C) [19,)[-19, \infty)
D) (,)(-\infty, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
57
Find the domain of the function. Express the answer in interval notation.

- f(x)=x183f(x)=\sqrt[3]{x-18}

A) (,18)(-\infty, 18)
B) [18,)[18, \infty)
C) (,18)(-\infty,-18)
D) (,)(-\infty, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
58
Find the domain of the function. Express the answer in interval notation.

- f(x)=353t+304f(x)=3-5 \sqrt[4]{3 t+30}

A) [10,)[-10, \infty)
B) (,)(-\infty, \infty)
C) (,10)(-\infty,-10)
D) [10,)[10, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
59
Find the domain of the function. Express the answer in interval notation.

- f(x)=5+23t426f(x)=5+2 \sqrt[6]{3 t-42}

A) [14,)[14, \infty)
B) (,14)(-\infty, 14)
C) (,)(-\infty, \infty)
D) [14,)[-14, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
60
Find the domain of the function. Express the answer in interval notation.

- f(x)=2x45f(x)=\sqrt[5]{2 x-4}

A) [2,)[2, \infty)
B) (,2)(-\infty, 2)
C) (,)(-\infty, \infty)
D) [2,)[-2, \infty)
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
61
How many real square roots does any negative number have?

A) It depends on the number
B) None
C) One
D) Two
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
62
How many real cube roots does any negative number have?

A) None
B) Two
C) Three
D) One
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
63
If nn is odd, under what condition is an\sqrt[n]{a} negative?

A) When a is negative
B) When a is zero
C) When a is positive
D) Never
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
64
Explain in your own words why a2a\sqrt{\mathrm{a}^{2}} \neq \mathrm{a} when a is negative.
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
65
Explain why xkk=x\sqrt[k]{\mathrm{x}^{\mathrm{k}}}=|\mathrm{x}| when k\mathrm{k} is even but xkk=x\sqrt[k]{\mathrm{x}^{\mathrm{k}}}=\mathrm{x} when k\mathrm{k} is odd.
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
66
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- 174\sqrt[4]{17}

A) 171/4-171 / 4
B) 171/4171 / 4
C) 1174\frac{1}{17^{4}}
D) 41/174^{1 / 17}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
67
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- mn6\sqrt[6]{\mathrm{mn}}

A) 1(mn)6\frac{1}{(\mathrm{mn})^{6}}
B) (mn)1/6(\mathrm{mn})^{1 / 6}
C) m1/6nm^{1 / 6} n
D) mn1/6\mathrm{mn}^{1 / 6}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
68
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- x9\sqrt{\mathrm{x}^{9}}

A) x9/2x 9 / 2
B) x2/9-x^{2 / 9}
C) x2/9x^{-2 / 9}
D) x9/2x^{-9 / 2}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
69
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- (b9)7(\sqrt[9]{b})^{7}

A) b7/9b^{7 / 9}
B) b9/7b^{-9 / 7}
C) b7/9b^{-7 / 9}
D) b9/7b^{9 / 7}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
70
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- m78\sqrt[8]{m^{7}}

A) m7/8m^{7 / 8}
B) 1(mn)8\frac{1}{(m n)^{8}}
C) m7/8-m^{7 / 8}
D) m8/7m^{8 / 7}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
71
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- (5x3y5)2\left(\sqrt[5]{5 x^{3} y}\right)^{2}

A) (5xy)6/5(5 x y)^{6 / 5}
B) (5x3y)5/2\left(5 x^{3} y\right)^{5 / 2}
C) (5x3y)2/5\left(5 x^{3} y\right)^{2 / 5}
D) (5x3y)10\left(5 x^{3} y\right)^{10}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
72
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- x5y72\sqrt[2]{x^{5} y^{7}}

A) (x5yz7)1/2\left(x^{5} y z^{7}\right)^{1 / 2}
B) x3y1z5x^{3} y^{-1} z^{5}
C) (x5yz7)2\left(x^{5} y z^{7}\right)^{2}
D) (x5yz7)2\left(x^{5} y z^{7}\right)^{-2}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
73
Rewrite the radical expression using rational exponents. A ssume all variables represent nonnegative real numbers.

- (5x4y9)7\left(\sqrt[9]{5 x^{4} y}\right)^{7}

A) (5x4y)7/9\left(5 x^{4} y\right)^{7 / 9}
B) (5xy)19(5 x y)^{19}
C) (5x4y)9/7\left(5 x^{4} y\right)^{9 / 7}
D) (5x4y)2\left(5 x^{4} y\right)^{2}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
74
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- 4001/2400^{1 / 2}

A) 80
B) 40
C) 10
D) 20
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
75
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- 3431/3343^{1 / 3}

A) 7
B) 2401
C) 21
D) 7203
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
76
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (36)1/2(-36)^{1 / 2}

A) 6
B) -3
C) -6
D) Not a real number
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
77
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (y20)1/4\left(y^{20}\right)^{1 / 4}

A) y20y^{20}
B) 7y7 \mathrm{y}
C) y5y^{5}
D) y7y^{7}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
78
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (x4y6)1/2\left(x^{4} y^{6}\right)^{1 / 2}

A) x2y3x^{2} y^{3}
B) 2x4y62 x^{4} y^{6}
C) x8y12x^{8} y^{12}
D) x3y2x^{3} y^{2}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
79
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (169r14)1/2\left(169 r^{14}\right)^{1 / 2}

A) 169r14\sqrt{169 r^{14}}
B) 13r713 r^{7}
C) 13r1413 \sqrt{r^{14}}
D) 13r1413 r^{14}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
80
Rewrite as a radical expression and simplify if possible. Assume all variables represent nonnegative real numbers.

- (4x4y4)1/2\left(4 x^{4} y^{4}\right)^{1 / 2}

A) 2x4y22 x^{4} y^{2}
B) 2x2y2 x^{2} y
C) 2x2y22 x^{2} y^{2}
D) x2y2x^{2} y^{2}
Unlock Deck
Unlock for access to all 361 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 361 flashcards in this deck.