Deck 8: Quadratic Equations

Full screen (f)
exit full mode
Question
Solve by factoring.

- x2x42=0\mathrm{x}^{2}-\mathrm{x}-42=0

A) {7,6}\{7,6\}
B) {6,7}\{6,7\}
C) {6,7}\{-6,-7\}
D) {6,7}\{-6,7\}
Use Space or
up arrow
down arrow
to flip the card.
Question
Solve by factoring.

- x2+7x18=0x^{2}+7 x-18=0

A) {9,2}\{9,2\}
B) {2,9}\{2,9\}
C) {9,2}\{-9,2\}
D) {9,2}\{9,-2\}
Question
Solve by factoring.

- x2+10x+24=0x^{2}+10 x+24=0

A) {4,6}\{4,-6\}
B) {1,24}\{1,24\}
C) {4,6}\{4,6\}
D) {24,1}\{24,-1\}
Question
Solve by factoring.

- x2+3x=10x^{2}+3 x=10

A) {5,2}\{5,2\}
B) {5,2}\{5,-2\}
C) {5,2}\{-5,2\}
D) {2,5}\{-2,5\}
Question
Solve by factoring.

- x2+48=16xx^{2}+48=16 x

A) {4,12}\{4,12\}
B) {48,1}\{48,-1\}
C) {4,12}\{-4,-12\}
D) {1,48}\{1,48\}
Question
Solve by factoring.

- x281=0x^{2}-81=0

A) {9}\{9\}
B) {9,0,9}\{9,0,9\}
C) {9}\{9\} .
D) {9,9}\{-9,9\}
Question
Solve by factoring.

- x(x+3)+8(x+3)=0\mathrm{x}(\mathrm{x}+3)+8(\mathrm{x}+3)=0

A) {3,8}\{3,8\}
B) {3,8}\{3,-8\} .
C) {3,8}\{3,-8\}
D) {3,8}\{-3,8\}
Question
Solve by factoring.

- 15x215x+300=0-15 x^{2}-15 x+300=0

A) {4,5}\{4,5\}
B) {4,5}\{4,-5\}
C) {4,5}\{4,-5\} .
D) {4,5}\{-4,5\}
Question
Solve by extracting square roots

- x2=49x^{2}=49

A) {8,8}\{8,-8\}
B) {7,7}\{7,-7\}
C) {7}\{7\}
D) {24.5}\{24.5\}
Question
Solve by extracting square roots

- x264=0\mathrm{x}^{2}-64=0

A) {34}\{34\}
B) {8,8}\{8,-8\}
C) {7,7}\{7,-7\}
D) {8}\{8\}
Question
Solve by extracting square roots

- x2=8\mathrm{x}^{2}=8

A) {64}\{64\}
B) {8}\{\sqrt{8}\}
C) {±4}\{ \pm 4\}
D) {±22}\{ \pm 2 \sqrt{2}\}
Question
Solve by extracting square roots

- x2=24x^{2}=24

A) {±12}\{ \pm 12\}
B) {±26}\{ \pm 2 \sqrt{6}\}
C) {±62}\{ \pm 6 \sqrt{2}\}
D) {576}\{576\}
Question
Solve by extracting square roots

- x2=64x^{2}=-64

A) {±8i}\{ \pm 8 \mathrm{i}\}
B) {±64i}\{ \pm 64 \mathrm{i}\}
C) {±i}\{ \pm \mathrm{i}\}
D) {±8}\{ \pm 8\}
Question
Solve by extracting square roots

- x2+343=0x^{2}+343=0

A) {±147i}\{ \pm 14 \sqrt{7} i\}
B) {±77}\{ \pm 7 \sqrt{7}\}
C) {±77i}\{ \pm 7 \sqrt{7} i\}
D) {±7i}\{ \pm \sqrt{7} i\}
Question
Solve by extracting square roots

- (x+6)2=5(x+6)^{2}=5

A) {6±5}\{6 \pm \sqrt{5}\}
B) {6±5i}\{6 \pm \sqrt{5} i\}
C) {6±5i}\{-6 \pm \sqrt{5} i\}
D) {6±5}\{-6 \pm \sqrt{5}\}
Question
Solve by extracting square roots

- (x+16)26=0(x+16)^{2}-6=0

A) {4±6}\{4 \pm \sqrt{6}\}
B) {16±6}\{16 \pm \sqrt{6}\}
C) {16±i6}\{-16 \pm \mathrm{i} \sqrt{6}\}
D) {10,22}\{10,22\}
Question
Solve by extracting square roots

- 2(x7)2+12=522(x-7)^{2}+12=52

A) {7±25}\{7 \pm 2 \sqrt{5}\}
B) {7±25i}\{7 \pm 2 \sqrt{5} i\}
C) {7±25}\{-7 \pm 2 \sqrt{5}\}
D) {7±25i}\{-7 \pm 2 \sqrt{5} i\}
Question
Solve by extracting square roots

- (x34)2=2516\left(x-\frac{3}{4}\right)^{2}=-\frac{25}{16}

A) {3±5i4}\left\{\frac{-3 \pm 5 i}{4}\right\}

B) {3±5i16}\left\{\frac{-3 \pm 5 i}{16}\right\}

C) {3±5i16}\left\{\frac{3 \pm 5 \mathrm{i}}{16}\right\}

D) {3±5i4}\left\{\frac{3 \pm 5 \mathrm{i}}{4}\right\}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+8xx^{2}+8 x

A) 0;(x+4)20 ;(x+4)^{2}
B) 16;(x+4)216 ;(x+4)^{2}
C) 64;(x+8)264 ;(x+8)^{2}
D) 16;(x4)216 ;(x-4)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+12xx^{2}+12 x

A) 36;(x+6)236 ;(x+6)^{2}
B) 0 ; (x+6)2(x+6)^{2}
C) 144;(x+12)2144 ;(x+12)^{2}
D) 36;(x6)236 ;(x-6)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x22xx^{2}-2 x

A) 1;(x+1)21 ;(x+1)^{2}
B) 1;(x2)21 ;(x-2)^{2}
C) 0;(x1)20 ;(x-1)^{2}
D) 1;(x1,)21 ;(x-1,)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x216xx^{2}-16 x

A) 64;(x+8)264 ;(x+8)^{2}
B) 64;(x16)264 ;(x-16)^{2}
C) 0 ; (x8)2(x-8)^{2}
D) 64;(x8)264 ;(x-8)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+3xx^{2}+3 x

A) 0;(x+3)20 ;(x+3)^{2}
B) 94;(x+32)2\frac{9}{4} ;\left(x+\frac{3}{2}\right)^{2}
C) 94;(x32)2\frac{9}{4} ;\left(x-\frac{3}{2}\right)^{2}
D) 0 ; (x+32)2\left(x+\frac{3}{2}\right)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x23xx^{2}-3 x

A) 0;(x32)20 ;\left(x-\frac{3}{2}\right)^{2}

B) 94;(x32)2\frac{9}{4} ;\left(x-\frac{3}{2}\right)^{2}

C) 94;(x+32)2\frac{9}{4} ;\left(x+\frac{3}{2}\right)^{2}

D) 9;(x3)29 ;(x-3)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x223xx^{2}-\frac{2}{3} x

A) 19;(x+13)2\frac{1}{9} ;\left(x+\frac{1}{3}\right)^{2}

B) 23x;(x13)2-\frac{2}{3} x ;\left(x-\frac{1}{3}\right)^{2}

C) 9;(x13)29 ;\left(x-\frac{1}{3}\right)^{2}

D) 19;(x13)2\frac{1}{9} ;\left(x-\frac{1}{3}\right)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+25xx^{2}+\frac{2}{5} x

A) 125;(x+15)2\frac{1}{25} ;\left(x+\frac{1}{5}\right)^{2}

B) 125;(x15)2\frac{1}{25} ;\left(x-\frac{1}{5}\right)^{2}

C) 25;(x+15)225 ;\left(x+\frac{1}{5}\right)^{2}

D) 0 ; (x15)2\left(x-\frac{1}{5}\right)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x252xx^{2}-\frac{5}{2} x

A) 254;(x54)2\frac{25}{4} ;\left(x-\frac{5}{4}\right)^{2}

B) 2516;(x+54)2\frac{25}{16} ;\left(x+\frac{5}{4}\right)^{2}

C) 2516;(x54)2\frac{25}{16} ;\left(x-\frac{5}{4}\right)^{2}

D) 0 ; (x54)2\left(x-\frac{5}{4}\right)^{2}
Question
Approximate to the nearest tenth when necessary.

-The area of a square is 100 square centimeters. Find the length of a side of the square.

A) 25 cm25 \mathrm{~cm}
B) 50 cm50 \mathrm{~cm}
C) 10 cm10 \mathrm{~cm}
D) 20 cm20 \mathrm{~cm}
Question
Approximate to the nearest tenth when necessary.

-The area of a square is 185 square meters. Find the length of a side of the square.

A) 13.6 m13.6 \mathrm{~m}
B) 46.3 m46.3 \mathrm{~m}
C) 19.2 m19.2 \mathrm{~m}
D) 92.5 m92.5 \mathrm{~m}
Question
Approximate to the nearest tenth when necessary.

-The area of a circle is 90 square meters. Find the radius of the circle.

A) 9.5 m9.5 \mathrm{~m}
B) 5.4 m5.4 \mathrm{~m}
C) 16.8 m16.8 \mathrm{~m}
D) 28.6 m28.6 \mathrm{~m}
Question
Approximate to the nearest tenth when necessary.

-The area of a circle is 47π47 \pi square inches. Find the radius of the circle.

A) 12.2in12.2 \mathrm{in} .
B) 6.9in6.9 \mathrm{in} .
C) 47in47 \mathrm{in} .
D) 3.9in3.9 \mathrm{in} .
Question
Approximate to the nearest tenth when necessary.

-The area of a circle is 169π169 \pi square inches. Find the radius of the circle.

A) 23 in.
B) 169in.169 \mathrm{in.}
C) 13 in.
D) 40.8in40.8 \mathrm{in} .
Question
Approximate to the nearest tenth when necessary.

-The distance dd , in feet, that a free- falling object falls in tt seconds is given by the formula d=16t2d=16 t^{2} . Find the time that it takes for an object to fall 96 feet.

A) 2.7 seconds
B) 2.4 seconds
C) 39.4 seoonds
D) 39.2 seconds
Question
Approximate to the nearest tenth when necessary.

-The velocity v\mathrm{v} , in ft/s\mathrm{ft} / \mathrm{s} , of a free falling object after t\mathrm{t} seconds is given by the formula v 32t32 \mathrm{t} until the object reaches terminal velocity. The terminal velocity Vt\mathrm{V}_{\mathrm{t}} of a free-falling object is the highest velocity that the object can attain, and it depends on the mass of the object as well as its projected area. The distance dd , in feet, that a free-falling object falls in tt seconds is given by the formula de=16t2\mathrm{d} e=16 \mathrm{t}^{2} until it reaches terminal velocity. After that occurs, the distance that it falls is found by multiplying the terminal velocity Vt\mathrm{V}_{\mathrm{t}} by the amount of time after it reaches terminal velocity. Find the distance that a parachutist travels in t=45\mathrm{t}=45 seconds if she has the given terminal velocity Vt=16ft/s\mathrm{V}_{\mathrm{t}}=16 \mathrm{ft} / \mathrm{s} .

A) 512 feet
B) 716 feet
C) 720 feet
D) 480 feet
Question
The Hardy- Weinberg principle that states if pp is the frequency of the dominant allele AA in a gene pool and qq is the frequency of the recessive allele aa in the gene pool, then p+q=1p+q=1 and p2+2pq+q2=1\mathrm{p}^{2}+2 \mathrm{pq}+\mathrm{q}^{2}=1 .
*Portion of the population that is homozygous dominant (AA): p2\mathrm{p}^{2}
*Portion of the population that is heterozygous dominant (Aa): 2pq
*Portion of the population that is homozygous recessive (aa): q2\mathrm{q}^{2}
Sickle-cell anemia is a recessive genetic condition, meaning that a person only has the disease if both alleles are recessive. If 0.35%0.35 \% of a population has sickle- cell anemia, what percentage of the population is homozygous dominant and what percentage is heterozygous dominant? Round q\mathrm{q} and p\mathrm{p} to the nearest thousandth, and round percentages to the nearest tenth of a perœent.

A) homozygous dominant: 86.2%86.2 \% , heterozygous dominant: 12.8%12.8 \%
B) homozygous dominant: 94.1%94.1 \% , heterozygous dominant: 5.9%5.9 \%
C) homozygous dominant: 94.5\%, heterozygous dominant: 5.5%5.5 \%
D) homozygous dominant: 88.5\%, heterozygous dominant: 11.1%11.1 \%
Question
Solve the equation by completing the square

- x24x5=0\mathrm{x}^{2}-4 \mathrm{x}-5=0

A) {±5}\{ \pm \sqrt{-5}\}
B) {5,1}\{5,-1\}
C) {4,1}\{-4,-1\}
D) {5,1}\{-5,1\}
Question
Solve the equation by completing the square

- x2+4x+68=0x^{2}+4 x+68=0

A) {6,10}\{6,-10\}
B) {2±8i}\{2 \pm 8 \mathrm{i}\}
C) {2±217i}\{2 \pm 2 \sqrt{17} i\}
D) {2±8i}\{2 \pm 8 \mathrm{i}\} .
Question
Solve the equation by completing the square

- x212x+17=0x^{2}-12 x+17=0

A) {6±19}\{-6 \pm \sqrt{19}\}

B) {6±19}\{6 \pm \sqrt{19}\} .

C) {12+17}\{12+\sqrt{17}\}

D) {6±17}\{6 \pm \sqrt{17}\}
Question
Solve the equation by completing the square

- x2+3x=40x^{2}+3 x=40

A) {8,5}\{8,5\}
B) {8,5}\{-8,-5\}
C) {8,5}\{-8,5\} .
D) {5,8}\{-5,8\}
Question
Solve the equation by completing the square

- x2+90=19x\mathrm{x}^{2}+90=19 \mathrm{x}

A) {9,10}\{-9,-10\}
B) {90,1}\{-90,-1\}
C) {9,10}\{9,10\}
D) {1,90}\{1,90\}
Question
Solve the equation by completing the square

- x2+5x5=0\mathrm{x}^{2}+5 \mathrm{x}-5=0

A) {5352}\left\{\frac{-5-3 \sqrt{5}}{2}\right\}

B) {5±352}\left\{\frac{-5 \pm 3 \sqrt{5}}{2}\right\}

C) {5+352}\left\{\frac{5+3 \sqrt{5}}{2}\right\}

D) {5±35}\{-5 \pm 3 \sqrt{5}\}
Question
Solve the equation by completing the square

- x2+4x=3\mathrm{x}^{2}+4 \mathrm{x}=3

A) {2±27}\{-2 \pm 2 \sqrt{7}\}
B) {2+7}\{2+\sqrt{7}\}
C) {2±7}\{-2 \pm \sqrt{7}\}
D) {1±7}\{-1 \pm \sqrt{7}\}
Question
Find a quadratic equation with integer coefficients that has the given solution set.

- {8,5}\{8,-5\}

A) x240x3=0x^{2}-40 x-3=0
B) x2+3x40=0x^{2}+3 x-40=0
C) x23x40=0x^{2}-3 x-40=0
D) x240x+3=0x^{2}-40 x+3=0
Question
Find a quadratic equation with integer coefficients that has the given solution set.

- {0,2}\{0,2\}

A) x24=0x^{2}-4=0
B) x2+2x=0x^{2}+2 x=0
C) x22x=0x^{2}-2 x=0
D) x2+2x+4=0x^{2}+2 x+4=0
Question
Find a quadratic equation with integer coefficients that has the given solution set.

- {23,92}\left\{-\frac{2}{3}, \frac{9}{2}\right\}

A) 6x2+23x18=06 x^{2}+23 x-18=0
B) 6x218x+6=06 x^{2}-18 x+6=0
C) 6x2+6x18=06 x^{2}+6 x-18=0
D) 6x223x18=06 x^{2}-23 x-18=0
Question
Find a quadratic equation with integer coefficients that has the given solution set.

- {6,6}\{6,-6\}

A) x212x+36=0x^{2}-12 x+36=0
B) x2+36=0x^{2}+36=0
C) x2+12x+36=0x^{2}+12 x+36=0
D) x236=0x^{2}-36=0
Question
Find a quadratic equation with integer coefficients that has the given solution set.

- {8i,8i}\{8 \mathrm{i},-8 \mathrm{i}\}

A) x264=0x^{2}-64=0
B) x2+64=0x^{2}+64=0
C) x2+64i=0x^{2}+64 i=0
D) x216ix+64=0x^{2}-16 i x+64=0
Question
Solve by using the quadratic formula

- x2x56=0\mathrm{x}^{2}-\mathrm{x}-56=0

A) {7,8}\{7,8\}
B) {8,7}\{-8,7\}
C) {7,8}\{-7,-8\}
D) {7,8}\{-7,8\}
Question
Solve by using the quadratic formula

- x2+2x48=0x^{2}+2 x-48=0

A) {8,6}\{-8,-6\}
B) {8,6}\{-8,6\}
C) {6,8}\{-6,8\}
D) {8,6}\{8,6\} .
Question
Solve by using the quadratic formula

- x2+21x+110=0x^{2}+21 x+110=0

A) {10,11}\{-10,-11\}
B) {10,11}\{10,11\}
C) {110,1}\{-110,-1\}
D) {1,110}\{1,110\}
Question
Solve by using the quadratic formula

- x2+x+6=0x^{2}+x+6=0

A) {1±232}\left\{\frac{-1 \pm \sqrt{23}}{2}\right\}

B) {1±23i2}\left\{\frac{1 \pm \sqrt{23} \mathrm{i}}{2}\right\}

C) {1±23i2}\left\{\frac{-1 \pm \sqrt{23} \mathrm{i}}{2}\right\}

D) {1±232}\left\{\frac{1 \pm \sqrt{23}}{2}\right\}
Question
Solve by using the quadratic formula

- x225=0\mathrm{x}^{2}-25=0

A) {5}\{-5\}
B) {5,0,5}\{-5,0,5\}
C) {5}\{5\}
D) {5,5}\{-5,5\}
Question
Solve by using the quadratic formula

- x2+72=18xx^{2}+72=18 x

A) {12,6}\{12,6\}
B) {12,6}\{-12,-6\}
C) {72,1}\{-72,-1\}
D) {1,72}\{1,72\}
Question
Solve by using the quadratic formula

- x224=0x^{2}-24=0

A) {±12}\{ \pm 12\}
B) {±62}\{\pm6 \sqrt{2}\}
C) {±26}\{ \pm 2 \sqrt{6}\}
D) {576}\{576\}
Question
Solve by using the quadratic formula

- 6x23x9=06 x^{2}-3 x-9=0

A) {23,1}\left\{\frac{2}{3}, 1\right\}

B) {23,1}\left\{\frac{2}{3},-1\right\}

C) {23,0}\left\{\frac{2}{3}, 0\right\}

D) {32,1}\left\{\frac{3}{2},-1\right\}
Question
Solve by using the quadratic formula

- x243x+76=0x^{2}-\frac{4}{3} x+\frac{7}{6}=0

A) {0,78i}\left\{0,-\frac{7}{8} \mathrm{i}\right\}

B) {43i,0}\left\{\frac{4}{3} \mathrm{i}, 0\right\}

C) {4±26i6}\left\{\frac{-4 \pm \sqrt{26} \mathrm{i}}{6}\right\}

D) {4±26i6}\left\{\frac{4 \pm \sqrt{26} i}{6}\right\}
Question
Solve by using the quadratic formula

- 2x2+10x=42 x^{2}+10 x=-4

A) {10±172}\left\{\frac{-10 \pm \sqrt{17}}{2}\right\}

B) {5±332}\left\{\frac{-5 \pm \sqrt{33}}{2}\right\}

C) {5±172}\left\{\frac{-5 \pm \sqrt{17}}{2}\right\}

D) {5±174}\left\{\frac{-5 \pm \sqrt{17}}{4}\right\}
Question
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x26x+5=0x^{2}-6 x+5=0

A) One real
B) Two nonreal complex
C) Two real
Question
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x2+4x+7=0x^{2}+4 x+7=0

A) Two nonreal complex
B) One real
C) Two real
Question
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- 7z2+7z+4=07 z^{2}+7 z+4=0

A) Two real
B) One real
C) Two nonreal complex
Question
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x2+6x+9=0x^{2}+6 x+9=0

A) One real
B) Two nonreal complex
C) Two real
Question
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x2+2x5=0x^{2}+2 x-5=0

A) Two nonreal complex
B) One real
C) Two real
Question
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- 4x2+8x+4=04 x^{2}+8 x+4=0

A) Onereal
B) Two nonreal complex
C) Two real
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- x2+x+9=0x^{2}+x+9=0

A) {1±352}\left\{\frac{-1 \pm \sqrt{35}}{2}\right\}

B) {1±35i2}\left\{\frac{-1 \pm \sqrt{35} \mathrm{i}}{2}\right\}

C) {1±352}\left\{\frac{1 \pm \sqrt{35}}{2}\right\}

D) {1±35i2}\left\{\frac{1 \pm \sqrt{35} i}{2}\right\}
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- 6x2+6x+1=06 x^{2}+6 x+1=0

A) {3±36}\left\{\frac{-3 \pm \sqrt{3}}{6}\right\}

B) {3±156}\left\{\frac{-3 \pm \sqrt{15}}{6}\right\}

C) {3±312}\left\{\frac{-3 \pm \sqrt{3}}{12}\right\}

D) {6±36}\left\{\frac{-6 \pm \sqrt{3}}{6}\right\}
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- x2+5x84=0x^{2}+5 x-84=0

A) {12,7}\{12,7\} .
B) {12,1}\{-12,1\}
C) {12,7}\{12,-7\}
D) {12,7}\{-12,7\}
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- (6x+9)2=16(6 \mathrm{x}+9)^{2}=16

A) {56,0}\left\{-\frac{5}{6}, 0\right\}

B) {56,136}\left\{\frac{5}{6}, \frac{13}{6}\right\}

C) {56,136}\left\{-\frac{5}{6},-\frac{13}{6}\right\}

D) {76}\left\{\frac{7}{6}\right\}
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- 6x23x9=06 x^{2}-3 x-9=0

A) {23,1}\left\{\frac{2}{3}, 1\right\}

B) {23,0}\left\{\frac{2}{3}, 0\right\}

C) {23,1}\left\{\frac{2}{3},-1\right\}

D) {32,1}\left\{\frac{3}{2},-1\right\}
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- (4x+1)2=17(4 \mathrm{x}+1)^{2}=17

A) {±164}\left\{\frac{ \pm \sqrt{16}}{4}\right\}

B) {±17+14}\left\{\frac{ \pm \sqrt{17}+1}{4}\right\}

C) {1±174}\left\{\frac{-1 \pm \sqrt{17}}{4}\right\}

D) {1±17}\{-1 \pm \sqrt{17}\}
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- x214x+65=0\mathrm{x}^{2}-14 \mathrm{x}+65=0

A) {7±4i}\{7 \pm 4 i\}
B) {11,3}\{11,3\}
C) {14±8i}\{14 \pm 8 \mathrm{i}\}
D) {7±4i}\{7 \pm 4 \mathrm{i}\}
Question
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- 34x2+12x+112=0\frac{3}{4} x^{2}+\frac{1}{2} x+\frac{1}{12}=0

A) {1+23,123}\left\{\frac{-1+\sqrt{2}}{3}, \frac{-1-\sqrt{2}}{3}\right\}

B) {13,13}\left\{\frac{1}{3},-\frac{1}{3}\right\}

C) {13}\left\{\frac{1}{3}\right\}

D) {13}\left\{-\frac{1}{3}\right\}
Question
Round your answer to the nearest tenth, when appropriate.


-A ball is thrown downward from a window in a tall building. Its position at time tt in seconds is given by h(t)=16t2+32th(t)=16 t^{2}+32 t , where ss is in feet. How long will it take the ball to fall 94 feet?

A) 1.4sec1.4 \mathrm{sec}
B) 1.6sec1.6 \mathrm{sec}
C) 2.6sec2.6 \mathrm{sec}
D) 2.4sec2.4 \mathrm{sec}
Question
Round your answer to the nearest tenth, when appropriate.


-A toy rocket is shot vertically upward from the ground. Its distanœe in feet from the ground in tt seconds is given by h(t)=16t2+133th(t)=-16 t^{2}+133 t . At what time or times will the ball be 146 feet from the ground?

A) 8.3sec8.3 \mathrm{sec}
B) 129.1sec,136.9sec129.1 \mathrm{sec}, 136.9 \mathrm{sec}
C) 1.3sec,7sec1.3 \mathrm{sec}, 7 \mathrm{sec}
D) 4.2sec4.2 \mathrm{sec}
Question
Use the table below for values of cos(θ)\cos (\theta) and sin(θ)\sin (\theta) .
θ( degrees )cos(θ)sin(θ)100.9850.174200.9400.342300.8660.500400.7660.643450.7070.707500.6430.766600.5000.866700.3420.940800.1740.985\begin{array}{|c|c|c|}\hline \theta(\text { degrees }) & \cos (\boldsymbol{\theta}) & \sin (\boldsymbol{\theta}) \\\hline 10 & 0.985 & 0.174 \\\hline 20 & 0.940 & 0.342 \\\hline 30 & 0.866 & 0.500 \\\hline 40 & 0.766 & 0.643 \\\hline 45 & 0.707 & 0.707 \\\hline 50 & 0.643 & 0.766 \\\hline 60 & 0.500 & 0.866 \\\hline 70 & 0.342 & 0.940 \\\hline 80 & 0.174 & 0.985 \\\hline\end{array}

A projectile is launched with an initial velocity of 500ft/s500 \mathrm{ft} / \mathrm{s} at an angle of 4545^{\circ} above the horizontal, from the roof of a building 92 feet above the ground.
A. How long will it take for the projectile to land on the ground? Round to the nearest hundredth of a second.
B. How far did the projectile travel horizontally before landing on the ground?

A) a) 15.98 seconds, b) 7901 feet
B) a) 15.98 seconds, b) 5588 feet
C) a) 22.35 seconds, b) 5588 feet
D) a) 22.35 seconds, b) 7901 feet
Question
Use the table below for values of cos(θ)\cos (\theta) and sin(θ)\sin (\theta) .
θ( degrees )cos(θ)sin(θ)100.9850.174200.9400.342300.8660.500400.7660.643450.7070.707500.6430.766600.5000.866700.3420.940800.1740.985\begin{array}{|c|l|l|}\hline \theta(\text { degrees }) & \cos (\boldsymbol{\theta}) & \sin (\boldsymbol{\theta}) \\\hline 10 & 0.985 & 0.174 \\\hline 20 & 0.940 & 0.342 \\\hline 30 & 0.866 & 0.500 \\\hline 40 & 0.766 & 0.643 \\\hline 45 & 0.707 & 0.707 \\\hline 50 & 0.643 & 0.766 \\\hline 60 & 0.500 & 0.866 \\\hline 70 & 0.342 & 0.940 \\\hline 80 & 0.174 & 0.985 \\\hline\end{array}

A projectile is launched with an initial velocity of 150ft/s150 \mathrm{ft} / \mathrm{s} from a height of 30 feet above the ground.
a) Complete the table by filling in the time required for the projectile to land. Round to the nearest hundredth of a second.
θ (degrees)  Time (s)10305070\begin{array}{|l|l|}\hline \boldsymbol{\theta} \text { (degrees) } & \text { Time }(s) \\\hline 10 & \\\hline 30 & \\\hline 50 & \\\hline 70 & \\\hline\end{array}

b) What launch angle gives the projectile the longest time in the air?
c) Complete the table by filling in the distance traveled horizontally by the projectile. Use the times found in part a. Round to the nearest hundredth of a foot.
θ (degrees)  Distance ( ft )\begin{array}{|l|l|}\hline \boldsymbol{\theta} \text { (degrees) } & \text { Distance }(\text { ft }) \\\hline\end{array}

d) What launch angle gives the greatest horizontal distance?

A)
a)
θ (degrees)  Time (s)103.72306.19508.93709.41\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 3.72 \\\hline 30 & 6.19 \\\hline 50 & 8.93 \\\hline 70 & 9.41 \\\hline\end{array}
b) 7070^\circ
c)
θ (degrees)  Distance (ft)10411.8730698.6350571.0870493.77\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 411.87 \\\hline 30 & 698.63 \\\hline 50 & 571.08 \\\hline 70 & 493.77\\\hline \end{array}
d) 3030^\circ

B)
a) θ (degrees)  Time (s)1010.86308.64507.43705.83\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 10.86 \\\hline 30 & 8.64 \\\hline 50 & 7.43 \\\hline 70 & 5.83 \\\hline\end{array}
b) 1010^\circ
c)
θ (degrees)  Distance (ft)10676.5530732.7150786.6270825.83\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 676.55 \\\hline 30 & 732.71 \\\hline 50 & 786.62 \\\hline 70 & 825.83 \\\hline\end{array}
d) 7070^\circ

C)
a)
θ (degrees)  Time (s)101.68303.81503.96701.95\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 1.68 \\\hline 30 & 3.81 \\\hline 50 & 3.96 \\\hline 70 & 1.95\\\hline\end{array}
b) 5050^\circ
c)
θ (degrees)  Distance (ft)10683.0730521.6550519.9670417.38\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 683.07 \\\hline 30 & 521.65 \\\hline 50 & 519.96 \\\hline 70 & 417.38 \\\hline\end{array}
d) 1010^\circ

D)
a)
θ (degrees)  Time (s)102.41305.06507.43709.02\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 2.41 \\\hline 30 & 5.06 \\\hline 50 & 7.43 \\\hline 70 & 9.02 \\\hline\end{array}
b) 7070^\circ
c)
θ (degrees)  Distance (ft)10356.0830657.2950716.6270462.73\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 356.08 \\\hline 30 & 657.29 \\\hline 50 & 716.62 \\\hline 70 & 462.73 \\\hline\end{array}
d) 50circ50^circ
Question
Solve by making a u-substitution

- x46x2+8=0x^{4}-6 x^{2}+8=0

A) {2,2}\{2, \sqrt{2}\}
B) {±2,±22}\{ \pm 2, \pm 2 \sqrt{2}\}
C) {±2,±2}\{ \pm 2, \pm 2\}
D) {±2,±2}\{ \pm 2, \pm \sqrt{2}\}
Question
Solve by making a u-substitution

- x433x2+32=0x^{4}-33 x^{2}+32=0

A) {±1,±42}\{ \pm 1, \pm 4 \sqrt{2}\}
B) {±2,±4}\{ \pm 2, \pm 4\}
C) {±1,±43}\{ \pm 1, \pm 4 \sqrt{3}\}
D) {±1,±2}\{ \pm 1, \pm \sqrt{2}\}
Question
Solve by making a u-substitution

- x11x+30=0\mathrm{x}-11 \sqrt{\mathrm{x}}+30=0

A) {5,6}\{-5,6\}
B) {5,6}\{5,6\} .
C) {25,36}\{25,36\}
D) {25,36}\{-25,36\} .
Question
Solve by making a u-substitution

- x13x1/2+42=0\mathrm{x}-13 \mathrm{x}^{1 / 2}+42=0

A) {36,49}\{36,49\}
B) {36,49}\{-36,49\} .
C) {6,7}\{6,7\}
D) {6,7}\{-6,7\} .
Question
Solve by making a u-substitution

- x6+26x327=0x^{6}+26 x^{3}-27=0

A) {3,1}\{-3,1\} .
B) {3,1}\{-3,-1\}
C) {3,1}\{3,-1\} .
D) {3,1}\{3,1\}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/270
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Quadratic Equations
1
Solve by factoring.

- x2x42=0\mathrm{x}^{2}-\mathrm{x}-42=0

A) {7,6}\{7,6\}
B) {6,7}\{6,7\}
C) {6,7}\{-6,-7\}
D) {6,7}\{-6,7\}
{6,7}\{-6,7\}
2
Solve by factoring.

- x2+7x18=0x^{2}+7 x-18=0

A) {9,2}\{9,2\}
B) {2,9}\{2,9\}
C) {9,2}\{-9,2\}
D) {9,2}\{9,-2\}
{9,2}\{-9,2\}
3
Solve by factoring.

- x2+10x+24=0x^{2}+10 x+24=0

A) {4,6}\{4,-6\}
B) {1,24}\{1,24\}
C) {4,6}\{4,6\}
D) {24,1}\{24,-1\}
{4,6}\{4,-6\}
4
Solve by factoring.

- x2+3x=10x^{2}+3 x=10

A) {5,2}\{5,2\}
B) {5,2}\{5,-2\}
C) {5,2}\{-5,2\}
D) {2,5}\{-2,5\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
5
Solve by factoring.

- x2+48=16xx^{2}+48=16 x

A) {4,12}\{4,12\}
B) {48,1}\{48,-1\}
C) {4,12}\{-4,-12\}
D) {1,48}\{1,48\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
6
Solve by factoring.

- x281=0x^{2}-81=0

A) {9}\{9\}
B) {9,0,9}\{9,0,9\}
C) {9}\{9\} .
D) {9,9}\{-9,9\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
7
Solve by factoring.

- x(x+3)+8(x+3)=0\mathrm{x}(\mathrm{x}+3)+8(\mathrm{x}+3)=0

A) {3,8}\{3,8\}
B) {3,8}\{3,-8\} .
C) {3,8}\{3,-8\}
D) {3,8}\{-3,8\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
8
Solve by factoring.

- 15x215x+300=0-15 x^{2}-15 x+300=0

A) {4,5}\{4,5\}
B) {4,5}\{4,-5\}
C) {4,5}\{4,-5\} .
D) {4,5}\{-4,5\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
9
Solve by extracting square roots

- x2=49x^{2}=49

A) {8,8}\{8,-8\}
B) {7,7}\{7,-7\}
C) {7}\{7\}
D) {24.5}\{24.5\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
10
Solve by extracting square roots

- x264=0\mathrm{x}^{2}-64=0

A) {34}\{34\}
B) {8,8}\{8,-8\}
C) {7,7}\{7,-7\}
D) {8}\{8\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
11
Solve by extracting square roots

- x2=8\mathrm{x}^{2}=8

A) {64}\{64\}
B) {8}\{\sqrt{8}\}
C) {±4}\{ \pm 4\}
D) {±22}\{ \pm 2 \sqrt{2}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
12
Solve by extracting square roots

- x2=24x^{2}=24

A) {±12}\{ \pm 12\}
B) {±26}\{ \pm 2 \sqrt{6}\}
C) {±62}\{ \pm 6 \sqrt{2}\}
D) {576}\{576\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
13
Solve by extracting square roots

- x2=64x^{2}=-64

A) {±8i}\{ \pm 8 \mathrm{i}\}
B) {±64i}\{ \pm 64 \mathrm{i}\}
C) {±i}\{ \pm \mathrm{i}\}
D) {±8}\{ \pm 8\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
14
Solve by extracting square roots

- x2+343=0x^{2}+343=0

A) {±147i}\{ \pm 14 \sqrt{7} i\}
B) {±77}\{ \pm 7 \sqrt{7}\}
C) {±77i}\{ \pm 7 \sqrt{7} i\}
D) {±7i}\{ \pm \sqrt{7} i\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
15
Solve by extracting square roots

- (x+6)2=5(x+6)^{2}=5

A) {6±5}\{6 \pm \sqrt{5}\}
B) {6±5i}\{6 \pm \sqrt{5} i\}
C) {6±5i}\{-6 \pm \sqrt{5} i\}
D) {6±5}\{-6 \pm \sqrt{5}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
16
Solve by extracting square roots

- (x+16)26=0(x+16)^{2}-6=0

A) {4±6}\{4 \pm \sqrt{6}\}
B) {16±6}\{16 \pm \sqrt{6}\}
C) {16±i6}\{-16 \pm \mathrm{i} \sqrt{6}\}
D) {10,22}\{10,22\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
17
Solve by extracting square roots

- 2(x7)2+12=522(x-7)^{2}+12=52

A) {7±25}\{7 \pm 2 \sqrt{5}\}
B) {7±25i}\{7 \pm 2 \sqrt{5} i\}
C) {7±25}\{-7 \pm 2 \sqrt{5}\}
D) {7±25i}\{-7 \pm 2 \sqrt{5} i\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
18
Solve by extracting square roots

- (x34)2=2516\left(x-\frac{3}{4}\right)^{2}=-\frac{25}{16}

A) {3±5i4}\left\{\frac{-3 \pm 5 i}{4}\right\}

B) {3±5i16}\left\{\frac{-3 \pm 5 i}{16}\right\}

C) {3±5i16}\left\{\frac{3 \pm 5 \mathrm{i}}{16}\right\}

D) {3±5i4}\left\{\frac{3 \pm 5 \mathrm{i}}{4}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
19
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+8xx^{2}+8 x

A) 0;(x+4)20 ;(x+4)^{2}
B) 16;(x+4)216 ;(x+4)^{2}
C) 64;(x+8)264 ;(x+8)^{2}
D) 16;(x4)216 ;(x-4)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
20
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+12xx^{2}+12 x

A) 36;(x+6)236 ;(x+6)^{2}
B) 0 ; (x+6)2(x+6)^{2}
C) 144;(x+12)2144 ;(x+12)^{2}
D) 36;(x6)236 ;(x-6)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
21
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x22xx^{2}-2 x

A) 1;(x+1)21 ;(x+1)^{2}
B) 1;(x2)21 ;(x-2)^{2}
C) 0;(x1)20 ;(x-1)^{2}
D) 1;(x1,)21 ;(x-1,)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
22
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x216xx^{2}-16 x

A) 64;(x+8)264 ;(x+8)^{2}
B) 64;(x16)264 ;(x-16)^{2}
C) 0 ; (x8)2(x-8)^{2}
D) 64;(x8)264 ;(x-8)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
23
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+3xx^{2}+3 x

A) 0;(x+3)20 ;(x+3)^{2}
B) 94;(x+32)2\frac{9}{4} ;\left(x+\frac{3}{2}\right)^{2}
C) 94;(x32)2\frac{9}{4} ;\left(x-\frac{3}{2}\right)^{2}
D) 0 ; (x+32)2\left(x+\frac{3}{2}\right)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
24
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x23xx^{2}-3 x

A) 0;(x32)20 ;\left(x-\frac{3}{2}\right)^{2}

B) 94;(x32)2\frac{9}{4} ;\left(x-\frac{3}{2}\right)^{2}

C) 94;(x+32)2\frac{9}{4} ;\left(x+\frac{3}{2}\right)^{2}

D) 9;(x3)29 ;(x-3)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
25
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x223xx^{2}-\frac{2}{3} x

A) 19;(x+13)2\frac{1}{9} ;\left(x+\frac{1}{3}\right)^{2}

B) 23x;(x13)2-\frac{2}{3} x ;\left(x-\frac{1}{3}\right)^{2}

C) 9;(x13)29 ;\left(x-\frac{1}{3}\right)^{2}

D) 19;(x13)2\frac{1}{9} ;\left(x-\frac{1}{3}\right)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
26
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+25xx^{2}+\frac{2}{5} x

A) 125;(x+15)2\frac{1}{25} ;\left(x+\frac{1}{5}\right)^{2}

B) 125;(x15)2\frac{1}{25} ;\left(x-\frac{1}{5}\right)^{2}

C) 25;(x+15)225 ;\left(x+\frac{1}{5}\right)^{2}

D) 0 ; (x15)2\left(x-\frac{1}{5}\right)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
27
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x252xx^{2}-\frac{5}{2} x

A) 254;(x54)2\frac{25}{4} ;\left(x-\frac{5}{4}\right)^{2}

B) 2516;(x+54)2\frac{25}{16} ;\left(x+\frac{5}{4}\right)^{2}

C) 2516;(x54)2\frac{25}{16} ;\left(x-\frac{5}{4}\right)^{2}

D) 0 ; (x54)2\left(x-\frac{5}{4}\right)^{2}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
28
Approximate to the nearest tenth when necessary.

-The area of a square is 100 square centimeters. Find the length of a side of the square.

A) 25 cm25 \mathrm{~cm}
B) 50 cm50 \mathrm{~cm}
C) 10 cm10 \mathrm{~cm}
D) 20 cm20 \mathrm{~cm}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
29
Approximate to the nearest tenth when necessary.

-The area of a square is 185 square meters. Find the length of a side of the square.

A) 13.6 m13.6 \mathrm{~m}
B) 46.3 m46.3 \mathrm{~m}
C) 19.2 m19.2 \mathrm{~m}
D) 92.5 m92.5 \mathrm{~m}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
30
Approximate to the nearest tenth when necessary.

-The area of a circle is 90 square meters. Find the radius of the circle.

A) 9.5 m9.5 \mathrm{~m}
B) 5.4 m5.4 \mathrm{~m}
C) 16.8 m16.8 \mathrm{~m}
D) 28.6 m28.6 \mathrm{~m}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
31
Approximate to the nearest tenth when necessary.

-The area of a circle is 47π47 \pi square inches. Find the radius of the circle.

A) 12.2in12.2 \mathrm{in} .
B) 6.9in6.9 \mathrm{in} .
C) 47in47 \mathrm{in} .
D) 3.9in3.9 \mathrm{in} .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
32
Approximate to the nearest tenth when necessary.

-The area of a circle is 169π169 \pi square inches. Find the radius of the circle.

A) 23 in.
B) 169in.169 \mathrm{in.}
C) 13 in.
D) 40.8in40.8 \mathrm{in} .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
33
Approximate to the nearest tenth when necessary.

-The distance dd , in feet, that a free- falling object falls in tt seconds is given by the formula d=16t2d=16 t^{2} . Find the time that it takes for an object to fall 96 feet.

A) 2.7 seconds
B) 2.4 seconds
C) 39.4 seoonds
D) 39.2 seconds
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
34
Approximate to the nearest tenth when necessary.

-The velocity v\mathrm{v} , in ft/s\mathrm{ft} / \mathrm{s} , of a free falling object after t\mathrm{t} seconds is given by the formula v 32t32 \mathrm{t} until the object reaches terminal velocity. The terminal velocity Vt\mathrm{V}_{\mathrm{t}} of a free-falling object is the highest velocity that the object can attain, and it depends on the mass of the object as well as its projected area. The distance dd , in feet, that a free-falling object falls in tt seconds is given by the formula de=16t2\mathrm{d} e=16 \mathrm{t}^{2} until it reaches terminal velocity. After that occurs, the distance that it falls is found by multiplying the terminal velocity Vt\mathrm{V}_{\mathrm{t}} by the amount of time after it reaches terminal velocity. Find the distance that a parachutist travels in t=45\mathrm{t}=45 seconds if she has the given terminal velocity Vt=16ft/s\mathrm{V}_{\mathrm{t}}=16 \mathrm{ft} / \mathrm{s} .

A) 512 feet
B) 716 feet
C) 720 feet
D) 480 feet
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
35
The Hardy- Weinberg principle that states if pp is the frequency of the dominant allele AA in a gene pool and qq is the frequency of the recessive allele aa in the gene pool, then p+q=1p+q=1 and p2+2pq+q2=1\mathrm{p}^{2}+2 \mathrm{pq}+\mathrm{q}^{2}=1 .
*Portion of the population that is homozygous dominant (AA): p2\mathrm{p}^{2}
*Portion of the population that is heterozygous dominant (Aa): 2pq
*Portion of the population that is homozygous recessive (aa): q2\mathrm{q}^{2}
Sickle-cell anemia is a recessive genetic condition, meaning that a person only has the disease if both alleles are recessive. If 0.35%0.35 \% of a population has sickle- cell anemia, what percentage of the population is homozygous dominant and what percentage is heterozygous dominant? Round q\mathrm{q} and p\mathrm{p} to the nearest thousandth, and round percentages to the nearest tenth of a perœent.

A) homozygous dominant: 86.2%86.2 \% , heterozygous dominant: 12.8%12.8 \%
B) homozygous dominant: 94.1%94.1 \% , heterozygous dominant: 5.9%5.9 \%
C) homozygous dominant: 94.5\%, heterozygous dominant: 5.5%5.5 \%
D) homozygous dominant: 88.5\%, heterozygous dominant: 11.1%11.1 \%
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
36
Solve the equation by completing the square

- x24x5=0\mathrm{x}^{2}-4 \mathrm{x}-5=0

A) {±5}\{ \pm \sqrt{-5}\}
B) {5,1}\{5,-1\}
C) {4,1}\{-4,-1\}
D) {5,1}\{-5,1\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
37
Solve the equation by completing the square

- x2+4x+68=0x^{2}+4 x+68=0

A) {6,10}\{6,-10\}
B) {2±8i}\{2 \pm 8 \mathrm{i}\}
C) {2±217i}\{2 \pm 2 \sqrt{17} i\}
D) {2±8i}\{2 \pm 8 \mathrm{i}\} .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
38
Solve the equation by completing the square

- x212x+17=0x^{2}-12 x+17=0

A) {6±19}\{-6 \pm \sqrt{19}\}

B) {6±19}\{6 \pm \sqrt{19}\} .

C) {12+17}\{12+\sqrt{17}\}

D) {6±17}\{6 \pm \sqrt{17}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
39
Solve the equation by completing the square

- x2+3x=40x^{2}+3 x=40

A) {8,5}\{8,5\}
B) {8,5}\{-8,-5\}
C) {8,5}\{-8,5\} .
D) {5,8}\{-5,8\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
40
Solve the equation by completing the square

- x2+90=19x\mathrm{x}^{2}+90=19 \mathrm{x}

A) {9,10}\{-9,-10\}
B) {90,1}\{-90,-1\}
C) {9,10}\{9,10\}
D) {1,90}\{1,90\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the equation by completing the square

- x2+5x5=0\mathrm{x}^{2}+5 \mathrm{x}-5=0

A) {5352}\left\{\frac{-5-3 \sqrt{5}}{2}\right\}

B) {5±352}\left\{\frac{-5 \pm 3 \sqrt{5}}{2}\right\}

C) {5+352}\left\{\frac{5+3 \sqrt{5}}{2}\right\}

D) {5±35}\{-5 \pm 3 \sqrt{5}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
42
Solve the equation by completing the square

- x2+4x=3\mathrm{x}^{2}+4 \mathrm{x}=3

A) {2±27}\{-2 \pm 2 \sqrt{7}\}
B) {2+7}\{2+\sqrt{7}\}
C) {2±7}\{-2 \pm \sqrt{7}\}
D) {1±7}\{-1 \pm \sqrt{7}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
43
Find a quadratic equation with integer coefficients that has the given solution set.

- {8,5}\{8,-5\}

A) x240x3=0x^{2}-40 x-3=0
B) x2+3x40=0x^{2}+3 x-40=0
C) x23x40=0x^{2}-3 x-40=0
D) x240x+3=0x^{2}-40 x+3=0
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
44
Find a quadratic equation with integer coefficients that has the given solution set.

- {0,2}\{0,2\}

A) x24=0x^{2}-4=0
B) x2+2x=0x^{2}+2 x=0
C) x22x=0x^{2}-2 x=0
D) x2+2x+4=0x^{2}+2 x+4=0
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
45
Find a quadratic equation with integer coefficients that has the given solution set.

- {23,92}\left\{-\frac{2}{3}, \frac{9}{2}\right\}

A) 6x2+23x18=06 x^{2}+23 x-18=0
B) 6x218x+6=06 x^{2}-18 x+6=0
C) 6x2+6x18=06 x^{2}+6 x-18=0
D) 6x223x18=06 x^{2}-23 x-18=0
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
46
Find a quadratic equation with integer coefficients that has the given solution set.

- {6,6}\{6,-6\}

A) x212x+36=0x^{2}-12 x+36=0
B) x2+36=0x^{2}+36=0
C) x2+12x+36=0x^{2}+12 x+36=0
D) x236=0x^{2}-36=0
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
47
Find a quadratic equation with integer coefficients that has the given solution set.

- {8i,8i}\{8 \mathrm{i},-8 \mathrm{i}\}

A) x264=0x^{2}-64=0
B) x2+64=0x^{2}+64=0
C) x2+64i=0x^{2}+64 i=0
D) x216ix+64=0x^{2}-16 i x+64=0
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
48
Solve by using the quadratic formula

- x2x56=0\mathrm{x}^{2}-\mathrm{x}-56=0

A) {7,8}\{7,8\}
B) {8,7}\{-8,7\}
C) {7,8}\{-7,-8\}
D) {7,8}\{-7,8\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
49
Solve by using the quadratic formula

- x2+2x48=0x^{2}+2 x-48=0

A) {8,6}\{-8,-6\}
B) {8,6}\{-8,6\}
C) {6,8}\{-6,8\}
D) {8,6}\{8,6\} .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
50
Solve by using the quadratic formula

- x2+21x+110=0x^{2}+21 x+110=0

A) {10,11}\{-10,-11\}
B) {10,11}\{10,11\}
C) {110,1}\{-110,-1\}
D) {1,110}\{1,110\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
51
Solve by using the quadratic formula

- x2+x+6=0x^{2}+x+6=0

A) {1±232}\left\{\frac{-1 \pm \sqrt{23}}{2}\right\}

B) {1±23i2}\left\{\frac{1 \pm \sqrt{23} \mathrm{i}}{2}\right\}

C) {1±23i2}\left\{\frac{-1 \pm \sqrt{23} \mathrm{i}}{2}\right\}

D) {1±232}\left\{\frac{1 \pm \sqrt{23}}{2}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
52
Solve by using the quadratic formula

- x225=0\mathrm{x}^{2}-25=0

A) {5}\{-5\}
B) {5,0,5}\{-5,0,5\}
C) {5}\{5\}
D) {5,5}\{-5,5\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
53
Solve by using the quadratic formula

- x2+72=18xx^{2}+72=18 x

A) {12,6}\{12,6\}
B) {12,6}\{-12,-6\}
C) {72,1}\{-72,-1\}
D) {1,72}\{1,72\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
54
Solve by using the quadratic formula

- x224=0x^{2}-24=0

A) {±12}\{ \pm 12\}
B) {±62}\{\pm6 \sqrt{2}\}
C) {±26}\{ \pm 2 \sqrt{6}\}
D) {576}\{576\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
55
Solve by using the quadratic formula

- 6x23x9=06 x^{2}-3 x-9=0

A) {23,1}\left\{\frac{2}{3}, 1\right\}

B) {23,1}\left\{\frac{2}{3},-1\right\}

C) {23,0}\left\{\frac{2}{3}, 0\right\}

D) {32,1}\left\{\frac{3}{2},-1\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
56
Solve by using the quadratic formula

- x243x+76=0x^{2}-\frac{4}{3} x+\frac{7}{6}=0

A) {0,78i}\left\{0,-\frac{7}{8} \mathrm{i}\right\}

B) {43i,0}\left\{\frac{4}{3} \mathrm{i}, 0\right\}

C) {4±26i6}\left\{\frac{-4 \pm \sqrt{26} \mathrm{i}}{6}\right\}

D) {4±26i6}\left\{\frac{4 \pm \sqrt{26} i}{6}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
57
Solve by using the quadratic formula

- 2x2+10x=42 x^{2}+10 x=-4

A) {10±172}\left\{\frac{-10 \pm \sqrt{17}}{2}\right\}

B) {5±332}\left\{\frac{-5 \pm \sqrt{33}}{2}\right\}

C) {5±172}\left\{\frac{-5 \pm \sqrt{17}}{2}\right\}

D) {5±174}\left\{\frac{-5 \pm \sqrt{17}}{4}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
58
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x26x+5=0x^{2}-6 x+5=0

A) One real
B) Two nonreal complex
C) Two real
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
59
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x2+4x+7=0x^{2}+4 x+7=0

A) Two nonreal complex
B) One real
C) Two real
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
60
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- 7z2+7z+4=07 z^{2}+7 z+4=0

A) Two real
B) One real
C) Two nonreal complex
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
61
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x2+6x+9=0x^{2}+6 x+9=0

A) One real
B) Two nonreal complex
C) Two real
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
62
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- x2+2x5=0x^{2}+2 x-5=0

A) Two nonreal complex
B) One real
C) Two real
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
63
For the given quadratic equation, use the discriminant to determine the number and type of solutions.

- 4x2+8x+4=04 x^{2}+8 x+4=0

A) Onereal
B) Two nonreal complex
C) Two real
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
64
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- x2+x+9=0x^{2}+x+9=0

A) {1±352}\left\{\frac{-1 \pm \sqrt{35}}{2}\right\}

B) {1±35i2}\left\{\frac{-1 \pm \sqrt{35} \mathrm{i}}{2}\right\}

C) {1±352}\left\{\frac{1 \pm \sqrt{35}}{2}\right\}

D) {1±35i2}\left\{\frac{1 \pm \sqrt{35} i}{2}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
65
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- 6x2+6x+1=06 x^{2}+6 x+1=0

A) {3±36}\left\{\frac{-3 \pm \sqrt{3}}{6}\right\}

B) {3±156}\left\{\frac{-3 \pm \sqrt{15}}{6}\right\}

C) {3±312}\left\{\frac{-3 \pm \sqrt{3}}{12}\right\}

D) {6±36}\left\{\frac{-6 \pm \sqrt{3}}{6}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
66
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- x2+5x84=0x^{2}+5 x-84=0

A) {12,7}\{12,7\} .
B) {12,1}\{-12,1\}
C) {12,7}\{12,-7\}
D) {12,7}\{-12,7\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
67
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- (6x+9)2=16(6 \mathrm{x}+9)^{2}=16

A) {56,0}\left\{-\frac{5}{6}, 0\right\}

B) {56,136}\left\{\frac{5}{6}, \frac{13}{6}\right\}

C) {56,136}\left\{-\frac{5}{6},-\frac{13}{6}\right\}

D) {76}\left\{\frac{7}{6}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
68
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- 6x23x9=06 x^{2}-3 x-9=0

A) {23,1}\left\{\frac{2}{3}, 1\right\}

B) {23,0}\left\{\frac{2}{3}, 0\right\}

C) {23,1}\left\{\frac{2}{3},-1\right\}

D) {32,1}\left\{\frac{3}{2},-1\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- (4x+1)2=17(4 \mathrm{x}+1)^{2}=17

A) {±164}\left\{\frac{ \pm \sqrt{16}}{4}\right\}

B) {±17+14}\left\{\frac{ \pm \sqrt{17}+1}{4}\right\}

C) {1±174}\left\{\frac{-1 \pm \sqrt{17}}{4}\right\}

D) {1±17}\{-1 \pm \sqrt{17}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
70
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- x214x+65=0\mathrm{x}^{2}-14 \mathrm{x}+65=0

A) {7±4i}\{7 \pm 4 i\}
B) {11,3}\{11,3\}
C) {14±8i}\{14 \pm 8 \mathrm{i}\}
D) {7±4i}\{7 \pm 4 \mathrm{i}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
71
Solve the quadratic equation using the most efficient technique (factoring, extracting square roots, completing the square, or the quadratic formula).

- 34x2+12x+112=0\frac{3}{4} x^{2}+\frac{1}{2} x+\frac{1}{12}=0

A) {1+23,123}\left\{\frac{-1+\sqrt{2}}{3}, \frac{-1-\sqrt{2}}{3}\right\}

B) {13,13}\left\{\frac{1}{3},-\frac{1}{3}\right\}

C) {13}\left\{\frac{1}{3}\right\}

D) {13}\left\{-\frac{1}{3}\right\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
72
Round your answer to the nearest tenth, when appropriate.


-A ball is thrown downward from a window in a tall building. Its position at time tt in seconds is given by h(t)=16t2+32th(t)=16 t^{2}+32 t , where ss is in feet. How long will it take the ball to fall 94 feet?

A) 1.4sec1.4 \mathrm{sec}
B) 1.6sec1.6 \mathrm{sec}
C) 2.6sec2.6 \mathrm{sec}
D) 2.4sec2.4 \mathrm{sec}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
73
Round your answer to the nearest tenth, when appropriate.


-A toy rocket is shot vertically upward from the ground. Its distanœe in feet from the ground in tt seconds is given by h(t)=16t2+133th(t)=-16 t^{2}+133 t . At what time or times will the ball be 146 feet from the ground?

A) 8.3sec8.3 \mathrm{sec}
B) 129.1sec,136.9sec129.1 \mathrm{sec}, 136.9 \mathrm{sec}
C) 1.3sec,7sec1.3 \mathrm{sec}, 7 \mathrm{sec}
D) 4.2sec4.2 \mathrm{sec}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
74
Use the table below for values of cos(θ)\cos (\theta) and sin(θ)\sin (\theta) .
θ( degrees )cos(θ)sin(θ)100.9850.174200.9400.342300.8660.500400.7660.643450.7070.707500.6430.766600.5000.866700.3420.940800.1740.985\begin{array}{|c|c|c|}\hline \theta(\text { degrees }) & \cos (\boldsymbol{\theta}) & \sin (\boldsymbol{\theta}) \\\hline 10 & 0.985 & 0.174 \\\hline 20 & 0.940 & 0.342 \\\hline 30 & 0.866 & 0.500 \\\hline 40 & 0.766 & 0.643 \\\hline 45 & 0.707 & 0.707 \\\hline 50 & 0.643 & 0.766 \\\hline 60 & 0.500 & 0.866 \\\hline 70 & 0.342 & 0.940 \\\hline 80 & 0.174 & 0.985 \\\hline\end{array}

A projectile is launched with an initial velocity of 500ft/s500 \mathrm{ft} / \mathrm{s} at an angle of 4545^{\circ} above the horizontal, from the roof of a building 92 feet above the ground.
A. How long will it take for the projectile to land on the ground? Round to the nearest hundredth of a second.
B. How far did the projectile travel horizontally before landing on the ground?

A) a) 15.98 seconds, b) 7901 feet
B) a) 15.98 seconds, b) 5588 feet
C) a) 22.35 seconds, b) 5588 feet
D) a) 22.35 seconds, b) 7901 feet
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
75
Use the table below for values of cos(θ)\cos (\theta) and sin(θ)\sin (\theta) .
θ( degrees )cos(θ)sin(θ)100.9850.174200.9400.342300.8660.500400.7660.643450.7070.707500.6430.766600.5000.866700.3420.940800.1740.985\begin{array}{|c|l|l|}\hline \theta(\text { degrees }) & \cos (\boldsymbol{\theta}) & \sin (\boldsymbol{\theta}) \\\hline 10 & 0.985 & 0.174 \\\hline 20 & 0.940 & 0.342 \\\hline 30 & 0.866 & 0.500 \\\hline 40 & 0.766 & 0.643 \\\hline 45 & 0.707 & 0.707 \\\hline 50 & 0.643 & 0.766 \\\hline 60 & 0.500 & 0.866 \\\hline 70 & 0.342 & 0.940 \\\hline 80 & 0.174 & 0.985 \\\hline\end{array}

A projectile is launched with an initial velocity of 150ft/s150 \mathrm{ft} / \mathrm{s} from a height of 30 feet above the ground.
a) Complete the table by filling in the time required for the projectile to land. Round to the nearest hundredth of a second.
θ (degrees)  Time (s)10305070\begin{array}{|l|l|}\hline \boldsymbol{\theta} \text { (degrees) } & \text { Time }(s) \\\hline 10 & \\\hline 30 & \\\hline 50 & \\\hline 70 & \\\hline\end{array}

b) What launch angle gives the projectile the longest time in the air?
c) Complete the table by filling in the distance traveled horizontally by the projectile. Use the times found in part a. Round to the nearest hundredth of a foot.
θ (degrees)  Distance ( ft )\begin{array}{|l|l|}\hline \boldsymbol{\theta} \text { (degrees) } & \text { Distance }(\text { ft }) \\\hline\end{array}

d) What launch angle gives the greatest horizontal distance?

A)
a)
θ (degrees)  Time (s)103.72306.19508.93709.41\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 3.72 \\\hline 30 & 6.19 \\\hline 50 & 8.93 \\\hline 70 & 9.41 \\\hline\end{array}
b) 7070^\circ
c)
θ (degrees)  Distance (ft)10411.8730698.6350571.0870493.77\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 411.87 \\\hline 30 & 698.63 \\\hline 50 & 571.08 \\\hline 70 & 493.77\\\hline \end{array}
d) 3030^\circ

B)
a) θ (degrees)  Time (s)1010.86308.64507.43705.83\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 10.86 \\\hline 30 & 8.64 \\\hline 50 & 7.43 \\\hline 70 & 5.83 \\\hline\end{array}
b) 1010^\circ
c)
θ (degrees)  Distance (ft)10676.5530732.7150786.6270825.83\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 676.55 \\\hline 30 & 732.71 \\\hline 50 & 786.62 \\\hline 70 & 825.83 \\\hline\end{array}
d) 7070^\circ

C)
a)
θ (degrees)  Time (s)101.68303.81503.96701.95\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 1.68 \\\hline 30 & 3.81 \\\hline 50 & 3.96 \\\hline 70 & 1.95\\\hline\end{array}
b) 5050^\circ
c)
θ (degrees)  Distance (ft)10683.0730521.6550519.9670417.38\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 683.07 \\\hline 30 & 521.65 \\\hline 50 & 519.96 \\\hline 70 & 417.38 \\\hline\end{array}
d) 1010^\circ

D)
a)
θ (degrees)  Time (s)102.41305.06507.43709.02\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Time }(\mathbf{s}) \\\hline 10 & 2.41 \\\hline 30 & 5.06 \\\hline 50 & 7.43 \\\hline 70 & 9.02 \\\hline\end{array}
b) 7070^\circ
c)
θ (degrees)  Distance (ft)10356.0830657.2950716.6270462.73\begin{array}{|l|l|}\hline \theta \text { (degrees) } & \text { Distance }(\mathrm{ft}) \\\hline 10 & 356.08 \\\hline 30 & 657.29 \\\hline 50 & 716.62 \\\hline 70 & 462.73 \\\hline\end{array}
d) 50circ50^circ
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
76
Solve by making a u-substitution

- x46x2+8=0x^{4}-6 x^{2}+8=0

A) {2,2}\{2, \sqrt{2}\}
B) {±2,±22}\{ \pm 2, \pm 2 \sqrt{2}\}
C) {±2,±2}\{ \pm 2, \pm 2\}
D) {±2,±2}\{ \pm 2, \pm \sqrt{2}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
77
Solve by making a u-substitution

- x433x2+32=0x^{4}-33 x^{2}+32=0

A) {±1,±42}\{ \pm 1, \pm 4 \sqrt{2}\}
B) {±2,±4}\{ \pm 2, \pm 4\}
C) {±1,±43}\{ \pm 1, \pm 4 \sqrt{3}\}
D) {±1,±2}\{ \pm 1, \pm \sqrt{2}\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
78
Solve by making a u-substitution

- x11x+30=0\mathrm{x}-11 \sqrt{\mathrm{x}}+30=0

A) {5,6}\{-5,6\}
B) {5,6}\{5,6\} .
C) {25,36}\{25,36\}
D) {25,36}\{-25,36\} .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
79
Solve by making a u-substitution

- x13x1/2+42=0\mathrm{x}-13 \mathrm{x}^{1 / 2}+42=0

A) {36,49}\{36,49\}
B) {36,49}\{-36,49\} .
C) {6,7}\{6,7\}
D) {6,7}\{-6,7\} .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
80
Solve by making a u-substitution

- x6+26x327=0x^{6}+26 x^{3}-27=0

A) {3,1}\{-3,1\} .
B) {3,1}\{-3,-1\}
C) {3,1}\{3,-1\} .
D) {3,1}\{3,1\}
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 270 flashcards in this deck.