Deck 9: Quadratic Equations, Inequalities, and Functions

Full screen (f)
exit full mode
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2+8x+7=0x^{2}+8 x+7=0

A) {1,7}\{1,7\}
B) {−7,0}\{-7,0\}
C) {0,7}\{0,7\}
D) {−7,−1}\{-7,-1\}
Use Space or
up arrow
down arrow
to flip the card.
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2+2x−15=0x^{2}+2 x-15=0

A) {5,3}\{5,3\}
B) {−5,3}\{-5,3\}
C) {−3,5}\{-3,5\}
D) {−5,−3}\{-5,-3\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2+7x+12=0x^{2}+7 x+12=0

A) {3,−4}\{3,-4\}
B) {−3,−4}\{-3,-4\}
C) {3,4}\{3,4\}
D) {−3,4}\{-3,4\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 2x2−14x+24=02 x^{2}-14 x+24=0

A) {3,4}\{3,4\}
B) {−3,4}\{-3,4\}
C) {−4,3}\{-4,3\}
D) {−4,−3}\{-4,-3\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 3x2+x−44=03 x^{2}+x-44=0

A) {−4,−113}\left\{-4,-\frac{11}{3}\right\}

B) {−113,4}\left\{-\frac{11}{3}, 4\right\}

C) {−4,113}\left\{-4, \frac{11}{3}\right\}

D) {113,4}\left\{\frac{11}{3}, 4\right\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 7x2−41x−6=07 x^{2}-41 x-6=0

A) {−7,6}\{-7,6\}

B) {−17,7}\left\{-\frac{1}{7}, 7\right\}

C) {−17,6}\left\{-\frac{1}{7}, 6\right\}

D) {141,−17}\left\{\frac{1}{41},-\frac{1}{7}\right\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2=6x−8x^{2}=6 x-8

A) {−8,−1}\{-8,-1\}
B) {4,2}\{4,2\}
C) {−4,−2}\{-4,-2\}
D) {1,8}\{1,8\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 2x2=−15x−252 x^{2}=-15 x-25

A) {−5,−10}\{-5,-10\}

B) {5,52}\left\{5, \frac{5}{2}\right\}

C) {−52,−5}\left\{-\frac{5}{2},-5\right\}

D) {5,−52}\left\{5,-\frac{5}{2}\right\}
Question
Use the square root property to solve the equation.

- x2=100x^{2}=100

A) {10}\{10\}

B) {50}\{50\}

C) {10,−10}\{10,-10\}

D) {11,−11}\{11,-11\}
Question
Use the square root property to solve the equation.

- x2−25=0x^{2}-25=0

A) {5,−5}\{5,-5\}

B) {13.5}\{13.5\}

C) {5}\{5\}

D) {4,−4}\{4,-4\}
Question
Use the square root property to solve the equation.

- 8z2−200=08 z^{2}-200=0

A) {5}\{5\}
B) {6,−6}\{6,-6\}
C) {5,−5}\{5,-5\}
D) {102.5}\{102.5\}
Question
Use the square root property to solve the equation.

- −5k2+20=0-5 k^{2}+20=0

A) {−12.5}\{-12.5\}
B) {2,−2}\{2,-2\}
C) {2}\{2\}
D) {4,−4}\{4,-4\}
Question
Use the square root property to solve the equation.

- y2=20y^{2}=20

A) {25,−25}\{2 \sqrt{5},-2 \sqrt{5}\}
B) {400}\{400\}
C) {10}\{10\}
D) {20}\{\sqrt{20}\}
Question
Use the square root property to solve the equation.

- (x+19)2=36(x+19)^{2}=36

A) {−25,−13}\{-25,-13\}
B) {25,13}\{25,13\}
C) {−13}\{-13\}
D) {−55}\{-55\}
Question
Use the square root property to solve the equation.

- (p−2)2=13(\mathrm{p}-2)^{2}=13

A) {13−2,−13−2}\{\sqrt{13}-2,-\sqrt{13-2}\}
B) {2+13,2−13}\{2+\sqrt{13}, 2-\sqrt{13}\}
C) {13−−2}\{\sqrt{13}-\sqrt{-2}\}
D) {2+13}\{2+\sqrt{13}\}
Question
Use the square root property to solve the equation.

- (3s+9)2=25(3 s+9)^{2}=25

A) {43,143}\left\{\frac{4}{3}, \frac{14}{3}\right\}

B) {−43,0}\left\{-\frac{4}{3}, 0\right\}

C) {163}\left\{\frac{16}{3}\right\}

D) {−43,−143}\left\{-\frac{4}{3},-\frac{14}{3}\right\}
Question
Use the square root property to solve the equation.

- (7t−3)2=7(7 \mathrm{t}-3)^{2}=7

A) {37i,−37}\left\{\frac{\sqrt{3}}{7} i,-\frac{\sqrt{3}}{7}\right\}

B) {3+77,3−77}\left\{\frac{3+\sqrt{7}}{7}, \frac{3-\sqrt{7}}{7}\right\}

C) {3−77,−3−77}\left\{\frac{3-\sqrt{7}}{7},-\frac{3-\sqrt{7}}{7}\right\}

D) {3+7,3−7}\{3+\sqrt{7}, 3-\sqrt{7}\}
Question
Use the square root property to solve the equation.

- (x+9)2−6=0(x+9)^{2}-6=0

A) {−9+i6,−9−i6}\{-9+\mathrm{i} \sqrt{6},-9-\mathrm{i} \sqrt{6}\}
B) {−3,15}\{-3,15\}
C) {−3+6,−3−6}\{-3+\sqrt{6},-3-\sqrt{6}\}
D) {−9+6,−9−6}\{-9+\sqrt{6},-9-\sqrt{6}\}
Question
Solve the problem using Galileo's formula, d=16t2d=16 t^{2} . Round your answer to the nearest tenth.

-Eric has a treehouse 27ft27 \mathrm{ft} above the ground. How long would it take a water balloon dropped from the treehouse to fall to the ground?

A) 5.2sec5.2 \mathrm{sec}
B) 2.8sec2.8 \mathrm{sec}
C) 1.3sec1.3 \mathrm{sec}
D) 11,664sec11,664 \mathrm{sec}
Question
Solve the problem using Galileo's formula, d=16t2d=16 t^{2} . Round your answer to the nearest tenth.

-A young boy is delighted to drop various objects from a hotel balcony to the ground below. If he is 161ft161 \mathrm{ft} above the ground, how long does it take for one of the objects to fall to the ground?

A) 161.0sec161.0 \mathrm{sec}
B) 10.1sec10.1 \mathrm{sec}
C) 12.7sec12.7 \mathrm{sec}
D) 3.2sec3.2 \mathrm{sec}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+8x+x^{2}+8 x+

A) 16;(x−4)216 ;(x-4)^{2}
B) 64;(x+8)264 ;(x+8)^{2}
C) 0;(x+4)20 ;(x+4)^{2}
D) 16;(x+4)216 ;(x+4)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+18x+x^{2}+18 x+

A) 81;(x−9)281 ;(x-9)^{2}
B) 81;(x+9)281 ;(x+9)^{2}
C) 324;(x+18)2324 ;(x+18)^{2}
D) 0;(x+9)}20 ;(x+9)\}^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+5x+x^{2}+5 x+

A) 0;(x+5)20 ;(x+5)^{2}

B) 0;(x+52)20 ;\left(x+\frac{5}{2}\right)^{2}

C) 254;(x+52)2\frac{25}{4} ;\left(x+\frac{5}{2}\right)^{2}

D) 254;(x−52)2\frac{25}{4} ;\left(x-\frac{5}{2}\right)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2−5x+x^{2}-5 x+

A) 254;(x+52)2\frac{25}{4} ;\left(x+\frac{5}{2}\right)^{2}

B) 0;(x−52)20 ;\left(x-\frac{5}{2}\right)^{2}

C) 254;(x−52)2\frac{25}{4} ;\left(x-\frac{5}{2}\right)^{2}

D) 25;(x−5)225 ;(x-5)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2−23x+x^{2}-\frac{2}{3} x+

A) 9;(x−13)29 ;\left(x-\frac{1}{3}\right)^{2}

B) 19;(x+13)2\frac{1}{9} ;\left(x+\frac{1}{3}\right)^{2}

C) −23x;(x−13)2-\frac{2}{3} x ;\left(x-\frac{1}{3}\right)^{2}

D) 19;(x−13)2\frac{1}{9} ;\left(x-\frac{1}{3}\right)^{2}
Question
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2−54x+x^{2}-\frac{5}{4} x+

A) 0;(x−58)20 ;\left(x-\frac{5}{8}\right)^{2}

B) 2516;(x−58)2\frac{25}{16} ;\left(x-\frac{5}{8}\right)^{2}

C) 2564;(x+58)2\frac{25}{64} ;\left(x+\frac{5}{8}\right)^{2}

D) 2564;(x−58)2\frac{25}{64} ;\left(x-\frac{5}{8}\right)^{2}
Question
Determine the number that will complete the square to solve the equation after the constant term has been written on the right side. Do not actually solve.

- w2−10w−6=0w^{2}-10 w-6=0

A) 9
B) 25
C) -5
D) 0
Question
Determine the number that will complete the square to solve the equation after the constant term has been written on the right side. Do not actually solve.

- 5x2+x−3=05 x^{2}+x-3=0

A) −1100-\frac{1}{100}
B) 14\frac{1}{4}
C) 100
D) 1100\frac{1}{100}
Question
Solve the equation by completing the square.

- a2+8a−33=0a^{2}+8 a-33=0

A) {−22,−11}\{-22,-11\}
B) {3,−11}\{3,-11\}
C) {6,−6}\{6,-6\}
D) {−3,11}\{-3,11\}
Question
Solve the equation by completing the square.

- z2+16z+52=0\mathrm{z}^{2}+16 \mathrm{z}+52=0

A) {8+23}\{8+2 \sqrt{3}\}

B) {8+213,8−213}\{8+2 \sqrt{13}, 8-2 \sqrt{13}\}

C) {−8+23,−8−23}\{-8+2 \sqrt{3},-8-2 \sqrt{3}\}

D) {−16+213}\{-16+2 \sqrt{13}\}
Question
Solve the equation by completing the square.

- p2+3p−9=0\mathrm{p}^{2}+3 \mathrm{p}-9=0

A) {3+352}\left\{\frac{3+3 \sqrt{5}}{2}\right\}

B) {−3−352}\left\{\frac{-3-3 \sqrt{5}}{2}\right\}

C) {−3+352,−3−352}\left\{\frac{-3+3 \sqrt{5}}{2}, \frac{-3-3 \sqrt{5}}{2}\right\}

D) {−3+35,−3−35}\{-3+3 \sqrt{5},-3-3 \sqrt{5}\}
Question
Solve the equation by completing the square.

- 6x2+4x−2=06 x^{2}+4 x-2=0

A) {3,0}\{3,0\}
B) {13,−1}\left\{\frac{1}{3},-1\right\}
C) {3,−1}\{3,-1\}
D) {3,1}\{3,1\}
Question
Solve the equation by completing the square.

- 21 d2+34 d+8=021 \mathrm{~d}^{2}+34 \mathrm{~d}+8=0

A) {27,43}\left\{\frac{2}{7}, \frac{4}{3}\right\}

B) {−27,−43}\left\{-\frac{2}{7},-\frac{4}{3}\right\}

C) {72,34}\left\{\frac{7}{2}, \frac{3}{4}\right\}

D) {−72,−43}\left\{-\frac{7}{2},-\frac{4}{3}\right\}
Question
Solve the equation by completing the square.

- 4m2+15m=04 m^{2}+15 m=0

A) {0}\{0\}

B) {154,−154}\left\{\frac{15}{4},-\frac{15}{4}\right\}

C) {−154,0}\left\{-\frac{15}{4}, 0\right\}

D) {154,0}\left\{\frac{15}{4}, 0\right\}
Question
Solve the equation by completing the square.

- 3x2+8x=−23 x^{2}+8 x=-2

A) {−8+103,−8−103}\left\{\frac{-8+\sqrt{10}}{3}, \frac{-8-\sqrt{10}}{3}\right\}

B) {−4+106,−4−106}\left\{\frac{-4+\sqrt{10}}{6}, \frac{-4-\sqrt{10}}{6}\right\}

C) {−4+223,−4−223}\left\{\frac{-4+\sqrt{22}}{3}, \frac{-4-\sqrt{22}}{3}\right\}

D) {−4+103,−4−103}\left\{\frac{-4+\sqrt{10}}{3}, \frac{-4-\sqrt{10}}{3}\right\}
Question
Solve the equation by completing the square.

- 2n2=−12n−52 n^{2}=-12 n-5

A) {−6+462,−6−462}\left\{\frac{-6+\sqrt{46}}{2}, \frac{-6-\sqrt{46}}{2}\right\}

B) {−6+264,−6−264}\left\{\frac{-6+\sqrt{26}}{4}, \frac{-6-\sqrt{26}}{4}\right\}

C) {−6+262,−6−262}\left\{\frac{-6+\sqrt{26}}{2}, \frac{-6-\sqrt{26}}{2}\right\}

D) {−12+262,−12−262}\left\{\frac{-12+\sqrt{26}}{2}, \frac{-12-\sqrt{26}}{2}\right\}
Question
Solve the equation by completing the square.

- 4r2+22r=−204 \mathrm{r}^{2}+22 \mathrm{r}=-20

A) {−11+418,−11−418}\left\{\frac{-11+\sqrt{41}}{8}, \frac{-11-\sqrt{41}}{8}\right\}

B) {−11+414,−11−414}\left\{\frac{-11+\sqrt{41}}{4}, \frac{-11-\sqrt{41}}{4}\right\}

C) {−11+2014,−11−2014}\left\{\frac{-11+\sqrt{201}}{4}, \frac{-11-\sqrt{201}}{4}\right\}

D) {−22+414,−22−414}\left\{\frac{-22+\sqrt{41}}{4}, \frac{-22-\sqrt{41}}{4}\right\}
Question
Solve the equation by completing the square.

- 0.7 m2+0.8 m+0.2=00.7 \mathrm{~m}^{2}+0.8 \mathrm{~m}+0.2=0

A) {−4+214,−4−214}\left\{\frac{-4+\sqrt{2}}{14}, \frac{-4-\sqrt{2}}{14}\right\}

B) {−4+27,−4−27}\left\{\frac{-4+\sqrt{2}}{7}, \frac{-4-\sqrt{2}}{7}\right\}

C) {−4+307,−4−307}\left\{\frac{-4+\sqrt{30}}{7}, \frac{-4-\sqrt{30}}{7}\right\}

D) {−8+27,−8−27}\left\{\frac{-8+\sqrt{2}}{7}, \frac{-8-\sqrt{2}}{7}\right\}
Question
Solve the equation by completing the square.

- 0.1x2−0.2x−0.1=00.1 \mathrm{x}^{2}-0.2 \mathrm{x}-0.1=0

A) {1+2}\{1+\sqrt{2}\}
B) {1+2,1−2}\{1+\sqrt{2}, 1-\sqrt{2}\}
C) {2−2}\{2-\sqrt{2}\}
D) {2+2,2−2}\{2+\sqrt{2}, 2-\sqrt{2}\}
Question
Find the nonreal complex solutions of the equation.

- x2−10x+29=0x^{2}-10 x+29=0

A) {7,3}\{7,3\}
B) {10+4i,10−4i}\{10+4 \mathrm{i}, 10-4 \mathrm{i}\}
C) {5+2i,5−2i}\{5+2 \mathrm{i}, 5-2 \mathrm{i}\}
D) {−5+2i,−5−2i}\{-5+2 \mathrm{i},-5-2 \mathrm{i}\}
Question
Find the nonreal complex solutions of the equation.

- x2+4x+20=0\mathrm{x}^{2}+4 \mathrm{x}+20=0

A) {2,−6}\{2,-6\}
B) {−2+25i,−2−25i}\{-2+2 \sqrt{5} i,-2-2 \sqrt{5} i\}
C) {−2+4i,−2−4i}\{-2+4 \mathrm{i},-2-4 \mathrm{i}\}
D) {2+4i,2−4i}\{2+4 \mathrm{i}, 2-4 \mathrm{i}\}
Question
Find the nonreal complex solutions of the equation.

- x2+x+2=0x^{2}+x+2=0

A) {1+−72,1−−72}\left\{\frac{1+\sqrt{-7}}{2}, \frac{1-\sqrt{-7}}{2}\right\}

B) {−1+−72,−1−−72}\left\{\frac{-1+\sqrt{-7}}{2}, \frac{-1-\sqrt{-7}}{2}\right\}

C) {1+i72,1−i72}\left\{\frac{1+\mathrm{i} \sqrt{7}}{2}, \frac{1-\mathrm{i} \sqrt{7}}{2}\right\}

D) {−1+i72,−1−i72}\left\{\frac{-1+\mathrm{i} \sqrt{7}}{2}, \frac{-1-\mathrm{i} \sqrt{7}}{2}\right\}
Question
Find the nonreal complex solutions of the equation.

- 5x2−5x+7=05 x^{2}-5 x+7=0

A) {5+11510,5−11510}\left\{\frac{5+\sqrt{115}}{10}, \frac{5-\sqrt{115}}{10}\right\}

B) {−5+11510,−5−11510}\left\{\frac{-5+\sqrt{115}}{10}, \frac{-5-\sqrt{115}}{10}\right\}

C) {−5+i11510,−5−i11510}\left\{\frac{-5+\mathrm{i} \sqrt{115}}{10}, \frac{-5-\mathrm{i} \sqrt{115}}{10}\right\}

D) {5+i11510,5−i11510}\left\{\frac{5+\mathrm{i} \sqrt{115}}{10}, \frac{5-\mathrm{i} \sqrt{115}}{10}\right\}
Question
Find the nonreal complex solutions of the equation.

- −5x2−4x−4=0-5 x^{2}-4 x-4=0

A) {25,−65}\left\{\frac{2}{5},-\frac{6}{5}\right\}

B) {−4+i6410,−4−i6410}\left\{\frac{-4+\mathrm{i} \sqrt{64}}{10}, \frac{-4-\mathrm{i} \sqrt{64}}{10}\right\}

C) {−2+4i5,−2−4i5}\left\{\frac{-2+4 \mathrm{i}}{5}, \frac{-2-4 \mathrm{i}}{5}\right\}

D) {2+4i5,2−4i5}\left\{\frac{2+4 \mathrm{i}}{5}, \frac{2-4 \mathrm{i}}{5}\right\}
Question
Find the nonreal complex solutions of the equation.

- 6x2−7x+5=06 x^{2}-7 x+5=0

A) {7+7112,7−7112}\left\{\frac{7+\sqrt{71}}{12}, \frac{7-\sqrt{71}}{12}\right\}

B) {−7+i7112,−7−i7112}\left\{\frac{-7+\mathrm{i} \sqrt{71}}{12}, \frac{-7-\mathrm{i} \sqrt{71}}{12}\right\}

C) {7+i7112,7−i7112}\left\{\frac{7+i \sqrt{71}}{12}, \frac{7-i \sqrt{71}}{12}\right\}

D) {−7+7112,−7−7112}\left\{\frac{-7+\sqrt{71}}{12}, \frac{-7-\sqrt{71}}{12}\right\}
Question
Find the nonreal complex solutions of the equation.

- 9x2+5x+5=09 x^{2}+5 x+5=0

A) {−5+i15518,−5−i15518}\left\{\frac{-5+\mathrm{i} \sqrt{155}}{18}, \frac{-5-\mathrm{i} \sqrt{155}}{18}\right\}

B) {5+i1559,5−i1559}\left\{\frac{5+\mathrm{i} \sqrt{155}}{9}, \frac{5-\mathrm{i} \sqrt{155}}{9}\right\}

C) {−5+i1559,−5−i1559}\left\{\frac{-5+\mathrm{i} \sqrt{155}}{9}, \frac{-5-\mathrm{i} \sqrt{155}}{9}\right\}

D) {5+i15518,5−i15518}\left\{\frac{5+\mathrm{i} \sqrt{155}}{18}, \frac{5-\mathrm{i} \sqrt{155}}{18}\right\}
Question
Solve for xx . Assume that aa and bb represent positive real numbers.

- x2−b=0x^{2}-b=0

A) {b,−b}\{b,-b\}
B) {b,−b}\{\sqrt{b}, \sqrt{-b}\}
C) {b}\{b\}
D) {b,−b}\{\sqrt{b},-\sqrt{b}\}
Question
Solve for xx . Assume that aa and bb represent positive real numbers.

- x2=121bx^{2}=121 b

A) {−11b,11b}\{-11 b, 11 b\}
B) {11b,−11b}\{\sqrt{11 b},-\sqrt{11 b}\}
C) {−11ib,11ib}\{-11 \mathrm{i} \sqrt{\mathrm{b}}, 11 \mathrm{i} \sqrt{\mathrm{b}}\}
D) {−11b,11b}\{-11 \sqrt{b}, 11 \sqrt{b}\}
Question
Solve for xx . Assume that aa and bb represent positive real numbers.

- 25x2=64a25 x^{2}=64 a

A) {−8a5,8a5}\left\{\frac{-8 a}{5}, \frac{8 a}{5}\right\}

B) {−8a5,8a5}\left\{\frac{-8 \sqrt{a}}{5}, \frac{8 \sqrt{a}}{5}\right\}

C) {−8a5,8a5}\left\{\frac{-\sqrt{8 a}}{5}, \frac{\sqrt{8 a}}{5}\right\}

D) {−64a25,64a25}\left\{\frac{-64 \sqrt{a}}{25}, \frac{64 \sqrt{a}}{25}\right\}
Question
Solve for xx . Assume that aa and bb represent positive real numbers.

- (3x−4b)2=7a(3 x-4 b)^{2}=7 a

A) {16b2+7a9,−16b2−7a9}\left\{\frac{\sqrt{16 b^{2}+7 a}}{9}, \frac{-\sqrt{16 b^{2}-7 a}}{9}\right\}

B) {4b+7a3,4b−7a3}\left\{\frac{4 b+\sqrt{7 a}}{3}, \frac{4 b-\sqrt{7 a}}{3}\right\}

C) {4b+7a3⋅−4b−7a3}\left\{\frac{4 b+\sqrt{7 a}}{3} \cdot \frac{-\sqrt{4 b-7 a}}{3}\right\}

D) {4b+7a3,−4b−7a3}\left\{\frac{4 b+7 a}{3}, \frac{-4 b-7 a}{3}\right\}
Question
Solve for xx . Assume that aa and bb represent positive real numbers.

- x2−a2−25=0\mathrm{x}^{2}-\mathrm{a}^{2}-25=0

A) {a2+25,−a2−25}\left\{\sqrt{a^{2}+25},-\sqrt{a^{2}-25}\right\}

B) {a2+25,−a2+25}\left\{\sqrt{a^{2}+25},-\sqrt{a^{2}+25}\right\}

C) {a2+25,a2−25}\left\{a^{2}+25, a^{2}-25\right\}

D) {a2+5,−a2−5}\left\{\sqrt{a^{2}+5},-\sqrt{a^{2}-5}\right\}
Question
Define the term "quadratic equation".
Question
What is the usual first step taken in solving the equation 3x2−2x=83 x^{2}-2 x=8 by completing the square?
Question
To complete the square of 2x2+4x=82 x^{2}+4 x=8 , is it ever a good idea to divide by the coefficient of x2x^{2} ?
Question
To complete the square for an equation in the form x2−ax=bx^{2}-a x=b , is it ever appropriate to subtract a positive number from each side?
Question
Use the equation 5x2+6x=c5 x^{2}+6 x=c to explain how to solve a quadratic equation by completing the square.
Question
Choose the one alternative that best completes the statement or answers the question.

-Which method of solving the following equation would probably be more convenient? (5x−4)2=24(5 x-4)^{2}=24

A) Completing the square
B) Square root property
Question
Give a one-sentence description or explanation of the square root property.
Question
Find the mistake, then find the correct answer.
line 1x2−6x=−81 \quad x^{2}-6 x=-8
line 2x2−6x+9=−8+92 \quad x^{2}-6 x+9=-8+9
line 3(x−3)2=13 \quad(x-3)^{2}=1
line 4x−3=14 \quad x-3=\sqrt{1}
line 5x−3=15 \quad x-3=1
line 6x−3+3=1+36 \quad x-3+3=1+3
line 7x=47 \quad x=4
line 88 \quad The solution set is {4}\{4\} .
Question
Find the mistake, then find the correct answer.
Solve for x:x2=50\mathrm{x}: \mathrm{x}^{2}=50
line 1x2=501 \quad \sqrt{x^{2}}=\sqrt{50}
line 2x=252 \quad x=2 \sqrt{5} or x=−25x=-2 \sqrt{5}
line 3 The solution set is {25,−25}\{2 \sqrt{5},-2 \sqrt{5}\} .
Question
Find the mistake, then find the correct answer.
Solve for x:(x−5)2=−13\mathrm{x}:(\mathrm{x}-5)^{2}=-13
line 1x−5=131 \quad x-5=\sqrt{13}
line 2x=5+132 \quad x=5+\sqrt{13} or x=5−13x=5-\sqrt{13}
line 3 The solution set is {5+13,5−13}\{5+\sqrt{13}, 5-\sqrt{13}\} .
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 2n2=−10n−52 n^{2}=-10 n-5

A) {−5+352,−5−352}\left\{\frac{-5+\sqrt{35}}{2}, \frac{-5-\sqrt{35}}{2}\right\}

B) {−5+152,−5−152}\left\{\frac{-5+\sqrt{15}}{2}, \frac{-5-\sqrt{15}}{2}\right\}

C) {−10+152,−10−152}\left\{\frac{-10+\sqrt{15}}{2}, \frac{-10-\sqrt{15}}{2}\right\}

D) {−5+154,−5−154}\left\{\frac{-5+\sqrt{15}}{4}, \frac{-5-\sqrt{15}}{4}\right\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- z23=z2+56\frac{z^{2}}{3}=\frac{z}{2}+\frac{5}{6}

A) {−1,52}\left\{-1, \frac{5}{2}\right\}

B) {3+2104,3−2104}\left\{\frac{3+2 \sqrt{10}}{4}, \frac{3-2 \sqrt{10}}{4}\right\}

C) {52}\left\{\frac{5}{2}\right\}

D) {−1}\{-1\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 34s2+12s+112=0\frac{3}{4} s^{2}+\frac{1}{2} s+\frac{1}{12}=0

A) {−1+23,−1−23}\left\{\frac{-1+\sqrt{2}}{3}, \frac{-1-\sqrt{2}}{3}\right\}

B) {−13}\left\{-\frac{1}{3}\right\}

C) {13}\left\{\frac{1}{3}\right\}

D) {13,−13}\left\{\frac{1}{3},-\frac{1}{3}\right\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 3x(x+5)=23 x(x+5)=2

A) {1}\{1\}

B) {−35}\left\{-\frac{3}{5}\right\}

C) {15+2496,15−2496}\left\{\frac{15+\sqrt{249}}{6}, \frac{15-\sqrt{249}}{6}\right\}

D) {−15+2496,−15−2496}\left\{\frac{-15+\sqrt{249}}{6}, \frac{-15-\sqrt{249}}{6}\right\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- a2+14a+40=0\mathrm{a}^{2}+14 \mathrm{a}+40=0

A) {210,−210}\{2 \sqrt{10},-2 \sqrt{10}\}
B) {−20,−8}\{-20,-8\}
C) {−10,−4}\{-10,-4\}
D) {4,10}\{4,10\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 9x2+2x−7=09 x^{2}+2 x-7=0

A) {97,1}\left\{\frac{9}{7}, 1\right\}

B) {97,−1}\left\{\frac{9}{7},-1\right\}

C) {79,−1}\left\{\frac{7}{9},-1\right\}

D) {97,0}\left\{\frac{9}{7}, 0\right\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- x2=9−4x\mathrm{x}^{2}=9-4 \mathrm{x}

A) {2+13}\{2+\sqrt{13}\}

B) {−2+213,−2−213}\{-2+2 \sqrt{13},-2-2 \sqrt{13}\}

C) {−1+13,−1−13}\{-1+\sqrt{13},-1-\sqrt{13}\}

D) {−2+13,−2−13}\{-2+\sqrt{13},-2-\sqrt{13}\}
Question
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- (2x−1)(x+1)=6(2 x-1)(x+1)=6

A) {1+574,1−574}\left\{\frac{1+\sqrt{57}}{4}, \frac{1-\sqrt{57}}{4}\right\}

B) {1+572,1−572}\left\{\frac{1+\sqrt{57}}{2}, \frac{1-\sqrt{57}}{2}\right\}

C) {−1+574,−1−574}\left\{\frac{-1+\sqrt{57}}{4}, \frac{-1-\sqrt{57}}{4}\right\}

D) {−1+372,−1−372}\left\{\frac{-1+\sqrt{37}}{2}, \frac{-1-\sqrt{37}}{2}\right\}
Question
Use the quadratic formula to solve the equation.

- x2+x+6=0x^{2}+x+6=0

A) {1+232,1−232}\left\{\frac{1+\sqrt{23}}{2}, \frac{1-\sqrt{23}}{2}\right\}

B) {−1+232,−1−232}\left\{\frac{-1+\sqrt{23}}{2}, \frac{-1-\sqrt{23}}{2}\right\}

C) {−1+i232,−1−i232}\left\{\frac{-1+\mathrm{i} \sqrt{23}}{2}, \frac{-1-\mathrm{i} \sqrt{23}}{2}\right\}

D) {1+i232,1−i232}\left\{\frac{1+\mathrm{i} \sqrt{23}}{2}, \frac{1-\mathrm{i} \sqrt{23}}{2}\right\}
Question
Use the quadratic formula to solve the equation.

- 8x2+7x=−28 x^{2}+7 x=-2

A) {7+1516,7−1516}\left\{\frac{7+\sqrt{15}}{16}, \frac{7-\sqrt{15}}{16}\right\}

B) {−7+1516,−7−1516}\left\{\frac{-7+\sqrt{15}}{16}, \frac{-7-\sqrt{15}}{16}\right\}

C) {−7+i1516,−7−i1516}\left\{\frac{-7+\mathrm{i} \sqrt{15}}{16}, \frac{-7-\mathrm{i} \sqrt{15}}{16}\right\}

D) {7+i1516,7−i1516}\left\{\frac{7+\mathrm{i} \sqrt{15}}{16}, \frac{7-\mathrm{i} \sqrt{15}}{16}\right\}
Question
Use the quadratic formula to solve the equation.

- 2x2=−5x−72 x^{2}=-5 x-7

A) {−5+314,−5−314}\left\{\frac{-5+\sqrt{31}}{4}, \frac{-5-\sqrt{31}}{4}\right\}

B) {−5+i314,−5−i314}\left\{\frac{-5+\mathrm{i} \sqrt{31}}{4}, \frac{-5-\mathrm{i} \sqrt{31}}{4}\right\}

C) {5+i314,5−i314}\left\{\frac{5+\mathrm{i} \sqrt{31}}{4}, \frac{5-\mathrm{i} \sqrt{31}}{4}\right\}

D) {5+314,5−314}\left\{\frac{5+\sqrt{31}}{4}, \frac{5-\sqrt{31}}{4}\right\}
Question
Use the quadratic formula to solve the equation.

- 8x2−3x+8=08 x^{2}-3 x+8=0

A) {3+24716,3−24716}\left\{\frac{3+\sqrt{247}}{16}, \frac{3-\sqrt{247}}{16}\right\}

B) {−3+i24716,−3−i24716}\left\{\frac{-3+\mathrm{i} \sqrt{247}}{16}, \frac{-3-\mathrm{i} \sqrt{247}}{16}\right\}

C) {−3+24716,−3−24716}\left\{\frac{-3+\sqrt{247}}{16}, \frac{-3-\sqrt{247}}{16}\right\}

D) {3+i24716,3−i24716}\left\{\frac{3+\mathrm{i} \sqrt{247}}{16}, \frac{3-\mathrm{i} \sqrt{247}}{16}\right\}
Question
Use the quadratic formula to solve the equation.

- x2−15x=−710x^{2}-\frac{1}{5} x=-\frac{7}{10}

A) {−1+i6910,−1−i6910}\left\{\frac{-1+\mathrm{i} \sqrt{69}}{10}, \frac{-1-\mathrm{i} \sqrt{69}}{10}\right\}

B) {0,−72i}\left\{0,-\frac{7}{2} \mathrm{i}\right\}

C) {1+i6910,1−i6910}\left\{\frac{1+\mathrm{i} \sqrt{69}}{10}, \frac{1-\mathrm{i} \sqrt{69}}{10}\right\}

D) {15i,0}\left\{\frac{1}{5} \mathrm{i}, 0\right\}
Question
Use the quadratic formula to solve the equation.

- 7x2+3x+6=07 x^{2}+3 x+6=0

A) {−3+i15914,−3−i15914}\left\{\frac{-3+i \sqrt{159}}{14}, \frac{-3-i \sqrt{159}}{14}\right\}

B) {3+i15914,3−i15914}\left\{\frac{3+\mathrm{i} \sqrt{159}}{14}, \frac{3-\mathrm{i} \sqrt{159}}{14}\right\}

C) {−3+i1597,−3−i1597}\left\{\frac{-3+\mathrm{i} \sqrt{159}}{7}, \frac{-3-\mathrm{i} \sqrt{159}}{7}\right\}

D) {3+i1597,3−i1597}\left\{\frac{3+\mathrm{i} \sqrt{159}}{7}, \frac{3-\mathrm{i} \sqrt{159}}{7}\right\}
Question
Use the quadratic formula to solve the equation.

- 0.7x2+0.3x+0.5=00.7 x^{2}+0.3 x+0.5=0

A) {3+i13114,3−i13114}\left\{\frac{3+\mathrm{i} \sqrt{131}}{14}, \frac{3-\mathrm{i} \sqrt{131}}{14}\right\}

B) {3+i1317,3−i1317}\left\{\frac{3+\mathrm{i} \sqrt{131}}{7}, \frac{3-\mathrm{i} \sqrt{131}}{7}\right\}

C) {−3+i13114,−3−i13114}\left\{\frac{-3+\mathrm{i} \sqrt{131}}{14}, \frac{-3-\mathrm{i} \sqrt{131}}{14}\right\}

D) {−3+i1317,−3−i1317}\left\{\frac{-3+\mathrm{i} \sqrt{131}}{7}, \frac{-3-\mathrm{i} \sqrt{131}}{7}\right\}
Question
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- s2−7s+6=0s^{2}-7 s+6=0

A) Two rational solutions
B) One rational solution
C) Two irrational solutions
D) Two nonreal complex solutions
Question
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- t2−8t+16=0\mathrm{t}^{2}-8 \mathrm{t}+16=0

A) One rational solution
B) Two rational solutions
C) Two nonreal complex solutions
D) Two irrational solutions
Question
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- v2−5v−2=0\mathrm{v}^{2}-5 \mathrm{v}-2=0

A) One rational solution
B) Two nonreal complex solutions
C) Two irrational solutions
D) Two rational solutions
Question
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- w2+3w+5=0w^{2}+3 w+5=0

A) Two nonreal complex solutions
B) Two rational solutions
C) One rational solution
D) Two irrational solutions
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/339
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Quadratic Equations, Inequalities, and Functions
1
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2+8x+7=0x^{2}+8 x+7=0

A) {1,7}\{1,7\}
B) {−7,0}\{-7,0\}
C) {0,7}\{0,7\}
D) {−7,−1}\{-7,-1\}
{−7,−1}\{-7,-1\}
2
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2+2x−15=0x^{2}+2 x-15=0

A) {5,3}\{5,3\}
B) {−5,3}\{-5,3\}
C) {−3,5}\{-3,5\}
D) {−5,−3}\{-5,-3\}
{−5,3}\{-5,3\}
3
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2+7x+12=0x^{2}+7 x+12=0

A) {3,−4}\{3,-4\}
B) {−3,−4}\{-3,-4\}
C) {3,4}\{3,4\}
D) {−3,4}\{-3,4\}
{−3,−4}\{-3,-4\}
4
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 2x2−14x+24=02 x^{2}-14 x+24=0

A) {3,4}\{3,4\}
B) {−3,4}\{-3,4\}
C) {−4,3}\{-4,3\}
D) {−4,−3}\{-4,-3\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
5
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 3x2+x−44=03 x^{2}+x-44=0

A) {−4,−113}\left\{-4,-\frac{11}{3}\right\}

B) {−113,4}\left\{-\frac{11}{3}, 4\right\}

C) {−4,113}\left\{-4, \frac{11}{3}\right\}

D) {113,4}\left\{\frac{11}{3}, 4\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
6
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 7x2−41x−6=07 x^{2}-41 x-6=0

A) {−7,6}\{-7,6\}

B) {−17,7}\left\{-\frac{1}{7}, 7\right\}

C) {−17,6}\left\{-\frac{1}{7}, 6\right\}

D) {141,−17}\left\{\frac{1}{41},-\frac{1}{7}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
7
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- x2=6x−8x^{2}=6 x-8

A) {−8,−1}\{-8,-1\}
B) {4,2}\{4,2\}
C) {−4,−2}\{-4,-2\}
D) {1,8}\{1,8\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
8
Choose the one alternative that best completes the statement or answers the question.
Use the zero factor property to solve the equation

- 2x2=−15x−252 x^{2}=-15 x-25

A) {−5,−10}\{-5,-10\}

B) {5,52}\left\{5, \frac{5}{2}\right\}

C) {−52,−5}\left\{-\frac{5}{2},-5\right\}

D) {5,−52}\left\{5,-\frac{5}{2}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
9
Use the square root property to solve the equation.

- x2=100x^{2}=100

A) {10}\{10\}

B) {50}\{50\}

C) {10,−10}\{10,-10\}

D) {11,−11}\{11,-11\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
10
Use the square root property to solve the equation.

- x2−25=0x^{2}-25=0

A) {5,−5}\{5,-5\}

B) {13.5}\{13.5\}

C) {5}\{5\}

D) {4,−4}\{4,-4\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
11
Use the square root property to solve the equation.

- 8z2−200=08 z^{2}-200=0

A) {5}\{5\}
B) {6,−6}\{6,-6\}
C) {5,−5}\{5,-5\}
D) {102.5}\{102.5\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
12
Use the square root property to solve the equation.

- −5k2+20=0-5 k^{2}+20=0

A) {−12.5}\{-12.5\}
B) {2,−2}\{2,-2\}
C) {2}\{2\}
D) {4,−4}\{4,-4\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
13
Use the square root property to solve the equation.

- y2=20y^{2}=20

A) {25,−25}\{2 \sqrt{5},-2 \sqrt{5}\}
B) {400}\{400\}
C) {10}\{10\}
D) {20}\{\sqrt{20}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
14
Use the square root property to solve the equation.

- (x+19)2=36(x+19)^{2}=36

A) {−25,−13}\{-25,-13\}
B) {25,13}\{25,13\}
C) {−13}\{-13\}
D) {−55}\{-55\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
15
Use the square root property to solve the equation.

- (p−2)2=13(\mathrm{p}-2)^{2}=13

A) {13−2,−13−2}\{\sqrt{13}-2,-\sqrt{13-2}\}
B) {2+13,2−13}\{2+\sqrt{13}, 2-\sqrt{13}\}
C) {13−−2}\{\sqrt{13}-\sqrt{-2}\}
D) {2+13}\{2+\sqrt{13}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
16
Use the square root property to solve the equation.

- (3s+9)2=25(3 s+9)^{2}=25

A) {43,143}\left\{\frac{4}{3}, \frac{14}{3}\right\}

B) {−43,0}\left\{-\frac{4}{3}, 0\right\}

C) {163}\left\{\frac{16}{3}\right\}

D) {−43,−143}\left\{-\frac{4}{3},-\frac{14}{3}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
17
Use the square root property to solve the equation.

- (7t−3)2=7(7 \mathrm{t}-3)^{2}=7

A) {37i,−37}\left\{\frac{\sqrt{3}}{7} i,-\frac{\sqrt{3}}{7}\right\}

B) {3+77,3−77}\left\{\frac{3+\sqrt{7}}{7}, \frac{3-\sqrt{7}}{7}\right\}

C) {3−77,−3−77}\left\{\frac{3-\sqrt{7}}{7},-\frac{3-\sqrt{7}}{7}\right\}

D) {3+7,3−7}\{3+\sqrt{7}, 3-\sqrt{7}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
18
Use the square root property to solve the equation.

- (x+9)2−6=0(x+9)^{2}-6=0

A) {−9+i6,−9−i6}\{-9+\mathrm{i} \sqrt{6},-9-\mathrm{i} \sqrt{6}\}
B) {−3,15}\{-3,15\}
C) {−3+6,−3−6}\{-3+\sqrt{6},-3-\sqrt{6}\}
D) {−9+6,−9−6}\{-9+\sqrt{6},-9-\sqrt{6}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
19
Solve the problem using Galileo's formula, d=16t2d=16 t^{2} . Round your answer to the nearest tenth.

-Eric has a treehouse 27ft27 \mathrm{ft} above the ground. How long would it take a water balloon dropped from the treehouse to fall to the ground?

A) 5.2sec5.2 \mathrm{sec}
B) 2.8sec2.8 \mathrm{sec}
C) 1.3sec1.3 \mathrm{sec}
D) 11,664sec11,664 \mathrm{sec}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
20
Solve the problem using Galileo's formula, d=16t2d=16 t^{2} . Round your answer to the nearest tenth.

-A young boy is delighted to drop various objects from a hotel balcony to the ground below. If he is 161ft161 \mathrm{ft} above the ground, how long does it take for one of the objects to fall to the ground?

A) 161.0sec161.0 \mathrm{sec}
B) 10.1sec10.1 \mathrm{sec}
C) 12.7sec12.7 \mathrm{sec}
D) 3.2sec3.2 \mathrm{sec}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
21
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+8x+x^{2}+8 x+

A) 16;(x−4)216 ;(x-4)^{2}
B) 64;(x+8)264 ;(x+8)^{2}
C) 0;(x+4)20 ;(x+4)^{2}
D) 16;(x+4)216 ;(x+4)^{2}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
22
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+18x+x^{2}+18 x+

A) 81;(x−9)281 ;(x-9)^{2}
B) 81;(x+9)281 ;(x+9)^{2}
C) 324;(x+18)2324 ;(x+18)^{2}
D) 0;(x+9)}20 ;(x+9)\}^{2}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
23
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2+5x+x^{2}+5 x+

A) 0;(x+5)20 ;(x+5)^{2}

B) 0;(x+52)20 ;\left(x+\frac{5}{2}\right)^{2}

C) 254;(x+52)2\frac{25}{4} ;\left(x+\frac{5}{2}\right)^{2}

D) 254;(x−52)2\frac{25}{4} ;\left(x-\frac{5}{2}\right)^{2}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
24
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2−5x+x^{2}-5 x+

A) 254;(x+52)2\frac{25}{4} ;\left(x+\frac{5}{2}\right)^{2}

B) 0;(x−52)20 ;\left(x-\frac{5}{2}\right)^{2}

C) 254;(x−52)2\frac{25}{4} ;\left(x-\frac{5}{2}\right)^{2}

D) 25;(x−5)225 ;(x-5)^{2}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
25
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2−23x+x^{2}-\frac{2}{3} x+

A) 9;(x−13)29 ;\left(x-\frac{1}{3}\right)^{2}

B) 19;(x+13)2\frac{1}{9} ;\left(x+\frac{1}{3}\right)^{2}

C) −23x;(x−13)2-\frac{2}{3} x ;\left(x-\frac{1}{3}\right)^{2}

D) 19;(x−13)2\frac{1}{9} ;\left(x-\frac{1}{3}\right)^{2}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
26
Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

- x2−54x+x^{2}-\frac{5}{4} x+

A) 0;(x−58)20 ;\left(x-\frac{5}{8}\right)^{2}

B) 2516;(x−58)2\frac{25}{16} ;\left(x-\frac{5}{8}\right)^{2}

C) 2564;(x+58)2\frac{25}{64} ;\left(x+\frac{5}{8}\right)^{2}

D) 2564;(x−58)2\frac{25}{64} ;\left(x-\frac{5}{8}\right)^{2}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
27
Determine the number that will complete the square to solve the equation after the constant term has been written on the right side. Do not actually solve.

- w2−10w−6=0w^{2}-10 w-6=0

A) 9
B) 25
C) -5
D) 0
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
28
Determine the number that will complete the square to solve the equation after the constant term has been written on the right side. Do not actually solve.

- 5x2+x−3=05 x^{2}+x-3=0

A) −1100-\frac{1}{100}
B) 14\frac{1}{4}
C) 100
D) 1100\frac{1}{100}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
29
Solve the equation by completing the square.

- a2+8a−33=0a^{2}+8 a-33=0

A) {−22,−11}\{-22,-11\}
B) {3,−11}\{3,-11\}
C) {6,−6}\{6,-6\}
D) {−3,11}\{-3,11\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
30
Solve the equation by completing the square.

- z2+16z+52=0\mathrm{z}^{2}+16 \mathrm{z}+52=0

A) {8+23}\{8+2 \sqrt{3}\}

B) {8+213,8−213}\{8+2 \sqrt{13}, 8-2 \sqrt{13}\}

C) {−8+23,−8−23}\{-8+2 \sqrt{3},-8-2 \sqrt{3}\}

D) {−16+213}\{-16+2 \sqrt{13}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
31
Solve the equation by completing the square.

- p2+3p−9=0\mathrm{p}^{2}+3 \mathrm{p}-9=0

A) {3+352}\left\{\frac{3+3 \sqrt{5}}{2}\right\}

B) {−3−352}\left\{\frac{-3-3 \sqrt{5}}{2}\right\}

C) {−3+352,−3−352}\left\{\frac{-3+3 \sqrt{5}}{2}, \frac{-3-3 \sqrt{5}}{2}\right\}

D) {−3+35,−3−35}\{-3+3 \sqrt{5},-3-3 \sqrt{5}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
32
Solve the equation by completing the square.

- 6x2+4x−2=06 x^{2}+4 x-2=0

A) {3,0}\{3,0\}
B) {13,−1}\left\{\frac{1}{3},-1\right\}
C) {3,−1}\{3,-1\}
D) {3,1}\{3,1\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
33
Solve the equation by completing the square.

- 21 d2+34 d+8=021 \mathrm{~d}^{2}+34 \mathrm{~d}+8=0

A) {27,43}\left\{\frac{2}{7}, \frac{4}{3}\right\}

B) {−27,−43}\left\{-\frac{2}{7},-\frac{4}{3}\right\}

C) {72,34}\left\{\frac{7}{2}, \frac{3}{4}\right\}

D) {−72,−43}\left\{-\frac{7}{2},-\frac{4}{3}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
34
Solve the equation by completing the square.

- 4m2+15m=04 m^{2}+15 m=0

A) {0}\{0\}

B) {154,−154}\left\{\frac{15}{4},-\frac{15}{4}\right\}

C) {−154,0}\left\{-\frac{15}{4}, 0\right\}

D) {154,0}\left\{\frac{15}{4}, 0\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
35
Solve the equation by completing the square.

- 3x2+8x=−23 x^{2}+8 x=-2

A) {−8+103,−8−103}\left\{\frac{-8+\sqrt{10}}{3}, \frac{-8-\sqrt{10}}{3}\right\}

B) {−4+106,−4−106}\left\{\frac{-4+\sqrt{10}}{6}, \frac{-4-\sqrt{10}}{6}\right\}

C) {−4+223,−4−223}\left\{\frac{-4+\sqrt{22}}{3}, \frac{-4-\sqrt{22}}{3}\right\}

D) {−4+103,−4−103}\left\{\frac{-4+\sqrt{10}}{3}, \frac{-4-\sqrt{10}}{3}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
36
Solve the equation by completing the square.

- 2n2=−12n−52 n^{2}=-12 n-5

A) {−6+462,−6−462}\left\{\frac{-6+\sqrt{46}}{2}, \frac{-6-\sqrt{46}}{2}\right\}

B) {−6+264,−6−264}\left\{\frac{-6+\sqrt{26}}{4}, \frac{-6-\sqrt{26}}{4}\right\}

C) {−6+262,−6−262}\left\{\frac{-6+\sqrt{26}}{2}, \frac{-6-\sqrt{26}}{2}\right\}

D) {−12+262,−12−262}\left\{\frac{-12+\sqrt{26}}{2}, \frac{-12-\sqrt{26}}{2}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
37
Solve the equation by completing the square.

- 4r2+22r=−204 \mathrm{r}^{2}+22 \mathrm{r}=-20

A) {−11+418,−11−418}\left\{\frac{-11+\sqrt{41}}{8}, \frac{-11-\sqrt{41}}{8}\right\}

B) {−11+414,−11−414}\left\{\frac{-11+\sqrt{41}}{4}, \frac{-11-\sqrt{41}}{4}\right\}

C) {−11+2014,−11−2014}\left\{\frac{-11+\sqrt{201}}{4}, \frac{-11-\sqrt{201}}{4}\right\}

D) {−22+414,−22−414}\left\{\frac{-22+\sqrt{41}}{4}, \frac{-22-\sqrt{41}}{4}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
38
Solve the equation by completing the square.

- 0.7 m2+0.8 m+0.2=00.7 \mathrm{~m}^{2}+0.8 \mathrm{~m}+0.2=0

A) {−4+214,−4−214}\left\{\frac{-4+\sqrt{2}}{14}, \frac{-4-\sqrt{2}}{14}\right\}

B) {−4+27,−4−27}\left\{\frac{-4+\sqrt{2}}{7}, \frac{-4-\sqrt{2}}{7}\right\}

C) {−4+307,−4−307}\left\{\frac{-4+\sqrt{30}}{7}, \frac{-4-\sqrt{30}}{7}\right\}

D) {−8+27,−8−27}\left\{\frac{-8+\sqrt{2}}{7}, \frac{-8-\sqrt{2}}{7}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
39
Solve the equation by completing the square.

- 0.1x2−0.2x−0.1=00.1 \mathrm{x}^{2}-0.2 \mathrm{x}-0.1=0

A) {1+2}\{1+\sqrt{2}\}
B) {1+2,1−2}\{1+\sqrt{2}, 1-\sqrt{2}\}
C) {2−2}\{2-\sqrt{2}\}
D) {2+2,2−2}\{2+\sqrt{2}, 2-\sqrt{2}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
40
Find the nonreal complex solutions of the equation.

- x2−10x+29=0x^{2}-10 x+29=0

A) {7,3}\{7,3\}
B) {10+4i,10−4i}\{10+4 \mathrm{i}, 10-4 \mathrm{i}\}
C) {5+2i,5−2i}\{5+2 \mathrm{i}, 5-2 \mathrm{i}\}
D) {−5+2i,−5−2i}\{-5+2 \mathrm{i},-5-2 \mathrm{i}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
41
Find the nonreal complex solutions of the equation.

- x2+4x+20=0\mathrm{x}^{2}+4 \mathrm{x}+20=0

A) {2,−6}\{2,-6\}
B) {−2+25i,−2−25i}\{-2+2 \sqrt{5} i,-2-2 \sqrt{5} i\}
C) {−2+4i,−2−4i}\{-2+4 \mathrm{i},-2-4 \mathrm{i}\}
D) {2+4i,2−4i}\{2+4 \mathrm{i}, 2-4 \mathrm{i}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
42
Find the nonreal complex solutions of the equation.

- x2+x+2=0x^{2}+x+2=0

A) {1+−72,1−−72}\left\{\frac{1+\sqrt{-7}}{2}, \frac{1-\sqrt{-7}}{2}\right\}

B) {−1+−72,−1−−72}\left\{\frac{-1+\sqrt{-7}}{2}, \frac{-1-\sqrt{-7}}{2}\right\}

C) {1+i72,1−i72}\left\{\frac{1+\mathrm{i} \sqrt{7}}{2}, \frac{1-\mathrm{i} \sqrt{7}}{2}\right\}

D) {−1+i72,−1−i72}\left\{\frac{-1+\mathrm{i} \sqrt{7}}{2}, \frac{-1-\mathrm{i} \sqrt{7}}{2}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
43
Find the nonreal complex solutions of the equation.

- 5x2−5x+7=05 x^{2}-5 x+7=0

A) {5+11510,5−11510}\left\{\frac{5+\sqrt{115}}{10}, \frac{5-\sqrt{115}}{10}\right\}

B) {−5+11510,−5−11510}\left\{\frac{-5+\sqrt{115}}{10}, \frac{-5-\sqrt{115}}{10}\right\}

C) {−5+i11510,−5−i11510}\left\{\frac{-5+\mathrm{i} \sqrt{115}}{10}, \frac{-5-\mathrm{i} \sqrt{115}}{10}\right\}

D) {5+i11510,5−i11510}\left\{\frac{5+\mathrm{i} \sqrt{115}}{10}, \frac{5-\mathrm{i} \sqrt{115}}{10}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
44
Find the nonreal complex solutions of the equation.

- −5x2−4x−4=0-5 x^{2}-4 x-4=0

A) {25,−65}\left\{\frac{2}{5},-\frac{6}{5}\right\}

B) {−4+i6410,−4−i6410}\left\{\frac{-4+\mathrm{i} \sqrt{64}}{10}, \frac{-4-\mathrm{i} \sqrt{64}}{10}\right\}

C) {−2+4i5,−2−4i5}\left\{\frac{-2+4 \mathrm{i}}{5}, \frac{-2-4 \mathrm{i}}{5}\right\}

D) {2+4i5,2−4i5}\left\{\frac{2+4 \mathrm{i}}{5}, \frac{2-4 \mathrm{i}}{5}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
45
Find the nonreal complex solutions of the equation.

- 6x2−7x+5=06 x^{2}-7 x+5=0

A) {7+7112,7−7112}\left\{\frac{7+\sqrt{71}}{12}, \frac{7-\sqrt{71}}{12}\right\}

B) {−7+i7112,−7−i7112}\left\{\frac{-7+\mathrm{i} \sqrt{71}}{12}, \frac{-7-\mathrm{i} \sqrt{71}}{12}\right\}

C) {7+i7112,7−i7112}\left\{\frac{7+i \sqrt{71}}{12}, \frac{7-i \sqrt{71}}{12}\right\}

D) {−7+7112,−7−7112}\left\{\frac{-7+\sqrt{71}}{12}, \frac{-7-\sqrt{71}}{12}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
46
Find the nonreal complex solutions of the equation.

- 9x2+5x+5=09 x^{2}+5 x+5=0

A) {−5+i15518,−5−i15518}\left\{\frac{-5+\mathrm{i} \sqrt{155}}{18}, \frac{-5-\mathrm{i} \sqrt{155}}{18}\right\}

B) {5+i1559,5−i1559}\left\{\frac{5+\mathrm{i} \sqrt{155}}{9}, \frac{5-\mathrm{i} \sqrt{155}}{9}\right\}

C) {−5+i1559,−5−i1559}\left\{\frac{-5+\mathrm{i} \sqrt{155}}{9}, \frac{-5-\mathrm{i} \sqrt{155}}{9}\right\}

D) {5+i15518,5−i15518}\left\{\frac{5+\mathrm{i} \sqrt{155}}{18}, \frac{5-\mathrm{i} \sqrt{155}}{18}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
47
Solve for xx . Assume that aa and bb represent positive real numbers.

- x2−b=0x^{2}-b=0

A) {b,−b}\{b,-b\}
B) {b,−b}\{\sqrt{b}, \sqrt{-b}\}
C) {b}\{b\}
D) {b,−b}\{\sqrt{b},-\sqrt{b}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
48
Solve for xx . Assume that aa and bb represent positive real numbers.

- x2=121bx^{2}=121 b

A) {−11b,11b}\{-11 b, 11 b\}
B) {11b,−11b}\{\sqrt{11 b},-\sqrt{11 b}\}
C) {−11ib,11ib}\{-11 \mathrm{i} \sqrt{\mathrm{b}}, 11 \mathrm{i} \sqrt{\mathrm{b}}\}
D) {−11b,11b}\{-11 \sqrt{b}, 11 \sqrt{b}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
49
Solve for xx . Assume that aa and bb represent positive real numbers.

- 25x2=64a25 x^{2}=64 a

A) {−8a5,8a5}\left\{\frac{-8 a}{5}, \frac{8 a}{5}\right\}

B) {−8a5,8a5}\left\{\frac{-8 \sqrt{a}}{5}, \frac{8 \sqrt{a}}{5}\right\}

C) {−8a5,8a5}\left\{\frac{-\sqrt{8 a}}{5}, \frac{\sqrt{8 a}}{5}\right\}

D) {−64a25,64a25}\left\{\frac{-64 \sqrt{a}}{25}, \frac{64 \sqrt{a}}{25}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
50
Solve for xx . Assume that aa and bb represent positive real numbers.

- (3x−4b)2=7a(3 x-4 b)^{2}=7 a

A) {16b2+7a9,−16b2−7a9}\left\{\frac{\sqrt{16 b^{2}+7 a}}{9}, \frac{-\sqrt{16 b^{2}-7 a}}{9}\right\}

B) {4b+7a3,4b−7a3}\left\{\frac{4 b+\sqrt{7 a}}{3}, \frac{4 b-\sqrt{7 a}}{3}\right\}

C) {4b+7a3⋅−4b−7a3}\left\{\frac{4 b+\sqrt{7 a}}{3} \cdot \frac{-\sqrt{4 b-7 a}}{3}\right\}

D) {4b+7a3,−4b−7a3}\left\{\frac{4 b+7 a}{3}, \frac{-4 b-7 a}{3}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
51
Solve for xx . Assume that aa and bb represent positive real numbers.

- x2−a2−25=0\mathrm{x}^{2}-\mathrm{a}^{2}-25=0

A) {a2+25,−a2−25}\left\{\sqrt{a^{2}+25},-\sqrt{a^{2}-25}\right\}

B) {a2+25,−a2+25}\left\{\sqrt{a^{2}+25},-\sqrt{a^{2}+25}\right\}

C) {a2+25,a2−25}\left\{a^{2}+25, a^{2}-25\right\}

D) {a2+5,−a2−5}\left\{\sqrt{a^{2}+5},-\sqrt{a^{2}-5}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
52
Define the term "quadratic equation".
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
53
What is the usual first step taken in solving the equation 3x2−2x=83 x^{2}-2 x=8 by completing the square?
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
54
To complete the square of 2x2+4x=82 x^{2}+4 x=8 , is it ever a good idea to divide by the coefficient of x2x^{2} ?
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
55
To complete the square for an equation in the form x2−ax=bx^{2}-a x=b , is it ever appropriate to subtract a positive number from each side?
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
56
Use the equation 5x2+6x=c5 x^{2}+6 x=c to explain how to solve a quadratic equation by completing the square.
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
57
Choose the one alternative that best completes the statement or answers the question.

-Which method of solving the following equation would probably be more convenient? (5x−4)2=24(5 x-4)^{2}=24

A) Completing the square
B) Square root property
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
58
Give a one-sentence description or explanation of the square root property.
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
59
Find the mistake, then find the correct answer.
line 1x2−6x=−81 \quad x^{2}-6 x=-8
line 2x2−6x+9=−8+92 \quad x^{2}-6 x+9=-8+9
line 3(x−3)2=13 \quad(x-3)^{2}=1
line 4x−3=14 \quad x-3=\sqrt{1}
line 5x−3=15 \quad x-3=1
line 6x−3+3=1+36 \quad x-3+3=1+3
line 7x=47 \quad x=4
line 88 \quad The solution set is {4}\{4\} .
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
60
Find the mistake, then find the correct answer.
Solve for x:x2=50\mathrm{x}: \mathrm{x}^{2}=50
line 1x2=501 \quad \sqrt{x^{2}}=\sqrt{50}
line 2x=252 \quad x=2 \sqrt{5} or x=−25x=-2 \sqrt{5}
line 3 The solution set is {25,−25}\{2 \sqrt{5},-2 \sqrt{5}\} .
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
61
Find the mistake, then find the correct answer.
Solve for x:(x−5)2=−13\mathrm{x}:(\mathrm{x}-5)^{2}=-13
line 1x−5=131 \quad x-5=\sqrt{13}
line 2x=5+132 \quad x=5+\sqrt{13} or x=5−13x=5-\sqrt{13}
line 3 The solution set is {5+13,5−13}\{5+\sqrt{13}, 5-\sqrt{13}\} .
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
62
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 2n2=−10n−52 n^{2}=-10 n-5

A) {−5+352,−5−352}\left\{\frac{-5+\sqrt{35}}{2}, \frac{-5-\sqrt{35}}{2}\right\}

B) {−5+152,−5−152}\left\{\frac{-5+\sqrt{15}}{2}, \frac{-5-\sqrt{15}}{2}\right\}

C) {−10+152,−10−152}\left\{\frac{-10+\sqrt{15}}{2}, \frac{-10-\sqrt{15}}{2}\right\}

D) {−5+154,−5−154}\left\{\frac{-5+\sqrt{15}}{4}, \frac{-5-\sqrt{15}}{4}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
63
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- z23=z2+56\frac{z^{2}}{3}=\frac{z}{2}+\frac{5}{6}

A) {−1,52}\left\{-1, \frac{5}{2}\right\}

B) {3+2104,3−2104}\left\{\frac{3+2 \sqrt{10}}{4}, \frac{3-2 \sqrt{10}}{4}\right\}

C) {52}\left\{\frac{5}{2}\right\}

D) {−1}\{-1\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
64
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 34s2+12s+112=0\frac{3}{4} s^{2}+\frac{1}{2} s+\frac{1}{12}=0

A) {−1+23,−1−23}\left\{\frac{-1+\sqrt{2}}{3}, \frac{-1-\sqrt{2}}{3}\right\}

B) {−13}\left\{-\frac{1}{3}\right\}

C) {13}\left\{\frac{1}{3}\right\}

D) {13,−13}\left\{\frac{1}{3},-\frac{1}{3}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
65
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 3x(x+5)=23 x(x+5)=2

A) {1}\{1\}

B) {−35}\left\{-\frac{3}{5}\right\}

C) {15+2496,15−2496}\left\{\frac{15+\sqrt{249}}{6}, \frac{15-\sqrt{249}}{6}\right\}

D) {−15+2496,−15−2496}\left\{\frac{-15+\sqrt{249}}{6}, \frac{-15-\sqrt{249}}{6}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
66
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- a2+14a+40=0\mathrm{a}^{2}+14 \mathrm{a}+40=0

A) {210,−210}\{2 \sqrt{10},-2 \sqrt{10}\}
B) {−20,−8}\{-20,-8\}
C) {−10,−4}\{-10,-4\}
D) {4,10}\{4,10\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
67
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- 9x2+2x−7=09 x^{2}+2 x-7=0

A) {97,1}\left\{\frac{9}{7}, 1\right\}

B) {97,−1}\left\{\frac{9}{7},-1\right\}

C) {79,−1}\left\{\frac{7}{9},-1\right\}

D) {97,0}\left\{\frac{9}{7}, 0\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
68
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- x2=9−4x\mathrm{x}^{2}=9-4 \mathrm{x}

A) {2+13}\{2+\sqrt{13}\}

B) {−2+213,−2−213}\{-2+2 \sqrt{13},-2-2 \sqrt{13}\}

C) {−1+13,−1−13}\{-1+\sqrt{13},-1-\sqrt{13}\}

D) {−2+13,−2−13}\{-2+\sqrt{13},-2-\sqrt{13}\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
69
Choose the one alternative that best completes the statement or answers the question.
Use the quadratic formula to solve the equation. (All solutions are real numbers.)

- (2x−1)(x+1)=6(2 x-1)(x+1)=6

A) {1+574,1−574}\left\{\frac{1+\sqrt{57}}{4}, \frac{1-\sqrt{57}}{4}\right\}

B) {1+572,1−572}\left\{\frac{1+\sqrt{57}}{2}, \frac{1-\sqrt{57}}{2}\right\}

C) {−1+574,−1−574}\left\{\frac{-1+\sqrt{57}}{4}, \frac{-1-\sqrt{57}}{4}\right\}

D) {−1+372,−1−372}\left\{\frac{-1+\sqrt{37}}{2}, \frac{-1-\sqrt{37}}{2}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
70
Use the quadratic formula to solve the equation.

- x2+x+6=0x^{2}+x+6=0

A) {1+232,1−232}\left\{\frac{1+\sqrt{23}}{2}, \frac{1-\sqrt{23}}{2}\right\}

B) {−1+232,−1−232}\left\{\frac{-1+\sqrt{23}}{2}, \frac{-1-\sqrt{23}}{2}\right\}

C) {−1+i232,−1−i232}\left\{\frac{-1+\mathrm{i} \sqrt{23}}{2}, \frac{-1-\mathrm{i} \sqrt{23}}{2}\right\}

D) {1+i232,1−i232}\left\{\frac{1+\mathrm{i} \sqrt{23}}{2}, \frac{1-\mathrm{i} \sqrt{23}}{2}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
71
Use the quadratic formula to solve the equation.

- 8x2+7x=−28 x^{2}+7 x=-2

A) {7+1516,7−1516}\left\{\frac{7+\sqrt{15}}{16}, \frac{7-\sqrt{15}}{16}\right\}

B) {−7+1516,−7−1516}\left\{\frac{-7+\sqrt{15}}{16}, \frac{-7-\sqrt{15}}{16}\right\}

C) {−7+i1516,−7−i1516}\left\{\frac{-7+\mathrm{i} \sqrt{15}}{16}, \frac{-7-\mathrm{i} \sqrt{15}}{16}\right\}

D) {7+i1516,7−i1516}\left\{\frac{7+\mathrm{i} \sqrt{15}}{16}, \frac{7-\mathrm{i} \sqrt{15}}{16}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
72
Use the quadratic formula to solve the equation.

- 2x2=−5x−72 x^{2}=-5 x-7

A) {−5+314,−5−314}\left\{\frac{-5+\sqrt{31}}{4}, \frac{-5-\sqrt{31}}{4}\right\}

B) {−5+i314,−5−i314}\left\{\frac{-5+\mathrm{i} \sqrt{31}}{4}, \frac{-5-\mathrm{i} \sqrt{31}}{4}\right\}

C) {5+i314,5−i314}\left\{\frac{5+\mathrm{i} \sqrt{31}}{4}, \frac{5-\mathrm{i} \sqrt{31}}{4}\right\}

D) {5+314,5−314}\left\{\frac{5+\sqrt{31}}{4}, \frac{5-\sqrt{31}}{4}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
73
Use the quadratic formula to solve the equation.

- 8x2−3x+8=08 x^{2}-3 x+8=0

A) {3+24716,3−24716}\left\{\frac{3+\sqrt{247}}{16}, \frac{3-\sqrt{247}}{16}\right\}

B) {−3+i24716,−3−i24716}\left\{\frac{-3+\mathrm{i} \sqrt{247}}{16}, \frac{-3-\mathrm{i} \sqrt{247}}{16}\right\}

C) {−3+24716,−3−24716}\left\{\frac{-3+\sqrt{247}}{16}, \frac{-3-\sqrt{247}}{16}\right\}

D) {3+i24716,3−i24716}\left\{\frac{3+\mathrm{i} \sqrt{247}}{16}, \frac{3-\mathrm{i} \sqrt{247}}{16}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
74
Use the quadratic formula to solve the equation.

- x2−15x=−710x^{2}-\frac{1}{5} x=-\frac{7}{10}

A) {−1+i6910,−1−i6910}\left\{\frac{-1+\mathrm{i} \sqrt{69}}{10}, \frac{-1-\mathrm{i} \sqrt{69}}{10}\right\}

B) {0,−72i}\left\{0,-\frac{7}{2} \mathrm{i}\right\}

C) {1+i6910,1−i6910}\left\{\frac{1+\mathrm{i} \sqrt{69}}{10}, \frac{1-\mathrm{i} \sqrt{69}}{10}\right\}

D) {15i,0}\left\{\frac{1}{5} \mathrm{i}, 0\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
75
Use the quadratic formula to solve the equation.

- 7x2+3x+6=07 x^{2}+3 x+6=0

A) {−3+i15914,−3−i15914}\left\{\frac{-3+i \sqrt{159}}{14}, \frac{-3-i \sqrt{159}}{14}\right\}

B) {3+i15914,3−i15914}\left\{\frac{3+\mathrm{i} \sqrt{159}}{14}, \frac{3-\mathrm{i} \sqrt{159}}{14}\right\}

C) {−3+i1597,−3−i1597}\left\{\frac{-3+\mathrm{i} \sqrt{159}}{7}, \frac{-3-\mathrm{i} \sqrt{159}}{7}\right\}

D) {3+i1597,3−i1597}\left\{\frac{3+\mathrm{i} \sqrt{159}}{7}, \frac{3-\mathrm{i} \sqrt{159}}{7}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
76
Use the quadratic formula to solve the equation.

- 0.7x2+0.3x+0.5=00.7 x^{2}+0.3 x+0.5=0

A) {3+i13114,3−i13114}\left\{\frac{3+\mathrm{i} \sqrt{131}}{14}, \frac{3-\mathrm{i} \sqrt{131}}{14}\right\}

B) {3+i1317,3−i1317}\left\{\frac{3+\mathrm{i} \sqrt{131}}{7}, \frac{3-\mathrm{i} \sqrt{131}}{7}\right\}

C) {−3+i13114,−3−i13114}\left\{\frac{-3+\mathrm{i} \sqrt{131}}{14}, \frac{-3-\mathrm{i} \sqrt{131}}{14}\right\}

D) {−3+i1317,−3−i1317}\left\{\frac{-3+\mathrm{i} \sqrt{131}}{7}, \frac{-3-\mathrm{i} \sqrt{131}}{7}\right\}
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
77
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- s2−7s+6=0s^{2}-7 s+6=0

A) Two rational solutions
B) One rational solution
C) Two irrational solutions
D) Two nonreal complex solutions
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
78
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- t2−8t+16=0\mathrm{t}^{2}-8 \mathrm{t}+16=0

A) One rational solution
B) Two rational solutions
C) Two nonreal complex solutions
D) Two irrational solutions
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
79
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- v2−5v−2=0\mathrm{v}^{2}-5 \mathrm{v}-2=0

A) One rational solution
B) Two nonreal complex solutions
C) Two irrational solutions
D) Two rational solutions
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
80
Use the discriminant to determine whether the equation has two rational solutions, one rational solution, two irrational solutions, or two nonreal complex solutions. Do not actually solve.

- w2+3w+5=0w^{2}+3 w+5=0

A) Two nonreal complex solutions
B) Two rational solutions
C) One rational solution
D) Two irrational solutions
Unlock Deck
Unlock for access to all 339 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 339 flashcards in this deck.