Deck 6: Symmetrical Faults

Full screen (f)
exit full mode
Question
In the circuit of Figure 7.1,V=2207.1, V=220 volts, L=3mH,R=0.5ΩL=3 \mathrm{mH}, \mathrm{R}=0.5 \Omega , and ω=2π60\omega=2 \pi 60 rad/s\mathrm{rad} / \mathrm{s} . Determine (a) the rms symmetrical fault current; (b) the rms asymmetrical fault current at the instant the switch closes, assuming maximum dc offset; (c) the rms asymmetrical fault current 5 cycles after the switch closes, assuming maximum dc offset; (d) the dc offset as a function of time if the switch closes when the instantaneous source voltage is 244 volts.
Use Space or
up arrow
down arrow
to flip the card.
Question
Repeat Example 7.1 with V=4kV,X=3Ω\mathrm{V}=4 \mathrm{kV}, \mathrm{X}=3 \Omega , and R=1Ω\mathrm{R}=1 \Omega .
Question
A 1500MVA20kV,60Hz1500-\mathrm{MVA} 20-\mathrm{kV}, 60-\mathrm{Hz} three-phase generator is connected through a 1500MVA1500-\mathrm{MVA} 20kVΔ/500kV20-\mathrm{kV} \Delta / 500-\mathrm{kV} Y transformer to a 500kV500-\mathrm{kV} circuit breaker and a 500kV500-\mathrm{kV} transmission line. The generator reactances are Xd=0.17,Xd=0.30\mathrm{X}_{d}^{\prime \prime}=0.17, \mathrm{X}_{d}^{\prime}=0.30 , and Xd=1.5\mathrm{X}_{d}=1.5 per unit, and its time constants are Td=0.05, Td=1.0\mathrm{T}_{d}^{\prime \prime}=0.05, \mathrm{~T}_{d}^{\prime}=1.0 , and TA=0.10 s\mathrm{T}_{\mathrm{A}}=0.10 \mathrm{~s} . The transformer series reactance is 0.10 per unit; transformer losses and exciting current are neglected. A three-phase short-circuit occurs on the line side of the circuit breaker when the generator is operated at rated terminal voltage and at no-load. The breaker interrupts the fault 3 cycles after fault inception. Determine (a) the subtransient current through the breaker in per-unit and in kA rms; and (b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. Neglect the effect of the transformer on the time constants.
Question
For Test Bank Problem 7.3, determine (a) the instantaneous symmetrical fault current in kA in phase aa of the generator as a function of time, assuming maximum dc offset occurs in this generator phase; and (b) the maximum dc offset current in kA as a function of time that can occur in any one generator phase.
Question
A 500kV500-\mathrm{kV} three-phase transmission line has a 2.2kA2.2-\mathrm{kA} continuous current rating and a 2.5kA2.5-\mathrm{kA} maximum short-time overload rating, with a 525kV525-\mathrm{kV} maximum operating voltage. Maximum symmetrical fault current on the line is 30kA30 \mathrm{kA} . Select a circuit breaker for this line from Table 7.10.in the text
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/5
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: Symmetrical Faults
1
In the circuit of Figure 7.1,V=2207.1, V=220 volts, L=3mH,R=0.5ΩL=3 \mathrm{mH}, \mathrm{R}=0.5 \Omega , and ω=2π60\omega=2 \pi 60 rad/s\mathrm{rad} / \mathrm{s} . Determine (a) the rms symmetrical fault current; (b) the rms asymmetrical fault current at the instant the switch closes, assuming maximum dc offset; (c) the rms asymmetrical fault current 5 cycles after the switch closes, assuming maximum dc offset; (d) the dc offset as a function of time if the switch closes when the instantaneous source voltage is 244 volts.
(a) Ƶˉ=R+jωL=0.5+j2π(60)3×103=0.5+j1.131\bar{Ƶ}=R+j \omega L=0.5+j 2 \pi(60) 3 \times 10^{-3}=0.5+j 1.131
=1.236666.15Ω;Ƶ=1.2366Ω,θ=66.15=1.2366 \angle 66.15^{\circ} \Omega ; Ƶ=1.2366 \Omega, \theta=66.15^{\circ}
Iac=V/Ƶ=220/1.2366=177.9 AI_{a c}=V / Ƶ=220 / 1.2366=177.9 \mathrm{~A}
(b) Irms(0)=Iack(0)=177.93=308 AI_{r m s}(0)=I_{a c} k(0)=177.9 \sqrt{3}=308 \mathrm{~A}
(c) Using Eq. (7.1.11) and (7.1.12)
X/R=1.131/0.5=2.262;k(τ=5 cycles )=1+2e4π(5)2.262k(5 cycles )×1.0Irms(5 cycles )=Iack(5 cycles )=177.9 A\begin{gathered}X / R=1.131 / 0.5=2.262 ; k(\tau=5 \text { cycles })=\sqrt{1+2 e \frac{-4 \pi(5)}{2.262}} \\k(5 \text { cycles }) × 1.0 \\I_{r m s}(5 \text { cycles })=I_{a c} k(5 \text { cycles })=177.9 \mathrm{~A}\end{gathered}
(d) Using Eq. (7.1.1)
V(0)=2Vsinα=244 Volts α=sin1(2442277)=38.53\begin{aligned}V(0) & =\sqrt{2} V \sin \alpha=244 \text { Volts } \\\alpha & =\sin ^{-1}\left(\frac{244}{\sqrt{2} 277}\right)=38.53^{\circ}\end{aligned}
Using Eq. (7.1.4)
idc(t)=2VƵsin(αθ)et/Tidc(t)=2(220)1.2366sin(38.5366.15)et/T=116.62et/TT=L/R=3×103/0.5=6×103 seconds idc(t)=116.62et/(6×103)A\begin{aligned}i_{d c}(t) & =-\frac{\sqrt{2} V}{Ƶ} \sin (\alpha-\theta) e^{-t / T} \\i_{d c}(t) & =-\frac{\sqrt{2}(220)}{1.2366} \sin \left(38.53^{\circ}-66.15^{\circ}\right) e^{-t / T} \\& =116.62 e^{-t / T} \\\mathbf{T} & =L / R=3 \times 10^{-3} / 0.5=6 \times 10^{-3} \text { seconds } \\i_{d c}(t) & =116.62 e^{-t /\left(6 \times 10^{-3}\right)} \mathrm{A}\end{aligned}
2
Repeat Example 7.1 with V=4kV,X=3Ω\mathrm{V}=4 \mathrm{kV}, \mathrm{X}=3 \Omega , and R=1Ω\mathrm{R}=1 \Omega .
(a) Ƶˉ=1+j3=3.162371.57Ω\bar{Ƶ}=1+j 3=3.1623 \angle 71.57^{\circ} \Omega
Iac=VƵ=40003.1623=1265.AI_{a c}=\frac{V}{Ƶ}=\frac{4000}{3.1623}=\underline{\underline{1265 . \mathrm{A}}}
(b) Irms(0)=12653=2191.AI_{r m s}(0)=1265 \sqrt{3}=\underline{2191.A }
(c) XR=3k(5)=1+2e4π(5)/3=1.0\frac{X}{R}=3 \quad k(5)=\sqrt{1+2 e^{-4 \pi(5) / 3}}=1.0
Irms(5)=k(5)Iac=1.0(1265)=1265.AI_{r m s}(5)=k(5) I_{a c}=1.0(1265)=1265 . \mathrm{A}
(d) α=sin1(30040002)=3.04\alpha=\sin ^{-1}\left(\frac{300}{4000 \sqrt{2}}\right)=3.04^{\circ}
T=LR=XWR=3(2π60)(1)=7.958×103 Sidc(t)=2(4000)3.1623sin(3.0471.57)et/Tidc(t)=1665.et/(7.958×103)A\begin{aligned}T & =\frac{L}{R}=\frac{X}{W R}=\frac{3}{(2 \pi 60)(1)}=7.958 \times 10^{-3} \mathrm{~S} \\i_{d c}(t) & =\frac{-\sqrt{2}(4000)}{3.1623} \sin \left(3.04^{\circ}-71.57^{\circ}\right) e^{-t / T} \\i_{d c}(t) & =\underline{\underline{1665 . e^{-t /\left(7.958 \times 10^{-3}\right)}} \mathrm{A}}\end{aligned}
3
A 1500MVA20kV,60Hz1500-\mathrm{MVA} 20-\mathrm{kV}, 60-\mathrm{Hz} three-phase generator is connected through a 1500MVA1500-\mathrm{MVA} 20kVΔ/500kV20-\mathrm{kV} \Delta / 500-\mathrm{kV} Y transformer to a 500kV500-\mathrm{kV} circuit breaker and a 500kV500-\mathrm{kV} transmission line. The generator reactances are Xd=0.17,Xd=0.30\mathrm{X}_{d}^{\prime \prime}=0.17, \mathrm{X}_{d}^{\prime}=0.30 , and Xd=1.5\mathrm{X}_{d}=1.5 per unit, and its time constants are Td=0.05, Td=1.0\mathrm{T}_{d}^{\prime \prime}=0.05, \mathrm{~T}_{d}^{\prime}=1.0 , and TA=0.10 s\mathrm{T}_{\mathrm{A}}=0.10 \mathrm{~s} . The transformer series reactance is 0.10 per unit; transformer losses and exciting current are neglected. A three-phase short-circuit occurs on the line side of the circuit breaker when the generator is operated at rated terminal voltage and at no-load. The breaker interrupts the fault 3 cycles after fault inception. Determine (a) the subtransient current through the breaker in per-unit and in kA rms; and (b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. Neglect the effect of the transformer on the time constants.
(a) Neglecting the transformer winding resistance,
I=EqXd+XTR=1.00.17+0.10=3.704 Per unit I^{\prime \prime}=\frac{E q}{X_{d}^{\prime \prime}+X_{T R}}=\frac{1.0}{0.17+0.10}=\underline{\underline{3.704}} \text { Per unit }
The base current on the high-voltage side of the transformer is:
Ibase H=Srated 3VH rated =15003(500)=1.732kAI=(3.704)(1.732)=6.415kA\begin{aligned}& I_{\text {base } H}=\frac{S_{\text {rated }}}{\sqrt{3} V_{\text {H rated }}}=\frac{1500}{\sqrt{3}(500)}=1.732 \mathrm{kA} \\& I^{\prime \prime}=(3.704)(1.732)=\underline{\underline{6.415}} \mathrm{kA}\end{aligned}
(b) Using Eq (7.2.1) at t3t \quad 3 cycles 0.05 S0.05 \mathrm{~S} with the transformer reactance included:
Iac(0.05)=1.0[(10.2710.40)e0.050.05+(10.4011.6)e0.051.0+11.6]=2.851 Per Unit \begin{aligned}I_{a c}(0.05) & =1.0\left[\left(\frac{1}{0.27}-\frac{1}{0.40}\right) e^{\frac{-0.05}{0.05}}+\left(\frac{1}{0.40}-\frac{1}{1.6}\right) e^{\frac{-0.05}{1.0}}+\frac{1}{1.6}\right] \\& =2.851 \text { Per Unit }\end{aligned}
Using Eq (7.2.5),
idc(t)=2(3.704)et/0.10=5.238et/0.10 Per unit i_{d c}(t)=\sqrt{2}(3.704) e^{-t / 0.10}=5.238 e^{-t / 0.10} \text { Per unit }
The rms asymmetrical current that the breaker interrupts is
Irms(0.05S)=Iac2(0.05)+idc2(0.05)=(2.851)2+(5.238)2e2(0.05)0.10=4.269 Per Unit =(4.269)(1.732)=7.394kA\begin{aligned}I_{r m s}(0.05 S) & =\sqrt{I_{a c}^{2}(0.05)+i_{d c}^{2}(0.05)} \\& =\sqrt{(2.851)^{2}+(5.238)^{2} e^{\frac{-2(0.05)}{0.10}}} \\& =4.269 \text { Per Unit }=(4.269)(1.732)=\underline{\underline{7.394}} \mathrm{kA}\end{aligned}
4
For Test Bank Problem 7.3, determine (a) the instantaneous symmetrical fault current in kA in phase aa of the generator as a function of time, assuming maximum dc offset occurs in this generator phase; and (b) the maximum dc offset current in kA as a function of time that can occur in any one generator phase.
Unlock Deck
Unlock for access to all 5 flashcards in this deck.
Unlock Deck
k this deck
5
A 500kV500-\mathrm{kV} three-phase transmission line has a 2.2kA2.2-\mathrm{kA} continuous current rating and a 2.5kA2.5-\mathrm{kA} maximum short-time overload rating, with a 525kV525-\mathrm{kV} maximum operating voltage. Maximum symmetrical fault current on the line is 30kA30 \mathrm{kA} . Select a circuit breaker for this line from Table 7.10.in the text
Unlock Deck
Unlock for access to all 5 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 5 flashcards in this deck.