Deck 12: Matrices

Full screen (f)
exit full mode
Question
Consider A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
(a) Is AA a rectangular array?
(b) Is AA a triangular array?
Use Space or
up arrow
down arrow
to flip the card.
Question
Consider A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
(a) Is AA a column vector?
(b) Is AA a row vector?
(c) Is AA a table?
(d) Is AA a list?
(e) Is AA a scalar?
Question
Consider A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
(a) Is AA a null matrix?
(b) Is AA a matrix?
Question
What are the elements a23a_{23} and a34a_{34} for A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) ?
Question
What are the dimensions of A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) ?
Question
Write the transpose of A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
Question
Consider B=(300010004)B=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) .
(a) Is BB a square matrix?
(b) Is BB a diagonal matrix?
(c) Is BB a scalar matrix?
Question
Consider B=(300010004)B=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) .
(a) Is BB a column vector?
(b) Is BB a row vector?
(c) Is BB a table?
(d) Is BB a list?
(e) Is BB a scalar?
Question
What are elements b22b_{22} and b13b_{13} for B=(300010004)B=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) ?
Question
Write the transpose of B=(304010004)B=\left(\begin{array}{lll}3 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) .
Question
What are the dimensions of C=(324815224967)C=\left(\begin{array}{lll}3 & 2 & 4 \\ 8 & 1 & 5 \\ 2 & 2 & 4 \\ 9 & 6 & 7\end{array}\right) ?
Question
Write the transpose of C=(324815224967)C=\left(\begin{array}{lll}3 & 2 & 4 \\ 8 & 1 & 5 \\ 2 & 2 & 4 \\ 9 & 6 & 7\end{array}\right) .
Question
What are the elements c32c_{32} and c23c_{23} for C=(324815224967)C=\left(\begin{array}{lll}3 & 2 & 4 \\ 8 & 1 & 5 \\ 2 & 2 & 4 \\ 9 & 6 & 7\end{array}\right) ?
Question
Write the transpose of C=(604011414)C=\left(\begin{array}{lll}6 & 0 & 4 \\ 0 & 1 & 1 \\ 4 & 1 & 4\end{array}\right) .
Question
Under what conditions will these matrices be equal? (2a23b1)\left(\begin{array}{ccc}-2 & a & 2 \\ 3 & b & -1\end{array}\right) and (21c35d)\left(\begin{array}{ccc}-2 & -1 & c \\ 3 & 5 & d\end{array}\right)
Question
Under what conditions will these matrices be equal? (a12b)\left(\begin{array}{cc}a & -1 \\ 2 & b\end{array}\right) and (3cd4)\left(\begin{array}{cc}-3 & c \\ d & 4\end{array}\right)
Question
Calculate: (21341023)(34125132)\left(\begin{array}{cccc}-2 & 1 & -3 & 4 \\ 1 & 0 & 2 & -3\end{array}\right)-\left(\begin{array}{cccc}3 & 4 & -1 & 2 \\ 5 & -1 & 3 & -2\end{array}\right)
Question
Calculate: (2473)+(11935)\left(\begin{array}{llll}2 & 4 & 7 & 3\end{array}\right)+\left(\begin{array}{llll}11 & 9 & -3 & 5\end{array}\right)
Question
Calculate: (013124102)(203103211)\left(\begin{array}{ccc}0 & -1 & 3 \\ 1 & 2 & 4 \\ -1 & 0 & -2\end{array}\right)-\left(\begin{array}{ccc}2 & 0 & 3 \\ -1 & 0 & 3 \\ -2 & -1 & 1\end{array}\right)
Question
Calculate: (534726569)(283562174)+(165382726)\left(\begin{array}{ccc}5 & 3 & -4 \\ 7 & 2 & 6 \\ 5 & 6 & 9\end{array}\right)-\left(\begin{array}{ccc}2 & 8 & 3 \\ 5 & 6 & -2 \\ 1 & 7 & 4\end{array}\right)+\left(\begin{array}{ccc}-1 & -6 & 5 \\ 3 & 8 & 2 \\ 7 & -2 & 6\end{array}\right)
Question
Calculate: (412)+(362)\left(\begin{array}{c}4 \\ -1 \\ 2\end{array}\right)+\left(\begin{array}{l}3 \\ 6 \\ 2\end{array}\right)
Question
Multiply: 7(631925)7\left(\begin{array}{lll}6 & 3 & 1 \\ 9 & 2 & 5\end{array}\right)
Question
Multiply: 4(32653729)-4\left(\begin{array}{cccc}3 & -2 & 6 & 5 \\ -3 & 7 & 2 & 9\end{array}\right)
Question
Calculate: 3(1242)+2(1003)(4241)3\left(\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right)+2\left(\begin{array}{cc}1 & 0 \\ 0 & 3\end{array}\right)-\left(\begin{array}{cc}4 & 2 \\ 4 & 1\end{array}\right)
Question
Remove the greatest factor possible from this matrix: (124824)\left(\begin{array}{cc}12 & -4 \\ 8 & 24\end{array}\right)
Question
Remove the greatest factor possible from this vector: (6951)\left(\begin{array}{c}-6 \\ 9 \\ 51\end{array}\right)
Question
Multiply: (73)(25)\left(\begin{array}{ll}7 & 3\end{array}\right)\left(\begin{array}{c}-2 \\ 5\end{array}\right)
Question
Multiply: (2172)(32)\left(\begin{array}{cc}2 & 1 \\ 7 & -2\end{array}\right)\left(\begin{array}{c}3 \\ -2\end{array}\right)
Question
Multiply: (292036411)(367)\left(\begin{array}{ccc}2 & 9 & 2 \\ 0 & 3 & 6 \\ 4 & 1 & -1\end{array}\right)\left(\begin{array}{c}3 \\ 6 \\ -7\end{array}\right)
Question
Multiply: (453)(367)\left(\begin{array}{lll}4 & -5 & 3\end{array}\right)\left(\begin{array}{c}3 \\ 6 \\ -7\end{array}\right)
Question
Multiply: (32)(24371219)\left(\begin{array}{ll}3 & 2\end{array}\right)\left(\begin{array}{cccc}2 & 4 & 3 & -7 \\ 1 & 2 & 1 & 9\end{array}\right)
Question
Multiply: (483)(283214946757)\left(\begin{array}{lll}4 & 8 & 3\end{array}\right)\left(\begin{array}{cccc}2 & 8 & -3 & 2 \\ 1 & 4 & 9 & -4 \\ 6 & 7 & 5 & -7\end{array}\right)
Question
Multiply: (1204)(725123)\left(\begin{array}{cc}1 & -2 \\ 0 & 4\end{array}\right)\left(\begin{array}{ccc}7 & 2 & 5 \\ 1 & -2 & 3\end{array}\right)
Question
Multiply: (714560)(6427)\left(\begin{array}{cc}7 & 1 \\ -4 & 5 \\ 6 & 0\end{array}\right)\left(\begin{array}{cc}-6 & -4 \\ 2 & 7\end{array}\right)
Question
Multiply: (121340)(123041)\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & 4 & 0\end{array}\right)\left(\begin{array}{cc}-1 & -2 \\ 3 & 0 \\ -4 & -1\end{array}\right)
Question
Multiply: (287621)(135490)\left(\begin{array}{lll}2 & 8 & 7 \\ 6 & 2 & 1\end{array}\right)\left(\begin{array}{cc}-1 & 3 \\ 5 & 4 \\ 9 & 0\end{array}\right)
Question
Multiply: (347258169)(321)\left(\begin{array}{ccc}3 & -4 & 7 \\ 2 & 5 & 8 \\ 1 & -6 & 9\end{array}\right)\left(\begin{array}{c}-3 \\ 2 \\ -1\end{array}\right)
Question
Multiply: (567812454567)(8212733464565578)\left(\begin{array}{llll}5 & 6 & 7 & 8 \\ 1 & 2 & 4 & 5 \\ 4 & 5 & 6 & 7\end{array}\right)\left(\begin{array}{cccc}-8 & -2 & -1 & 2 \\ 7 & 3 & 3 & -4 \\ -6 & -4 & -5 & 6 \\ 5 & 5 & 7 & -8\end{array}\right)
Question
Multiply: (530217054)(604513214219)\left(\begin{array}{ccc}5 & -3 & 0 \\ 2 & 1 & 7 \\ 0 & 5 & 4\end{array}\right)\left(\begin{array}{cccc}6 & 0 & 4 & -5 \\ 1 & 3 & 2 & -1 \\ -4 & -2 & 1 & 9\end{array}\right)
Question
Calculate ABA B and BAB A for A=(4381)A=\left(\begin{array}{cc}4 & -3 \\ 8 & 1\end{array}\right) and B=(5062)B=\left(\begin{array}{cc}5 & 0 \\ 6 & -2\end{array}\right) .
Question
Calculate ABA B and BAB A for A=(a233a)A=\left(\begin{array}{cc}-a & 2 \\ 3 & 3 a\end{array}\right) and B=(2a3a1)B=\left(\begin{array}{cc}2 & -a \\ 3 a & -1\end{array}\right) .
Question
Calculate ABA B and BAB A for A=(103420002)A=\left(\begin{array}{lll}1 & 0 & 3 \\ 4 & 2 & 0 \\ 0 & 0 & 2\end{array}\right) and B=(230111608)B=\left(\begin{array}{ccc}2 & 3 & 0 \\ 1 & 1 & -1 \\ 6 & 0 & 8\end{array}\right) .
Question
If A=(341517231)A=\left(\begin{array}{ccc}3 & 4 & -1 \\ -5 & 1 & 7 \\ 2 & 3 & 1\end{array}\right) and B=(239042563)B=\left(\begin{array}{ccc}-2 & 3 & 9 \\ 0 & -4 & -2 \\ 5 & 6 & 3\end{array}\right) , calculate 2AB2 A-B .
Question
If A=(341517231)A=\left(\begin{array}{ccc}3 & 4 & -1 \\ -5 & 1 & 7 \\ 2 & 3 & 1\end{array}\right) and B=(239042563)B=\left(\begin{array}{ccc}-2 & 3 & 9 \\ 0 & -4 & -2 \\ 5 & 6 & 3\end{array}\right) , calculate 3A+2B3 A+2 B .
Question
Three types of seating were available for a concert at an arena, with tickets priced at $45.99,$52.45\$ 45.99, \$ 52.45 , and $57.00\$ 57.00 . One day the arena sold 75,48 , and 66 of these tickets, respectively. Use vector multiplication to determine the total amount paid for the tickets that day.
Question
Multiply to show that (4213)\left(\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right) and (0.30.20.10.4)\left(\begin{array}{ll}0.3 & 0.2 \\ 0.1 & 0.4\end{array}\right) are inverses.
Question
Multiply to show that (211111012)\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & -1 & 1 \\ 0 & 1 & 2\end{array}\right) and (0.60.20.40.40.80.60.20.40.2)\left(\begin{array}{ccc}0.6 & 0.2 & -0.4 \\ -0.4 & -0.8 & 0.6 \\ 0.2 & 0.4 & 0.2\end{array}\right) are inverses.
Question
Calculate the inverse: (1211)\left(\begin{array}{cc}-1 & -2 \\ 1 & -1\end{array}\right)
Question
Calculate the inverse: (1010155)\left(\begin{array}{cc}10 & -10 \\ 15 & -5\end{array}\right)
Question
Calculate the inverse: (2.02.04.05.0)\left(\begin{array}{ll}2.0 & 2.0 \\ 4.0 & 5.0\end{array}\right)
Question
Calculate the inverse: (1415)\left(\begin{array}{ll}1 & -4 \\ 1 & -5\end{array}\right)
Question
Calculate the inverse of A=(8326)A=\left(\begin{array}{cc}8 & 3 \\ -2 & 6\end{array}\right) . Work to three decimal places.
Question
Calculate the inverse of A=(5714)A=\left(\begin{array}{cc}5 & -7 \\ 1 & 4\end{array}\right) . Work to three decimal places.
Question
Calculate the inverse of A=(2563)A=\left(\begin{array}{ll}2 & 5 \\ 6 & 3\end{array}\right) . Work to three decimal places.
Question
Calculate the inverse: (115210412)\left(\begin{array}{ccc}-1 & 1 & 5 \\ 2 & 1 & 0 \\ 4 & 1 & -2\end{array}\right) . Work to two decimal places.
Question
Calculate the inverse: (7.04.01.05.03.03.08.04.02.0)\left(\begin{array}{lll}7.0 & 4.0 & 1.0 \\ 5.0 & 3.0 & 3.0 \\ 8.0 & 4.0 & 2.0\end{array}\right)
Question
Calculate the inverse of A=(142603815)A=\left(\begin{array}{lll}1 & 4 & 2 \\ 6 & 0 & 3 \\ 8 & 1 & 5\end{array}\right) . Work to three decimal places.
Question
Calculate the inverse of A=(627491353)A=\left(\begin{array}{ccc}6 & 2 & -7 \\ -4 & 9 & 1 \\ 3 & 5 & -3\end{array}\right) . Work to three decimal places.
Question
Calculate the inverse: (212421211)\left(\begin{array}{ccc}2 & -1 & -2 \\ 4 & 2 & 1 \\ 2 & 1 & -1\end{array}\right)
Question
Calculate the inverse: (331221452)\left(\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right)
Question
Calculate the inverse: (15451234411)\left(\begin{array}{ccc}-15 & 4 & -5 \\ 12 & -3 & 4 \\ 4 & -1 & 1\end{array}\right)
Question
Calculate the inverse: (111150013)\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 5 & 0 \\ 0 & 1 & -3\end{array}\right)
Question
Calculate the inverse: (530210011)\left(\begin{array}{ccc}-5 & 3 & 0 \\ -2 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)
Question
Calculate the inverse: (331221452)\left(\begin{array}{ccc}-3 & -3 & 1 \\ 2 & 2 & -1 \\ 4 & 5 & -2\end{array}\right)
Question
Calculate the inverse of A=(3067613652514483)A=\left(\begin{array}{cccc}-3 & 0 & 6 & -7 \\ 6 & 1 & 3 & -6 \\ -5 & 2 & 5 & 1 \\ 4 & 4 & 8 & 3\end{array}\right) . Work to three decimal places.
Question
Calculate the inverse: (2130122410122131)\left(\begin{array}{cccc}2 & -1 & 3 & 0 \\ -1 & 2 & -2 & 4 \\ 1 & 0 & 1 & 2 \\ -2 & 1 & -3 & 1\end{array}\right)
Question
Calculate the inverse of A=(1123012554022122)A=\left(\begin{array}{cccc}1 & 1 & 2 & 3 \\ 0 & 1 & -2 & 5 \\ 5 & 4 & 0 & 2 \\ 2 & 1 & 2 & 2\end{array}\right) . Work to three decimal places.
Question
Solve the system of equations by matrix inversion: x2y=1x-2 y=1
2x+5y=202 x+5 y=20
Question
Solve the system of equations by matrix inversion: 4x+3y=94 x+3 y=-9
3x5y=433 x-5 y=-43
Question
Solve the system of equations by matrix inversion: 5x4y=85 x-4 y=8
xy=1x-y=-1
Question
Solve the system of equations by matrix inversion: x4y=4x-4 y=4
x5y=3x-5 y=3
Question
Solve the system of equations by matrix inversion: 3x4y=263 x-4 y=26
x+2y=12-x+2 y=-12
Question
Solve the system of equations by matrix inversion: 2x+11y=82 x+11 y=-8
3x+4y=133 x+4 y=13
Question
Solve the system of equations by matrix inversion: 3x+11y=503 x+11 y=50
3x+5y=263 x+5 y=26
Question
Solve the system of equations by matrix inversion: x+4y=5-x+4 y=5
3x+5y=23 x+5 y=2
Question
Solve the system of equations by matrix inversion: x+15y=85x+15 y=85
x+4y=19x+4 y=19
Question
Solve the system of equations by matrix inversion: 6x+12y=486 x+12 y=48
5x+20y=605 x+20 y=60
Question
Solve the system of equations by matrix inversion: 2x10y=52 x-10 y=5
8x+2y=68 x+2 y=6
Question
Solve the system of equations by matrix inversion: x+y+z=3x+y+z=3
xy3z=1x+y+2z=2\begin{aligned}& x-y-3 z=1 \\& x+y+2 z=2\end{aligned}
Question
Solve the system of equations by matrix inversion: 4x+9y+2z=334 x+9 y+2 z=33
3x5y3z=6x+y+2z=3\begin{aligned}3 x-5 y-3 z & =-6 \\x+y+2 z & =3\end{aligned}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/96
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Matrices
1
Consider A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
(a) Is AA a rectangular array?
(b) Is AA a triangular array?
(a) yes
(b) no
2
Consider A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
(a) Is AA a column vector?
(b) Is AA a row vector?
(c) Is AA a table?
(d) Is AA a list?
(e) Is AA a scalar?
(a) no
(b) no
(c) yes
(d) no
(e) no
3
Consider A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
(a) Is AA a null matrix?
(b) Is AA a matrix?
(a) no
(b) yes
4
What are the elements a23a_{23} and a34a_{34} for A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) ?
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
5
What are the dimensions of A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) ?
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
6
Write the transpose of A=(311020311021)A=\left(\begin{array}{cccc}3 & -1 & 1 & 0 \\ 2 & 0 & 3 & -1 \\ 1 & 0 & -2 & 1\end{array}\right) .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
7
Consider B=(300010004)B=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) .
(a) Is BB a square matrix?
(b) Is BB a diagonal matrix?
(c) Is BB a scalar matrix?
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
8
Consider B=(300010004)B=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) .
(a) Is BB a column vector?
(b) Is BB a row vector?
(c) Is BB a table?
(d) Is BB a list?
(e) Is BB a scalar?
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
9
What are elements b22b_{22} and b13b_{13} for B=(300010004)B=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) ?
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
10
Write the transpose of B=(304010004)B=\left(\begin{array}{lll}3 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
11
What are the dimensions of C=(324815224967)C=\left(\begin{array}{lll}3 & 2 & 4 \\ 8 & 1 & 5 \\ 2 & 2 & 4 \\ 9 & 6 & 7\end{array}\right) ?
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
12
Write the transpose of C=(324815224967)C=\left(\begin{array}{lll}3 & 2 & 4 \\ 8 & 1 & 5 \\ 2 & 2 & 4 \\ 9 & 6 & 7\end{array}\right) .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
13
What are the elements c32c_{32} and c23c_{23} for C=(324815224967)C=\left(\begin{array}{lll}3 & 2 & 4 \\ 8 & 1 & 5 \\ 2 & 2 & 4 \\ 9 & 6 & 7\end{array}\right) ?
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
14
Write the transpose of C=(604011414)C=\left(\begin{array}{lll}6 & 0 & 4 \\ 0 & 1 & 1 \\ 4 & 1 & 4\end{array}\right) .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
15
Under what conditions will these matrices be equal? (2a23b1)\left(\begin{array}{ccc}-2 & a & 2 \\ 3 & b & -1\end{array}\right) and (21c35d)\left(\begin{array}{ccc}-2 & -1 & c \\ 3 & 5 & d\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
16
Under what conditions will these matrices be equal? (a12b)\left(\begin{array}{cc}a & -1 \\ 2 & b\end{array}\right) and (3cd4)\left(\begin{array}{cc}-3 & c \\ d & 4\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
17
Calculate: (21341023)(34125132)\left(\begin{array}{cccc}-2 & 1 & -3 & 4 \\ 1 & 0 & 2 & -3\end{array}\right)-\left(\begin{array}{cccc}3 & 4 & -1 & 2 \\ 5 & -1 & 3 & -2\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
18
Calculate: (2473)+(11935)\left(\begin{array}{llll}2 & 4 & 7 & 3\end{array}\right)+\left(\begin{array}{llll}11 & 9 & -3 & 5\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
19
Calculate: (013124102)(203103211)\left(\begin{array}{ccc}0 & -1 & 3 \\ 1 & 2 & 4 \\ -1 & 0 & -2\end{array}\right)-\left(\begin{array}{ccc}2 & 0 & 3 \\ -1 & 0 & 3 \\ -2 & -1 & 1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
20
Calculate: (534726569)(283562174)+(165382726)\left(\begin{array}{ccc}5 & 3 & -4 \\ 7 & 2 & 6 \\ 5 & 6 & 9\end{array}\right)-\left(\begin{array}{ccc}2 & 8 & 3 \\ 5 & 6 & -2 \\ 1 & 7 & 4\end{array}\right)+\left(\begin{array}{ccc}-1 & -6 & 5 \\ 3 & 8 & 2 \\ 7 & -2 & 6\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
21
Calculate: (412)+(362)\left(\begin{array}{c}4 \\ -1 \\ 2\end{array}\right)+\left(\begin{array}{l}3 \\ 6 \\ 2\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
22
Multiply: 7(631925)7\left(\begin{array}{lll}6 & 3 & 1 \\ 9 & 2 & 5\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
23
Multiply: 4(32653729)-4\left(\begin{array}{cccc}3 & -2 & 6 & 5 \\ -3 & 7 & 2 & 9\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
24
Calculate: 3(1242)+2(1003)(4241)3\left(\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right)+2\left(\begin{array}{cc}1 & 0 \\ 0 & 3\end{array}\right)-\left(\begin{array}{cc}4 & 2 \\ 4 & 1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
25
Remove the greatest factor possible from this matrix: (124824)\left(\begin{array}{cc}12 & -4 \\ 8 & 24\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
26
Remove the greatest factor possible from this vector: (6951)\left(\begin{array}{c}-6 \\ 9 \\ 51\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
27
Multiply: (73)(25)\left(\begin{array}{ll}7 & 3\end{array}\right)\left(\begin{array}{c}-2 \\ 5\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
28
Multiply: (2172)(32)\left(\begin{array}{cc}2 & 1 \\ 7 & -2\end{array}\right)\left(\begin{array}{c}3 \\ -2\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
29
Multiply: (292036411)(367)\left(\begin{array}{ccc}2 & 9 & 2 \\ 0 & 3 & 6 \\ 4 & 1 & -1\end{array}\right)\left(\begin{array}{c}3 \\ 6 \\ -7\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
30
Multiply: (453)(367)\left(\begin{array}{lll}4 & -5 & 3\end{array}\right)\left(\begin{array}{c}3 \\ 6 \\ -7\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
31
Multiply: (32)(24371219)\left(\begin{array}{ll}3 & 2\end{array}\right)\left(\begin{array}{cccc}2 & 4 & 3 & -7 \\ 1 & 2 & 1 & 9\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
32
Multiply: (483)(283214946757)\left(\begin{array}{lll}4 & 8 & 3\end{array}\right)\left(\begin{array}{cccc}2 & 8 & -3 & 2 \\ 1 & 4 & 9 & -4 \\ 6 & 7 & 5 & -7\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
33
Multiply: (1204)(725123)\left(\begin{array}{cc}1 & -2 \\ 0 & 4\end{array}\right)\left(\begin{array}{ccc}7 & 2 & 5 \\ 1 & -2 & 3\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
34
Multiply: (714560)(6427)\left(\begin{array}{cc}7 & 1 \\ -4 & 5 \\ 6 & 0\end{array}\right)\left(\begin{array}{cc}-6 & -4 \\ 2 & 7\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
35
Multiply: (121340)(123041)\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & 4 & 0\end{array}\right)\left(\begin{array}{cc}-1 & -2 \\ 3 & 0 \\ -4 & -1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
36
Multiply: (287621)(135490)\left(\begin{array}{lll}2 & 8 & 7 \\ 6 & 2 & 1\end{array}\right)\left(\begin{array}{cc}-1 & 3 \\ 5 & 4 \\ 9 & 0\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
37
Multiply: (347258169)(321)\left(\begin{array}{ccc}3 & -4 & 7 \\ 2 & 5 & 8 \\ 1 & -6 & 9\end{array}\right)\left(\begin{array}{c}-3 \\ 2 \\ -1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
38
Multiply: (567812454567)(8212733464565578)\left(\begin{array}{llll}5 & 6 & 7 & 8 \\ 1 & 2 & 4 & 5 \\ 4 & 5 & 6 & 7\end{array}\right)\left(\begin{array}{cccc}-8 & -2 & -1 & 2 \\ 7 & 3 & 3 & -4 \\ -6 & -4 & -5 & 6 \\ 5 & 5 & 7 & -8\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
39
Multiply: (530217054)(604513214219)\left(\begin{array}{ccc}5 & -3 & 0 \\ 2 & 1 & 7 \\ 0 & 5 & 4\end{array}\right)\left(\begin{array}{cccc}6 & 0 & 4 & -5 \\ 1 & 3 & 2 & -1 \\ -4 & -2 & 1 & 9\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
40
Calculate ABA B and BAB A for A=(4381)A=\left(\begin{array}{cc}4 & -3 \\ 8 & 1\end{array}\right) and B=(5062)B=\left(\begin{array}{cc}5 & 0 \\ 6 & -2\end{array}\right) .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
41
Calculate ABA B and BAB A for A=(a233a)A=\left(\begin{array}{cc}-a & 2 \\ 3 & 3 a\end{array}\right) and B=(2a3a1)B=\left(\begin{array}{cc}2 & -a \\ 3 a & -1\end{array}\right) .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
42
Calculate ABA B and BAB A for A=(103420002)A=\left(\begin{array}{lll}1 & 0 & 3 \\ 4 & 2 & 0 \\ 0 & 0 & 2\end{array}\right) and B=(230111608)B=\left(\begin{array}{ccc}2 & 3 & 0 \\ 1 & 1 & -1 \\ 6 & 0 & 8\end{array}\right) .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
43
If A=(341517231)A=\left(\begin{array}{ccc}3 & 4 & -1 \\ -5 & 1 & 7 \\ 2 & 3 & 1\end{array}\right) and B=(239042563)B=\left(\begin{array}{ccc}-2 & 3 & 9 \\ 0 & -4 & -2 \\ 5 & 6 & 3\end{array}\right) , calculate 2AB2 A-B .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
44
If A=(341517231)A=\left(\begin{array}{ccc}3 & 4 & -1 \\ -5 & 1 & 7 \\ 2 & 3 & 1\end{array}\right) and B=(239042563)B=\left(\begin{array}{ccc}-2 & 3 & 9 \\ 0 & -4 & -2 \\ 5 & 6 & 3\end{array}\right) , calculate 3A+2B3 A+2 B .
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
45
Three types of seating were available for a concert at an arena, with tickets priced at $45.99,$52.45\$ 45.99, \$ 52.45 , and $57.00\$ 57.00 . One day the arena sold 75,48 , and 66 of these tickets, respectively. Use vector multiplication to determine the total amount paid for the tickets that day.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
46
Multiply to show that (4213)\left(\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right) and (0.30.20.10.4)\left(\begin{array}{ll}0.3 & 0.2 \\ 0.1 & 0.4\end{array}\right) are inverses.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
47
Multiply to show that (211111012)\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & -1 & 1 \\ 0 & 1 & 2\end{array}\right) and (0.60.20.40.40.80.60.20.40.2)\left(\begin{array}{ccc}0.6 & 0.2 & -0.4 \\ -0.4 & -0.8 & 0.6 \\ 0.2 & 0.4 & 0.2\end{array}\right) are inverses.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
48
Calculate the inverse: (1211)\left(\begin{array}{cc}-1 & -2 \\ 1 & -1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
49
Calculate the inverse: (1010155)\left(\begin{array}{cc}10 & -10 \\ 15 & -5\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
50
Calculate the inverse: (2.02.04.05.0)\left(\begin{array}{ll}2.0 & 2.0 \\ 4.0 & 5.0\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
51
Calculate the inverse: (1415)\left(\begin{array}{ll}1 & -4 \\ 1 & -5\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
52
Calculate the inverse of A=(8326)A=\left(\begin{array}{cc}8 & 3 \\ -2 & 6\end{array}\right) . Work to three decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
53
Calculate the inverse of A=(5714)A=\left(\begin{array}{cc}5 & -7 \\ 1 & 4\end{array}\right) . Work to three decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
54
Calculate the inverse of A=(2563)A=\left(\begin{array}{ll}2 & 5 \\ 6 & 3\end{array}\right) . Work to three decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
55
Calculate the inverse: (115210412)\left(\begin{array}{ccc}-1 & 1 & 5 \\ 2 & 1 & 0 \\ 4 & 1 & -2\end{array}\right) . Work to two decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
56
Calculate the inverse: (7.04.01.05.03.03.08.04.02.0)\left(\begin{array}{lll}7.0 & 4.0 & 1.0 \\ 5.0 & 3.0 & 3.0 \\ 8.0 & 4.0 & 2.0\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
57
Calculate the inverse of A=(142603815)A=\left(\begin{array}{lll}1 & 4 & 2 \\ 6 & 0 & 3 \\ 8 & 1 & 5\end{array}\right) . Work to three decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
58
Calculate the inverse of A=(627491353)A=\left(\begin{array}{ccc}6 & 2 & -7 \\ -4 & 9 & 1 \\ 3 & 5 & -3\end{array}\right) . Work to three decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
59
Calculate the inverse: (212421211)\left(\begin{array}{ccc}2 & -1 & -2 \\ 4 & 2 & 1 \\ 2 & 1 & -1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
60
Calculate the inverse: (331221452)\left(\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
61
Calculate the inverse: (15451234411)\left(\begin{array}{ccc}-15 & 4 & -5 \\ 12 & -3 & 4 \\ 4 & -1 & 1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
62
Calculate the inverse: (111150013)\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 5 & 0 \\ 0 & 1 & -3\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
63
Calculate the inverse: (530210011)\left(\begin{array}{ccc}-5 & 3 & 0 \\ -2 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
64
Calculate the inverse: (331221452)\left(\begin{array}{ccc}-3 & -3 & 1 \\ 2 & 2 & -1 \\ 4 & 5 & -2\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
65
Calculate the inverse of A=(3067613652514483)A=\left(\begin{array}{cccc}-3 & 0 & 6 & -7 \\ 6 & 1 & 3 & -6 \\ -5 & 2 & 5 & 1 \\ 4 & 4 & 8 & 3\end{array}\right) . Work to three decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
66
Calculate the inverse: (2130122410122131)\left(\begin{array}{cccc}2 & -1 & 3 & 0 \\ -1 & 2 & -2 & 4 \\ 1 & 0 & 1 & 2 \\ -2 & 1 & -3 & 1\end{array}\right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
67
Calculate the inverse of A=(1123012554022122)A=\left(\begin{array}{cccc}1 & 1 & 2 & 3 \\ 0 & 1 & -2 & 5 \\ 5 & 4 & 0 & 2 \\ 2 & 1 & 2 & 2\end{array}\right) . Work to three decimal places.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
68
Solve the system of equations by matrix inversion: x2y=1x-2 y=1
2x+5y=202 x+5 y=20
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the system of equations by matrix inversion: 4x+3y=94 x+3 y=-9
3x5y=433 x-5 y=-43
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
70
Solve the system of equations by matrix inversion: 5x4y=85 x-4 y=8
xy=1x-y=-1
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
71
Solve the system of equations by matrix inversion: x4y=4x-4 y=4
x5y=3x-5 y=3
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
72
Solve the system of equations by matrix inversion: 3x4y=263 x-4 y=26
x+2y=12-x+2 y=-12
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
73
Solve the system of equations by matrix inversion: 2x+11y=82 x+11 y=-8
3x+4y=133 x+4 y=13
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
74
Solve the system of equations by matrix inversion: 3x+11y=503 x+11 y=50
3x+5y=263 x+5 y=26
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
75
Solve the system of equations by matrix inversion: x+4y=5-x+4 y=5
3x+5y=23 x+5 y=2
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
76
Solve the system of equations by matrix inversion: x+15y=85x+15 y=85
x+4y=19x+4 y=19
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
77
Solve the system of equations by matrix inversion: 6x+12y=486 x+12 y=48
5x+20y=605 x+20 y=60
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
78
Solve the system of equations by matrix inversion: 2x10y=52 x-10 y=5
8x+2y=68 x+2 y=6
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
79
Solve the system of equations by matrix inversion: x+y+z=3x+y+z=3
xy3z=1x+y+2z=2\begin{aligned}& x-y-3 z=1 \\& x+y+2 z=2\end{aligned}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
80
Solve the system of equations by matrix inversion: 4x+9y+2z=334 x+9 y+2 z=33
3x5y3z=6x+y+2z=3\begin{aligned}3 x-5 y-3 z & =-6 \\x+y+2 z & =3\end{aligned}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 96 flashcards in this deck.