Deck 18: Trigonometric Identities and Equations

Full screen (f)
exit full mode
Question
Change sinθsecθtanθcscθ\sin \theta \sec \theta-\tan \theta \csc \theta to an expression containing only sin and cos\cos .
Use Space or
up arrow
down arrow
to flip the card.
Question
Change sinθcotθ+cosθtanθ\sin \theta \cot \theta+\cos \theta \tan \theta to an expression containing only sin\sin and cos\cos .
Question
Change tanθsecθ\frac{\tan \theta}{\sec \theta} to an expression containing only sin\sin and cos\cos .
Question
Change cscθcotθ\frac{\csc \theta}{\cot \theta} to an expression containing only sin\sin and cos\cos .
Question
Change 2cos2θ1+tan2θ\frac{2-\cos^{2} \theta}{1+\tan^{2} \theta} to an expression containing only sin\sin .
Question
Change 1cos2θ1+cot2θ\frac{1-\cos^{2} \theta}{1+\cot^{2} \theta} to an expression containing only sin\sin .
Question
Simplify cotθsinθ\cot \theta \sin \theta .
Question
Simplify cosθtanθ\cos \theta \tan \theta .
Question
Simplify cscθtanθ\csc \theta \tan \theta .
Question
Simplify cscθcosθcotθ\csc \theta \cos \theta \cot \theta .
Question
Simplify (1+tan2θ)(csc2θ1)\left(1+\tan^{2} \theta\right)\left(\csc^{2} \theta-1\right) .
Question
Simplify (sec2θ1)(cot2θ)\left(\sec^{2} \theta-1\right)\left(\cot^{2} \theta\right) .
Question
Simplify (1+tan2x)cosxcscx\frac{(1+tan^2x) cos x}{csc x} .
Question
Simplify sinθ+1tanθ+secθ\frac{\sin \theta+1}{\tan \theta+\sec \theta} .
Question
Simplify sin2θ+cos2θsin2θ1\frac{\sin^{2} \theta+\cos^{2} \theta}{\sin^{2} \theta-1} .
Question
Simplify sinxtanx+sinxtanx\sin x \tan x+\frac{\sin x}{\tan x} .
Question
Simplify 1sin2θ1csc2θ\frac{1-\sin^{2} \theta}{1-\csc^{2} \theta} .
Question
Prove the identity 1sinx=cotxsecx\frac{1}{\sin x}=\cot x \sec x .
Question
Prove the identity tanx+cotx=secxcscx\tan x+\cot x=\sec x \csc x .
Question
Prove the identity cotθ(cscθcotθ)=cosθ1+cosθ\cot \theta(\csc \theta-\cot \theta)=\frac{\cos \theta}{1+\cos \theta} .
Question
Prove the identity tan2θ+1sec2θ1=csc2θ\frac{\tan^{2} \theta+1}{\sec^{2} \theta-1}=\csc^{2} \theta .
Question
Prove that sec2x=11sin2x\sec^{2} x=\frac{1}{1-\sin^{2} x} .
Question
Prove that csc2x=11cos2x\csc^{2} x=\frac{1}{1-\cos^{2} x} .
Question
Prove that cot2x=cos2x1cos2x\cot^{2} x=\frac{\cos^{2} x}{1-\cos^{2} x} .
Question
Expand and simplify cos(θ+60)\cos \left(\theta+60^{\circ}\right) .
Question
Expand and simplify cos(α+2β)\cos (\alpha+2 \beta) .
Question
Expand and simplify sin(x+45)\sin \left(x+45^{\circ}\right) .
Question
Expand and simplify cos(xπ/3)\cos (x-\pi / 3) .
Question
Expand and simplify sin(θ+30)\sin \left(\theta+30^{\circ}\right) .
Question
Expand and simplify tan(θ30)\tan \left(\theta-30^{\circ}\right) .
Question
Expand and simplify tan(θ+45)\tan \left(\theta+45^{\circ}\right) .
Question
Simplify cos(θ+π/4)+sin(θ+π/4)\cos (\theta+\pi / 4)+\sin (\theta+\pi / 4) .
Question
Simplify cos3xcos7x+sin3xsin7x\cos 3 x \cos 7 x+\sin 3 x \sin 7 x .
Question
Simplify cos(θ60)+sin(θ+60)\cos \left(\theta-60^{\circ}\right)+\sin \left(\theta+60^{\circ}\right) .
Question
Simplify cos5xcos2xsin5xsin2x\cos 5 x \cos 2 x-\sin 5 x \sin 2 x .
Question
Simplify tanθ+tan501tanθtan50\frac{\tan \theta+\tan 50^{\circ}}{1-\tan \theta \tan 50^{\circ}} .
Question
Simplify cos5xcos2x+sin5xsin2x\cos 5 x \cos 2 x+\sin 5 x \sin 2 x .
Question
Simplify cos(θ+30)cos(θ30)sin(θ+30)+sin(θ30)\frac{\cos \left(\theta+30^{\circ}\right)-\cos \left(\theta-30^{\circ}\right)}{\sin \left(\theta+30^{\circ}\right)+\sin \left(\theta-30^{\circ}\right)} .
Question
Simplify [sin(30+θ)cos(θ+30)]2\left[\sin \left(30^{\circ}+\theta\right)-\cos \left(\theta+30^{\circ}\right)\right]^{2} .
Question
Prove the identity sin(θ3π/2)=cosθ\sin (\theta-3 \pi / 2)=\cos \theta .
Question
Prove the identity tan(θπ/3)=cot(θπ/6)\tan (\theta-\pi / 3)=-\cot (\theta-\pi / 6) .
Question
Prove the identity sin(x+30)+sin(30x)=cosx\sin \left(x+30^{\circ}\right)+\sin \left(30^{\circ}-x\right)=\cos x .
Question
Prove the identity cos(x+60)+cos(60x)=cosx\cos \left(x+60^{\circ}\right)+\cos \left(60^{\circ}-x\right)=\cos x .
Question
Prove the identity secxcscxtanxcotx=tanx+cotxsecx+cscx\frac{\sec x-\csc x}{\tan x-\cot x}=\frac{\tan x+\cot x}{\sec x+\csc x} .
Question
Prove the identity 1+tanθ1tanθ=tan(45+θ)\frac{1+\tan \theta}{1-\tan \theta}=\tan \left(45^{\circ}+\theta\right) .
Question
Prove the identity sin(60+θ)+sin(θ60)cos(30+θ)cos(30θ)=1\frac{\sin \left(60^{\circ}+\theta\right)+\sin \left(\theta-60^{\circ}\right)}{\cos \left(30^{\circ}+\theta\right)-\cos \left(30^{\circ}-\theta\right)}=-1 .
Question
Prove the identity sin(45+θ)cos(45+θ)sin(45θ)+cos(45θ)=tanθ\frac{\sin \left(45^{\circ}+\theta\right)-\cos \left(45^{\circ}+\theta\right)}{\sin \left(45^{\circ}-\theta\right)+\cos \left(45^{\circ}-\theta\right)}=\tan \theta .
Question
Prove the identity tanAtanBtanA+tanB=sin(AB)sin(A+B)\frac{\tan A-\tan B}{\tan A+\tan B}=\frac{\sin (A-B)}{\sin (A+B)} .
Question
Prove the identity tanA+tanBtan(A+B)+tanAtanBtan(AB)=2\frac{\tan A+\tan B}{\tan (A+B)}+\frac{\tan A-\tan B}{\tan (A-B)}=2 .
Question
Express y=11.4sinωt+15.7cosωty=11.4 \sin \omega t+15.7 \cos \omega t as a single sine function.
Question
Express y=25.40sinωt+32.40cosωty=25.40 \sin \omega t+32.40 \cos \omega t as a single sine function.
Question
Express y=5.75sinωt+8.50cosωty=5.75 \sin \omega t+8.50 \cos \omega t as a single sine function.
Question
Express y=12sinωt+14cosωty=12 \sin \omega t+14 \cos \omega t as a single sine function.
Question
Simplify (sin2θ)(cscθ)(\sin 2 \theta)(\csc \theta) .
Question
Simplify (cos2θ)(secθ)(\cos 2 \theta)(\sec \theta) .
Question
Simplify (cos2θ)(sin2θ)(\cos 2 \theta)(\sin 2 \theta) .
Question
Simplify cos22θsin22θ\cos^{2} 2 \theta-\sin^{2} 2 \theta .
Question
Simplify (tan2θ)(cotθ)(\tan 2 \theta)(\cot \theta) .
Question
Simplify 2csc2x11+cos2x\frac{2 \csc^{2} x-1}{1+\cos^{2} x} .
Question
Simplify tan2xcosx\tan 2 x \cos x .
Question
Simplify cos2θcsc2θcot2θ\cos 2 \theta \csc^{2} \theta-\cot^{2} \theta .
Question
Prove that cos2θ+sin2θ=cos2θ\cos 2 \theta+\sin^{2} \theta=\cos^{2} \theta .
Question
Prove that sin(2θ)cos(2θ)=4sinθcos3θ2sinθcosθ\sin (2 \theta) \cos (2 \theta)=4 \sin \theta \cos^{3} \theta-2 \sin \theta \cos \theta .
Question
Prove that cos4θsin4θ=cos2θ\cos^{4} \theta-\sin^{4} \theta=\cos 2 \theta .
Question
Prove that tanθ1tanθ+tanθ1+tanθ=tan2θ\frac{\tan \theta}{1-\tan \theta}+\frac{\tan \theta}{1+\tan \theta}=\tan 2 \theta .
Question
Prove that 1+sin2θ1sin2θ=(1+tanθ1tanθ)2\frac{1+\sin 2 \theta}{1-\sin 2 \theta}=\left(\frac{1+\tan \theta}{1-\tan \theta}\right)^{2} .
Question
Prove that 11tanθ11+tanθ=tan2θ\frac{1}{1-\tan \theta}-\frac{1}{1+\tan \theta}=\tan 2 \theta .
Question
Prove that cos2θ=1tan2θ1+tan2θ\cos 2 \theta=\frac{1-\tan^{2} \theta}{1+\tan^{2} \theta} .
Question
Prove that sin3θ=3sinθcos2θsin3θ\sin 3 \theta=3 \sin \theta \cos^{2} \theta-\sin^{3} \theta .
Question
Prove that cos3θ=cos3θ3sin2θcosθ\cos 3 \theta=\cos^{3} \theta-3 \sin^{2} \theta \cos \theta .
Question
If AA and BB are the two acute angles of a right triangle, show that 2csc(2A)cotA=cotB2 \csc (2 A)-\cot A=\cot B .
Question
If AA and BB are the two acute angles of a right triangle, show that sin(AB)tanAtanB=12sin2A\frac{\sin (A-B)}{\tan A-\tan B}=\frac{1}{2} \sin 2 A .
Question
Simplify 1tan2θ1+tan2θ\frac{1-\tan^{2} \theta}{1+\tan^{2} \theta} .
Question
Prove that cosθ2sinθ2=sinθ2\cos \frac{\theta}{2} \sin \frac{\theta}{2}=\frac{\sin \theta}{2} .
Question
Prove the identity tanθ2+cotθ=cscθ\tan \frac{\theta}{2}+\cot \theta=\csc \theta .
Question
Prove the identity 2cos2x2cosx=12 \cos^{2} \frac{x}{2}-\cos x=1 .
Question
Prove that cosθ4sinθ4=12sinθ2\cos \frac{\theta}{4} \sin \frac{\theta}{4}=\frac{1}{2} \sin \frac{\theta}{2} .
Question
Prove that cos2(x2)sinx=cscx+cotx2\frac{\cos^{2}\left(\frac{x}{2}\right)}{\sin x}=\frac{\csc x+\cot x}{2} .
Question
Prove that sinθ=2tan(θ2)1+tan2(θ2)\sin \theta=\frac{2 \tan \left(\frac{\theta}{2}\right)}{1+\tan^{2}\left(\frac{\theta}{2}\right)} .
Question
Prove that cosθ=1tan2(θ2)1+tan2(θ2)\cos \theta=\frac{1-\tan^{2}\left(\frac{\theta}{2}\right)}{1+\tan^{2}\left(\frac{\theta}{2}\right)} .
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/116
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 18: Trigonometric Identities and Equations
1
Change sinθsecθtanθcscθ\sin \theta \sec \theta-\tan \theta \csc \theta to an expression containing only sin and cos\cos .
sinθ1cosθ\frac{\sin \theta-1}{\cos \theta}
2
Change sinθcotθ+cosθtanθ\sin \theta \cot \theta+\cos \theta \tan \theta to an expression containing only sin\sin and cos\cos .
cosθ+sinθ\cos \theta+\sin \theta
3
Change tanθsecθ\frac{\tan \theta}{\sec \theta} to an expression containing only sin\sin and cos\cos .
sinθ\sin \theta
4
Change cscθcotθ\frac{\csc \theta}{\cot \theta} to an expression containing only sin\sin and cos\cos .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
5
Change 2cos2θ1+tan2θ\frac{2-\cos^{2} \theta}{1+\tan^{2} \theta} to an expression containing only sin\sin .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
6
Change 1cos2θ1+cot2θ\frac{1-\cos^{2} \theta}{1+\cot^{2} \theta} to an expression containing only sin\sin .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
7
Simplify cotθsinθ\cot \theta \sin \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
8
Simplify cosθtanθ\cos \theta \tan \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
9
Simplify cscθtanθ\csc \theta \tan \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
10
Simplify cscθcosθcotθ\csc \theta \cos \theta \cot \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
11
Simplify (1+tan2θ)(csc2θ1)\left(1+\tan^{2} \theta\right)\left(\csc^{2} \theta-1\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
12
Simplify (sec2θ1)(cot2θ)\left(\sec^{2} \theta-1\right)\left(\cot^{2} \theta\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
13
Simplify (1+tan2x)cosxcscx\frac{(1+tan^2x) cos x}{csc x} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
14
Simplify sinθ+1tanθ+secθ\frac{\sin \theta+1}{\tan \theta+\sec \theta} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
15
Simplify sin2θ+cos2θsin2θ1\frac{\sin^{2} \theta+\cos^{2} \theta}{\sin^{2} \theta-1} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
16
Simplify sinxtanx+sinxtanx\sin x \tan x+\frac{\sin x}{\tan x} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
17
Simplify 1sin2θ1csc2θ\frac{1-\sin^{2} \theta}{1-\csc^{2} \theta} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
18
Prove the identity 1sinx=cotxsecx\frac{1}{\sin x}=\cot x \sec x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
19
Prove the identity tanx+cotx=secxcscx\tan x+\cot x=\sec x \csc x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
20
Prove the identity cotθ(cscθcotθ)=cosθ1+cosθ\cot \theta(\csc \theta-\cot \theta)=\frac{\cos \theta}{1+\cos \theta} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
21
Prove the identity tan2θ+1sec2θ1=csc2θ\frac{\tan^{2} \theta+1}{\sec^{2} \theta-1}=\csc^{2} \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
22
Prove that sec2x=11sin2x\sec^{2} x=\frac{1}{1-\sin^{2} x} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
23
Prove that csc2x=11cos2x\csc^{2} x=\frac{1}{1-\cos^{2} x} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
24
Prove that cot2x=cos2x1cos2x\cot^{2} x=\frac{\cos^{2} x}{1-\cos^{2} x} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
25
Expand and simplify cos(θ+60)\cos \left(\theta+60^{\circ}\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
26
Expand and simplify cos(α+2β)\cos (\alpha+2 \beta) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
27
Expand and simplify sin(x+45)\sin \left(x+45^{\circ}\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
28
Expand and simplify cos(xπ/3)\cos (x-\pi / 3) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
29
Expand and simplify sin(θ+30)\sin \left(\theta+30^{\circ}\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
30
Expand and simplify tan(θ30)\tan \left(\theta-30^{\circ}\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
31
Expand and simplify tan(θ+45)\tan \left(\theta+45^{\circ}\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
32
Simplify cos(θ+π/4)+sin(θ+π/4)\cos (\theta+\pi / 4)+\sin (\theta+\pi / 4) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
33
Simplify cos3xcos7x+sin3xsin7x\cos 3 x \cos 7 x+\sin 3 x \sin 7 x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
34
Simplify cos(θ60)+sin(θ+60)\cos \left(\theta-60^{\circ}\right)+\sin \left(\theta+60^{\circ}\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
35
Simplify cos5xcos2xsin5xsin2x\cos 5 x \cos 2 x-\sin 5 x \sin 2 x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
36
Simplify tanθ+tan501tanθtan50\frac{\tan \theta+\tan 50^{\circ}}{1-\tan \theta \tan 50^{\circ}} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
37
Simplify cos5xcos2x+sin5xsin2x\cos 5 x \cos 2 x+\sin 5 x \sin 2 x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
38
Simplify cos(θ+30)cos(θ30)sin(θ+30)+sin(θ30)\frac{\cos \left(\theta+30^{\circ}\right)-\cos \left(\theta-30^{\circ}\right)}{\sin \left(\theta+30^{\circ}\right)+\sin \left(\theta-30^{\circ}\right)} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
39
Simplify [sin(30+θ)cos(θ+30)]2\left[\sin \left(30^{\circ}+\theta\right)-\cos \left(\theta+30^{\circ}\right)\right]^{2} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
40
Prove the identity sin(θ3π/2)=cosθ\sin (\theta-3 \pi / 2)=\cos \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
41
Prove the identity tan(θπ/3)=cot(θπ/6)\tan (\theta-\pi / 3)=-\cot (\theta-\pi / 6) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
42
Prove the identity sin(x+30)+sin(30x)=cosx\sin \left(x+30^{\circ}\right)+\sin \left(30^{\circ}-x\right)=\cos x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
43
Prove the identity cos(x+60)+cos(60x)=cosx\cos \left(x+60^{\circ}\right)+\cos \left(60^{\circ}-x\right)=\cos x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
44
Prove the identity secxcscxtanxcotx=tanx+cotxsecx+cscx\frac{\sec x-\csc x}{\tan x-\cot x}=\frac{\tan x+\cot x}{\sec x+\csc x} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
45
Prove the identity 1+tanθ1tanθ=tan(45+θ)\frac{1+\tan \theta}{1-\tan \theta}=\tan \left(45^{\circ}+\theta\right) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
46
Prove the identity sin(60+θ)+sin(θ60)cos(30+θ)cos(30θ)=1\frac{\sin \left(60^{\circ}+\theta\right)+\sin \left(\theta-60^{\circ}\right)}{\cos \left(30^{\circ}+\theta\right)-\cos \left(30^{\circ}-\theta\right)}=-1 .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
47
Prove the identity sin(45+θ)cos(45+θ)sin(45θ)+cos(45θ)=tanθ\frac{\sin \left(45^{\circ}+\theta\right)-\cos \left(45^{\circ}+\theta\right)}{\sin \left(45^{\circ}-\theta\right)+\cos \left(45^{\circ}-\theta\right)}=\tan \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
48
Prove the identity tanAtanBtanA+tanB=sin(AB)sin(A+B)\frac{\tan A-\tan B}{\tan A+\tan B}=\frac{\sin (A-B)}{\sin (A+B)} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
49
Prove the identity tanA+tanBtan(A+B)+tanAtanBtan(AB)=2\frac{\tan A+\tan B}{\tan (A+B)}+\frac{\tan A-\tan B}{\tan (A-B)}=2 .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
50
Express y=11.4sinωt+15.7cosωty=11.4 \sin \omega t+15.7 \cos \omega t as a single sine function.
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
51
Express y=25.40sinωt+32.40cosωty=25.40 \sin \omega t+32.40 \cos \omega t as a single sine function.
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
52
Express y=5.75sinωt+8.50cosωty=5.75 \sin \omega t+8.50 \cos \omega t as a single sine function.
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
53
Express y=12sinωt+14cosωty=12 \sin \omega t+14 \cos \omega t as a single sine function.
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
54
Simplify (sin2θ)(cscθ)(\sin 2 \theta)(\csc \theta) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
55
Simplify (cos2θ)(secθ)(\cos 2 \theta)(\sec \theta) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
56
Simplify (cos2θ)(sin2θ)(\cos 2 \theta)(\sin 2 \theta) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
57
Simplify cos22θsin22θ\cos^{2} 2 \theta-\sin^{2} 2 \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
58
Simplify (tan2θ)(cotθ)(\tan 2 \theta)(\cot \theta) .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
59
Simplify 2csc2x11+cos2x\frac{2 \csc^{2} x-1}{1+\cos^{2} x} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
60
Simplify tan2xcosx\tan 2 x \cos x .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
61
Simplify cos2θcsc2θcot2θ\cos 2 \theta \csc^{2} \theta-\cot^{2} \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
62
Prove that cos2θ+sin2θ=cos2θ\cos 2 \theta+\sin^{2} \theta=\cos^{2} \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
63
Prove that sin(2θ)cos(2θ)=4sinθcos3θ2sinθcosθ\sin (2 \theta) \cos (2 \theta)=4 \sin \theta \cos^{3} \theta-2 \sin \theta \cos \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
64
Prove that cos4θsin4θ=cos2θ\cos^{4} \theta-\sin^{4} \theta=\cos 2 \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
65
Prove that tanθ1tanθ+tanθ1+tanθ=tan2θ\frac{\tan \theta}{1-\tan \theta}+\frac{\tan \theta}{1+\tan \theta}=\tan 2 \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
66
Prove that 1+sin2θ1sin2θ=(1+tanθ1tanθ)2\frac{1+\sin 2 \theta}{1-\sin 2 \theta}=\left(\frac{1+\tan \theta}{1-\tan \theta}\right)^{2} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
67
Prove that 11tanθ11+tanθ=tan2θ\frac{1}{1-\tan \theta}-\frac{1}{1+\tan \theta}=\tan 2 \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
68
Prove that cos2θ=1tan2θ1+tan2θ\cos 2 \theta=\frac{1-\tan^{2} \theta}{1+\tan^{2} \theta} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
69
Prove that sin3θ=3sinθcos2θsin3θ\sin 3 \theta=3 \sin \theta \cos^{2} \theta-\sin^{3} \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
70
Prove that cos3θ=cos3θ3sin2θcosθ\cos 3 \theta=\cos^{3} \theta-3 \sin^{2} \theta \cos \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
71
If AA and BB are the two acute angles of a right triangle, show that 2csc(2A)cotA=cotB2 \csc (2 A)-\cot A=\cot B .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
72
If AA and BB are the two acute angles of a right triangle, show that sin(AB)tanAtanB=12sin2A\frac{\sin (A-B)}{\tan A-\tan B}=\frac{1}{2} \sin 2 A .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
73
Simplify 1tan2θ1+tan2θ\frac{1-\tan^{2} \theta}{1+\tan^{2} \theta} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
74
Prove that cosθ2sinθ2=sinθ2\cos \frac{\theta}{2} \sin \frac{\theta}{2}=\frac{\sin \theta}{2} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
75
Prove the identity tanθ2+cotθ=cscθ\tan \frac{\theta}{2}+\cot \theta=\csc \theta .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
76
Prove the identity 2cos2x2cosx=12 \cos^{2} \frac{x}{2}-\cos x=1 .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
77
Prove that cosθ4sinθ4=12sinθ2\cos \frac{\theta}{4} \sin \frac{\theta}{4}=\frac{1}{2} \sin \frac{\theta}{2} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
78
Prove that cos2(x2)sinx=cscx+cotx2\frac{\cos^{2}\left(\frac{x}{2}\right)}{\sin x}=\frac{\csc x+\cot x}{2} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
79
Prove that sinθ=2tan(θ2)1+tan2(θ2)\sin \theta=\frac{2 \tan \left(\frac{\theta}{2}\right)}{1+\tan^{2}\left(\frac{\theta}{2}\right)} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
80
Prove that cosθ=1tan2(θ2)1+tan2(θ2)\cos \theta=\frac{1-\tan^{2}\left(\frac{\theta}{2}\right)}{1+\tan^{2}\left(\frac{\theta}{2}\right)} .
Unlock Deck
Unlock for access to all 116 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 116 flashcards in this deck.