Deck 27: Multiple Regression

Full screen (f)
exit full mode
Question
Write the equation of the regression model.

A)Weight = -285.21 - 1.3838 Age - 11.24 Head Width + 28.594 Neck
B)Weight = 78.45 - 0.9022 Age - 20.88 Head Width + 5.870 Neck
C)Weight = 132425- 44142 Age - 41.81 Head Width + 0.002 Neck
D)Weight = -285.21 + 78.45 Age - 3.64 Head Width + 0.022 Neck
E)Weight = -3.64 - 1.53 Age - 0.54 Head Width + 4.87 Neck
Use Space or
up arrow
down arrow
to flip the card.
Question
Every extra kilogram of weight means an increase of 5.2 metres in length.

A)This is not correct.Every extra kilogram of weight means an increase on average of 5.2 metres in length.
B)This is not correct.Every extra kilogram of weight means an increase of 5.2 metres in length and an increase of 2.2 centimetres in chest size.
C)This is not correct.Weight,the response variable,does not affect the predictors.
D)This is correct.
E)This is not correct.Weight,a predictor,does not affect the response variables.
Question
Interpret the R-squared value of 95.8%.

A)The average correlation between X1,X2,X3,X4,and X5 is 0.975.
B)95.8% of all samples would result in a useful model.
C)95.8% of all salaries can be accurately predicted by this model.
D)The average correlation between X1,X2,X3,X4,and X5 is 0.958.
E)95.8% of the observed variation in salaries can be explained by this model.
Question
From this model,what is the predicted calorie content of a serving of breakfast cereal which contains 10 g of protein,3 g of fat,6 g of fibre,14 g of carbohydrates,and 2 g of sugar?

A)203 calories
B)144 calories
C)183 calories
D)98 calories
E)111 calories
Question
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the worst predictor of weight,after allowing for the linear effects of the other variables in the model?

A)Neck
B)Age
C)Head Width
D)Length
E)Sex
Question
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the worst predictor of salary,after allowing for the linear effects of the other variables in the model?

A)Months of service
B)Words per minute of typing speed
C)Ability to take dictation in words per minute
D)Score on standardized test
E)Years of education
Question
Every extra metre of the length adds 5.2 kg to the average weight.

A)This is not correct.Every extra foot of the length adds 5.2 kg to the average weight,for a given chest size and sex.
B)This is correct.
C)This is not correct.Weight,the response variable,does not affect length.
D)This is not correct.Length does not affect weight.
E)This is not correct.Every extra inch of the length adds 3.6 pounds to the average weight.
Question
A visitor to Yellowstone National Park in Wyoming,Idaho,U.S.A.,sat down one day and observed Old Faithful,which faithfully erupts throughout the day,day in and day out.He surmised that the height of a given eruption was caused by the pressure buildup during the interval between eruptions and by the momentum buildup during the duration of the eruption.He wrote down the data to test his hypothesis,but he didn't know what to do with his data.  Height  Interval  Duration 15086240154862371406212214010426716062113140952581507923215062105160942761557924812586243136852411408621415558114130892721257922712583237139822381258420314082270140822701407821813587270140702411005610210581271\begin{array} { c c c } \text { Height } & \text { Interval } & \text { Duration } \\\hline 150 & 86 & 240 \\154 & 86 & 237 \\140 & 62 & 122 \\140 & 104 & 267 \\160 & 62 & 113 \\140 & 95 & 258 \\150 & 79 & 232 \\150 & 62 & 105 \\160 & 94 & 276 \\155 & 79 & 248 \\125 & 86 & 243 \\136 & 85 & 241 \\140 & 86 & 214 \\155 & 58 & 114 \\130 & 89 & 272 \\125 & 79 & 227 \\125 & 83 & 237 \\139 & 82 & 238 \\125 & 84 & 203 \\140 & 82 & 270 \\140 & 82 & 270 \\140 & 78 & 218 \\135 & 87 & 270 \\140 & 70 & 241 \\100 & 56 & 102 \\105 & 81 & 271\end{array}

A)Height = 125.1 + 0.36 Interval - 0.89 Duration
B)Height = 24.8 + 0.53 Interval - 0.11 Duration
C)Height = 126.3 + 0.37 Interval - 0.079 Duration
D)Height = 126.3 + 0.73 Interval - 0.11 Duration
E)Height = 25.1 + 0.73 Interval - 0.62 Duration
Question
From this model,what is the predicted salary of a secretary with 2.5 years (30 months)experience,10th grade education (10 years of education),an 80 on the standardized test,45 wpm typing speed,and the ability to take 30 wpm dictation?

A)$47,371
B)$24,054
C)$75,431
D)$144,225
E)$42,600
Question
How much of the variation in bear measurements is explained by the model?

A)2.22%
B)96.9%
C)94.6%
D)20%
E)61.9%
Question
Every extra centimetre of the chest adds 2.2 kg to the average weight,for a given length and sex.

A)This is not correct.Weight,the response variable,does not affect the predictors.
B)This is correct.
C)This is not correct.Specific values for the other predictors are not given.
D)This is not correct.Every extra centimetres of the chest adds 2.2 kg to the average weight,for any length and sex.
E)This is not correct.Chest size does not affect weight.
Question
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the best predictor of weight,after allowing for the linear effects of the other variables in the model?

A)Age
B)Sex
C)Length
D)Neck
E)Head Width
Question
What does the coefficient of neck mean?

A)For every measurement unit of the neck,all other measurements will increase by 28.594 units.
B)For every measurement unit of the neck,the average head width will decrease by -11.24 units.
C)For every measurement unit of the neck,the average weight will increase by 28.594 units.
D)For every measurement unit of the neck,the average weight will increase by one unit.
E)For every measurement unit of the neck,the average age will decrease by -1.3838 units.
Question
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the best predictor of salary,after allowing for the linear effects of the other variables in the model?

A)Months of service
B)Words per minute of typing speed
C)Score on standardized test
D)Years of education
E)Ability to take dictation in words per minute
Question
An anti-smoking group used data in the table to relate the carbon monoxide output of various brands of cigarettes to their tar and nicotine content.  CO  Tar  Nicotine 151.216151.216171.01660.8910.1180.88100.810171.016151.215110.79181.418161.015100.8970.55181.116\begin{array} { c c c } \text { CO } & \text { Tar } & \text { Nicotine } \\\hline 15 & 1.2 & 16 \\15 & 1.2 & 16 \\17 & 1.0 & 16 \\6 & 0.8 & 9 \\1 & 0.1 & 1 \\8 & 0.8 & 8 \\10 & 0.8 & 10 \\17 & 1.0 & 16 \\15 & 1.2 & 15 \\11 & 0.7 & 9 \\18 & 1.4 & 18 \\16 & 1.0 & 15 \\10 & 0.8 & 9 \\7 & 0.5 & 5 \\18 & 1.1 & 16\end{array}

A)CO = 1.25 + 1.55 Tar - 5.79 Nicotine
B)CO = 1.38 - 5.53 Tar + 1.33 Nicotine
C)CO = 1.38 + 5.50 Tar - 1.38 Nicotine
D)CO = 1.27 - 5.53 Tar + 5.79 Nicotine
E)CO = 1.30 + 5.50 Tar - 1.33 Nicotine
Question
A health specialist gathered the data in the table to see if pulse rates can be explained by exercise,smoking,and age.For exercise,he assigns 1 for yes,2 for no.For smoking,he assigns 1 for yes,2 for no.  Pulse  Exercise  Smoke  Age 972219881228691219671220831218771217662218782219731117671118551219821124701230551224761219\begin{array} { c c c c } \text { Pulse } & \text { Exercise } & \text { Smoke } & \text { Age } \\\hline 97 & 2 & 2 & 19 \\88 & 1 & 2 & 28 \\69 & 1 & 2 & 19 \\67 & 1 & 2 & 20 \\83 & 1 & 2 & 18 \\77 & 1 & 2 & 17 \\66 & 2 & 2 & 18 \\78 & 2 & 2 & 19 \\73 & 1 & 1 & 17 \\67 & 1 & 1 & 18 \\55 & 1 & 2 & 19 \\82 & 1 & 1 & 24 \\70 & 1 & 2 & 30 \\55 & 1 & 2 & 24 \\76 & 1 & 2 & 19\end{array}

A)Pulse = 58.04 + 10.57 Exercise - 3.77 Smoke + 0.47 Age
B)Pulse = 24.1 + 8.15 Exercise + 6.33 Smoke + 0.83 Age
C)Pulse = 37.3 + 9.24 Exercise + 1.15 Smoke + 1.2 Age
D)Pulse = 58.04 + 10.57 Exercise + 3.77 Smoke + 0.47 Age
E)Pulse = 37.3 + 9.4 Exercise + 1.6 Smoke + 1.2 Age
Question
Interpret the R-squared value of 84.5%.

A)84.5% of all calorie contents can be accurately predicted by this model.
B)The average correlation between protein,fat,fibre,carbohydrates,and sugar is 0.845.
C)The average correlation between protein,fat,fibre,carbohydrates,and sugar is 0.919.
D)84.5% of all samples would result in a useful model.
E)84.5% of the observed variation in calorie content can be explained by this model.
Question
This model fits 96% of the data points exactly.

A)This is not correct.This model fits 48% of the data points exactly.
B)This is not correct.This model fits 100% of the data points exactly.
C)This is not correct. R2\mathrm { R } ^ { 2 } gives the fraction of variability,not the fraction of data values.
D)This is correct.
E)This is not correct. R2\mathrm { R } ^ { 2 } is a measure of the straightness of the regression.
Question
What is the regression equation?

A)salary = 11.58 + 2.090 service + 2.844 education + 0.273 test score + 0.147 typing speed + 0.435 dictation speed
B)salary = -6.5 + 1.49 service + 1.22 education - 0.18 test score + 0.24 typing speed - 0.14 dictation speed
C)salary = 6.5 - 1.49 service - 1.22 education + 0.18 test score - 0.24 typing speed + 0.14 dictation speed
D)salary = 11.58 - 2.090 service - 2.844 education - 0.273 test score - 0.147 typing speed - 0.435 dictation speed
E)salary = -0.561 + 0.715 service + 0.429 education - 0.66 test score + 1.363 typing speed - 0.322 dictation speed
Question
What is the regression equation?

A)calories = 5.984 + 1.072 protein +1.033 fat + 0.454 fibre +0.260 carbohydrates + 0.250 sugar
B)calories = 20.2454 + 1.072 protein +8.09 fat + 0.454 fibre +11.30 carbohydrates + 0.250 sugar
C)calories = 3.38 + 5.32 protein +8.09 fat - 2.11 fibre +11.30 carbohydrates + 13.30 sugar
D)calories = 5.984 + 5.32 protein +1.033 fat - 2.11 fibre +0.260 carbohydrates + 13.30 sugar
E)calories = 20.2454 + 5.6954 protein + 8.3596 fat - 1.0202 fibre + 2.9357 carbohydrates + 3.3185 sugar
Question
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the worst predictor of calorie content,after allowing for the linear effects of the other variables in the model?

A)Sugar
B)Carbohydrates
C)Protein
D)Fat
E)Fibre
Question
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the best predictor of calorie content,after allowing for the linear effects of the other variables in the model?

A)Protein
B)Sugar
C)Carbohydrates
D)Fat
E)Fibre
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/22
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 27: Multiple Regression
1
Write the equation of the regression model.

A)Weight = -285.21 - 1.3838 Age - 11.24 Head Width + 28.594 Neck
B)Weight = 78.45 - 0.9022 Age - 20.88 Head Width + 5.870 Neck
C)Weight = 132425- 44142 Age - 41.81 Head Width + 0.002 Neck
D)Weight = -285.21 + 78.45 Age - 3.64 Head Width + 0.022 Neck
E)Weight = -3.64 - 1.53 Age - 0.54 Head Width + 4.87 Neck
Weight = -285.21 - 1.3838 Age - 11.24 Head Width + 28.594 Neck
2
Every extra kilogram of weight means an increase of 5.2 metres in length.

A)This is not correct.Every extra kilogram of weight means an increase on average of 5.2 metres in length.
B)This is not correct.Every extra kilogram of weight means an increase of 5.2 metres in length and an increase of 2.2 centimetres in chest size.
C)This is not correct.Weight,the response variable,does not affect the predictors.
D)This is correct.
E)This is not correct.Weight,a predictor,does not affect the response variables.
This is not correct.Weight,the response variable,does not affect the predictors.
3
Interpret the R-squared value of 95.8%.

A)The average correlation between X1,X2,X3,X4,and X5 is 0.975.
B)95.8% of all samples would result in a useful model.
C)95.8% of all salaries can be accurately predicted by this model.
D)The average correlation between X1,X2,X3,X4,and X5 is 0.958.
E)95.8% of the observed variation in salaries can be explained by this model.
95.8% of the observed variation in salaries can be explained by this model.
4
From this model,what is the predicted calorie content of a serving of breakfast cereal which contains 10 g of protein,3 g of fat,6 g of fibre,14 g of carbohydrates,and 2 g of sugar?

A)203 calories
B)144 calories
C)183 calories
D)98 calories
E)111 calories
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
5
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the worst predictor of weight,after allowing for the linear effects of the other variables in the model?

A)Neck
B)Age
C)Head Width
D)Length
E)Sex
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
6
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the worst predictor of salary,after allowing for the linear effects of the other variables in the model?

A)Months of service
B)Words per minute of typing speed
C)Ability to take dictation in words per minute
D)Score on standardized test
E)Years of education
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
7
Every extra metre of the length adds 5.2 kg to the average weight.

A)This is not correct.Every extra foot of the length adds 5.2 kg to the average weight,for a given chest size and sex.
B)This is correct.
C)This is not correct.Weight,the response variable,does not affect length.
D)This is not correct.Length does not affect weight.
E)This is not correct.Every extra inch of the length adds 3.6 pounds to the average weight.
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
8
A visitor to Yellowstone National Park in Wyoming,Idaho,U.S.A.,sat down one day and observed Old Faithful,which faithfully erupts throughout the day,day in and day out.He surmised that the height of a given eruption was caused by the pressure buildup during the interval between eruptions and by the momentum buildup during the duration of the eruption.He wrote down the data to test his hypothesis,but he didn't know what to do with his data.  Height  Interval  Duration 15086240154862371406212214010426716062113140952581507923215062105160942761557924812586243136852411408621415558114130892721257922712583237139822381258420314082270140822701407821813587270140702411005610210581271\begin{array} { c c c } \text { Height } & \text { Interval } & \text { Duration } \\\hline 150 & 86 & 240 \\154 & 86 & 237 \\140 & 62 & 122 \\140 & 104 & 267 \\160 & 62 & 113 \\140 & 95 & 258 \\150 & 79 & 232 \\150 & 62 & 105 \\160 & 94 & 276 \\155 & 79 & 248 \\125 & 86 & 243 \\136 & 85 & 241 \\140 & 86 & 214 \\155 & 58 & 114 \\130 & 89 & 272 \\125 & 79 & 227 \\125 & 83 & 237 \\139 & 82 & 238 \\125 & 84 & 203 \\140 & 82 & 270 \\140 & 82 & 270 \\140 & 78 & 218 \\135 & 87 & 270 \\140 & 70 & 241 \\100 & 56 & 102 \\105 & 81 & 271\end{array}

A)Height = 125.1 + 0.36 Interval - 0.89 Duration
B)Height = 24.8 + 0.53 Interval - 0.11 Duration
C)Height = 126.3 + 0.37 Interval - 0.079 Duration
D)Height = 126.3 + 0.73 Interval - 0.11 Duration
E)Height = 25.1 + 0.73 Interval - 0.62 Duration
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
9
From this model,what is the predicted salary of a secretary with 2.5 years (30 months)experience,10th grade education (10 years of education),an 80 on the standardized test,45 wpm typing speed,and the ability to take 30 wpm dictation?

A)$47,371
B)$24,054
C)$75,431
D)$144,225
E)$42,600
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
10
How much of the variation in bear measurements is explained by the model?

A)2.22%
B)96.9%
C)94.6%
D)20%
E)61.9%
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
11
Every extra centimetre of the chest adds 2.2 kg to the average weight,for a given length and sex.

A)This is not correct.Weight,the response variable,does not affect the predictors.
B)This is correct.
C)This is not correct.Specific values for the other predictors are not given.
D)This is not correct.Every extra centimetres of the chest adds 2.2 kg to the average weight,for any length and sex.
E)This is not correct.Chest size does not affect weight.
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
12
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the best predictor of weight,after allowing for the linear effects of the other variables in the model?

A)Age
B)Sex
C)Length
D)Neck
E)Head Width
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
13
What does the coefficient of neck mean?

A)For every measurement unit of the neck,all other measurements will increase by 28.594 units.
B)For every measurement unit of the neck,the average head width will decrease by -11.24 units.
C)For every measurement unit of the neck,the average weight will increase by 28.594 units.
D)For every measurement unit of the neck,the average weight will increase by one unit.
E)For every measurement unit of the neck,the average age will decrease by -1.3838 units.
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
14
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the best predictor of salary,after allowing for the linear effects of the other variables in the model?

A)Months of service
B)Words per minute of typing speed
C)Score on standardized test
D)Years of education
E)Ability to take dictation in words per minute
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
15
An anti-smoking group used data in the table to relate the carbon monoxide output of various brands of cigarettes to their tar and nicotine content.  CO  Tar  Nicotine 151.216151.216171.01660.8910.1180.88100.810171.016151.215110.79181.418161.015100.8970.55181.116\begin{array} { c c c } \text { CO } & \text { Tar } & \text { Nicotine } \\\hline 15 & 1.2 & 16 \\15 & 1.2 & 16 \\17 & 1.0 & 16 \\6 & 0.8 & 9 \\1 & 0.1 & 1 \\8 & 0.8 & 8 \\10 & 0.8 & 10 \\17 & 1.0 & 16 \\15 & 1.2 & 15 \\11 & 0.7 & 9 \\18 & 1.4 & 18 \\16 & 1.0 & 15 \\10 & 0.8 & 9 \\7 & 0.5 & 5 \\18 & 1.1 & 16\end{array}

A)CO = 1.25 + 1.55 Tar - 5.79 Nicotine
B)CO = 1.38 - 5.53 Tar + 1.33 Nicotine
C)CO = 1.38 + 5.50 Tar - 1.38 Nicotine
D)CO = 1.27 - 5.53 Tar + 5.79 Nicotine
E)CO = 1.30 + 5.50 Tar - 1.33 Nicotine
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
16
A health specialist gathered the data in the table to see if pulse rates can be explained by exercise,smoking,and age.For exercise,he assigns 1 for yes,2 for no.For smoking,he assigns 1 for yes,2 for no.  Pulse  Exercise  Smoke  Age 972219881228691219671220831218771217662218782219731117671118551219821124701230551224761219\begin{array} { c c c c } \text { Pulse } & \text { Exercise } & \text { Smoke } & \text { Age } \\\hline 97 & 2 & 2 & 19 \\88 & 1 & 2 & 28 \\69 & 1 & 2 & 19 \\67 & 1 & 2 & 20 \\83 & 1 & 2 & 18 \\77 & 1 & 2 & 17 \\66 & 2 & 2 & 18 \\78 & 2 & 2 & 19 \\73 & 1 & 1 & 17 \\67 & 1 & 1 & 18 \\55 & 1 & 2 & 19 \\82 & 1 & 1 & 24 \\70 & 1 & 2 & 30 \\55 & 1 & 2 & 24 \\76 & 1 & 2 & 19\end{array}

A)Pulse = 58.04 + 10.57 Exercise - 3.77 Smoke + 0.47 Age
B)Pulse = 24.1 + 8.15 Exercise + 6.33 Smoke + 0.83 Age
C)Pulse = 37.3 + 9.24 Exercise + 1.15 Smoke + 1.2 Age
D)Pulse = 58.04 + 10.57 Exercise + 3.77 Smoke + 0.47 Age
E)Pulse = 37.3 + 9.4 Exercise + 1.6 Smoke + 1.2 Age
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
17
Interpret the R-squared value of 84.5%.

A)84.5% of all calorie contents can be accurately predicted by this model.
B)The average correlation between protein,fat,fibre,carbohydrates,and sugar is 0.845.
C)The average correlation between protein,fat,fibre,carbohydrates,and sugar is 0.919.
D)84.5% of all samples would result in a useful model.
E)84.5% of the observed variation in calorie content can be explained by this model.
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
18
This model fits 96% of the data points exactly.

A)This is not correct.This model fits 48% of the data points exactly.
B)This is not correct.This model fits 100% of the data points exactly.
C)This is not correct. R2\mathrm { R } ^ { 2 } gives the fraction of variability,not the fraction of data values.
D)This is correct.
E)This is not correct. R2\mathrm { R } ^ { 2 } is a measure of the straightness of the regression.
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
19
What is the regression equation?

A)salary = 11.58 + 2.090 service + 2.844 education + 0.273 test score + 0.147 typing speed + 0.435 dictation speed
B)salary = -6.5 + 1.49 service + 1.22 education - 0.18 test score + 0.24 typing speed - 0.14 dictation speed
C)salary = 6.5 - 1.49 service - 1.22 education + 0.18 test score - 0.24 typing speed + 0.14 dictation speed
D)salary = 11.58 - 2.090 service - 2.844 education - 0.273 test score - 0.147 typing speed - 0.435 dictation speed
E)salary = -0.561 + 0.715 service + 0.429 education - 0.66 test score + 1.363 typing speed - 0.322 dictation speed
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
20
What is the regression equation?

A)calories = 5.984 + 1.072 protein +1.033 fat + 0.454 fibre +0.260 carbohydrates + 0.250 sugar
B)calories = 20.2454 + 1.072 protein +8.09 fat + 0.454 fibre +11.30 carbohydrates + 0.250 sugar
C)calories = 3.38 + 5.32 protein +8.09 fat - 2.11 fibre +11.30 carbohydrates + 13.30 sugar
D)calories = 5.984 + 5.32 protein +1.033 fat - 2.11 fibre +0.260 carbohydrates + 13.30 sugar
E)calories = 20.2454 + 5.6954 protein + 8.3596 fat - 1.0202 fibre + 2.9357 carbohydrates + 3.3185 sugar
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
21
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the worst predictor of calorie content,after allowing for the linear effects of the other variables in the model?

A)Sugar
B)Carbohydrates
C)Protein
D)Fat
E)Fibre
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
22
Use the following computer data,which refers to bear measurements,to answer the question.
Dependent variable is Weight
S = 32.49 R-Sq = 96.9% R-Sq (adj)= 94.6%  Predictor  Coef  SE Coef  T  P  Constant 285.2178.453.640.022 Age 1.38380.90221.530.200 Head Width 11.2420.880.540.619 Neck 28.5945.8704.870.007\begin{array} { l | c | c | c | c } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\hline \text { Constant } & - 285.21 & 78.45 & - 3.64 & 0.022 \\\text { Age } & - 1.3838 & 0.9022 & - 1.53 & 0.200 \\\text { Head Width } & - 11.24 & 20.88 & - 0.54 & 0.619 \\\text { Neck } & 28.594 & 5.870 & 4.87 & 0.007\end{array} Analysis of Variance  Source  DF  SS  MS  F  P  Regression 31324254414241.810.002 Residual Error 442231056 Total 7136648\begin{array} { l | c | c | c | c | c } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\hline \text { Regression } & 3 & 132425 & 44142 & 41.81 & 0.002 \\\text { Residual Error } & 4 & 4223 & 1056 & & \\\text { Total } & 7 & 136648 & & &\end{array}

-Which measurement is the best predictor of calorie content,after allowing for the linear effects of the other variables in the model?

A)Protein
B)Sugar
C)Carbohydrates
D)Fat
E)Fibre
Unlock Deck
Unlock for access to all 22 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 22 flashcards in this deck.