Deck 8: Differential Equations

Full screen (f)
exit full mode
Question
A desert preserve in the southwest is known for its populations of coyotes and road runners.The growth rate for each population can be modeled by this pair of differential equations: dRdt=2R0.2RCdCdt=1.4C+0.02RC\begin{array} { l } \frac { d R } { d t } = 2 R - 0.2 R C \\\frac { d C } { d t } = - 1.4 C + 0.02 R C\end{array} where C is the number of coyotes and R is the number of road runners.Find the equilibrium populations for this model.(Hint: These are the populations for which dRdt=dCdt=0\frac { d R } { d t } = \frac { d C } { d t } = 0 ).

A)60 coyotes,15 road runners
B)10 coyotes,70 road runners
C)15 coyotes,60 road runners
D)70 coyotes,10 road runners
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the general solution of dydx=7y\frac { d y } { d x } = 7 y .

A)y = ln x + C
B) y=e7x+Cy = e ^ { 7 x } + C
C)y = 7x + C
D) y=Ce7xy = C e ^ { 7 x }
Question
Solve the given first-order linear initial value problem. yn+1=yn;y0=1- y _ { n + 1 } = y _ { n } ; y _ { 0 } = 1

A) yn=1y _ { n } = 1
B) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n + 1 }
C) yn=(1)ny _ { n } = ( - 1 ) ^ { n }
D) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n } + 1
Question
Find the general solution of the given first-order linear differential equation. dydx+9yx=4x\frac { d y } { d x } + \frac { 9 y } { x } = 4 x

A) y=x211+Cx9y = \frac { x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
B) y=4x211+Cx11y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 11 } }
C) y=4x211+Cx9y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
D) y=11x24+Cx9y = \frac { 11 x ^ { 2 } } { 4 } + \frac { C } { x ^ { 9 } }
Question
The price of a certain house is currently $260,000.Suppose it is estimated that after t months,the price p(t)p ( t ) will be increasing at the rate of 0.01p(t)+1,000t0.01 p ( t ) + 1,000 t dollars per month.
In 7 months from now,to the nearest whole dollar,the price of the house will be $303,934.
Question
Use Euler's method with the step size h=0.2h = 0.2 to estimate the solution y(1)y ( 1 ) of the given initial value problem.Round your answer to two decimal places. y=xy4x+y;y(0)=4y ^ { \prime } = \frac { x - y } { 4 x + y } ; y ( 0 ) = 4

A)1.64
B)4.92
C)6.56
D)3.28
Question
Find the general solution of dydx=x3+9\frac { d y } { d x } = x ^ { 3 } + 9 .

A)y = 9x + C
B) y=4x4+9x+Cy = 4 x ^ { 4 } + 9 x + C
C) y=3x2+Cy = 3 x ^ { 2 } + C
D) y=x44+9x+Cy = \frac { x ^ { 4 } } { 4 } + 9 x + C
Question
Find the general solution of the given first-order linear differential equation. dydx+y20x=x1920ex\frac { d y } { d x } + \frac { y } { 20 x } = \sqrt [ 20 ] { x ^ { 19 } } e ^ { x }

A) y=exx1/20+Cy = \frac { e ^ { x } } { x ^ { 1 / 20 } } + C
B) y=ex(x1)+Cx20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 20 } }
C) y=x1/20ex(x1)+Cy = x ^ { 1 / 20 } e ^ { x } ( x - 1 ) + C
D) y=ex(x1)+Cx1/20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 1 / 20 } }
Question
Find the general solution of dydx=19xy2\frac { d y } { d x } = \frac { 19 x } { y ^ { 2 } } .

A) y=Cy = C
B) y=57x22+C3y = \sqrt [ 3 ] { \frac { 57 x ^ { 2 } } { 2 } + C }
C) y=(38x)23+C3y = \sqrt [ 3 ] { \frac { ( 38 x ) ^ { 2 } } { 3 } + C }
D) y=19x22+Cy = \frac { 19 x ^ { 2 } } { 2 } + C
Question
The first five terms of the initial value problem yn=yn12;y0=2y _ { n } = y _ { n - 1 } ^ { 2 } ; y _ { 0 } = 2 are 2,4,8,16,and 32.
Question
Find the particular solution of the given differential equation that satisfies the indicated condition: dydx=y26x\frac { d y } { d x } = y ^ { 2 } \sqrt { 6 - x } ; y = 1 when x = 6.

A) y=2(6x)3/233y = \frac { 2 ( 6 - x ) ^ { 3 / 2 } - 3 } { 3 }
B) y=32(6+x)3/23y = \frac { 3 } { 2 ( 6 + x ) ^ { 3 / 2 } - 3 }
C) y=32(6x)3/23y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } - 3 }
D) y=32(6x)3/2+3y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } + 3 }
Question
Write a differential equation describing the given situation.Define all variables you introduce.(Do not try to solve the differential equation at this time.)An investment grows at a rate of 3% of its size.

A)Let Q denote the investment and let t denote time; dQdt=0.03Q\frac { d Q } { d t } = 0.03 Q
B)Let Q denote the investment and let t denote time; dQdt=0.03t\frac { d Q } { d t } = 0.03 t
C)Let Q denote the investment and let t denote time; dQdt=0.3Q\frac { d Q } { d t } = 0.3 Q
D)Let Q denote the investment and let t denote time; dQdt=3Q\frac { d Q } { d t } = 3 Q
Question
Find an equation for the orthogonal trajectories of the given family of curves. 8x2+y=C8 x ^ { 2 } + y = C

A) ylnx16=Cy - \ln x ^ { 16 } = C
B) yxe1/16=Cy - x e ^ { 1 / 16 } = C
C) ylnx1/6=Cy - \ln x ^ { 1 / 6 } = C
D) lnyx1/6=C\ln y - x ^ { 1 / 6 } = C
Question
Find the particular solution of dydx=x2y35\frac { d y } { d x } = \frac { x ^ { 2 } y ^ { 3 } } { 5 } ,given y = 6 when x = 0.

A) y=2(x36)2y = \frac { 2 } { \left( x ^ { 3 } - 6 \right) ^ { 2 } }
B) y=4x6+6y = 4 x ^ { 6 } + 6
C) y=180524x3y = \sqrt { \frac { 180 } { 5 - 24 x ^ { 3 } } }
D) y=x33+6y = \frac { x ^ { 3 } } { 3 } + 6
Question
Find the particular solution of the given differential equation that satisfies the given condition. dydxy=2x2;y=1 when x=3\frac { d y } { d x } - y = 2 x ^ { 2 } ; y = 1 \text { when } x = 3

A) y=35ex3x2+2x+2y = \frac { 35 e ^ { x - 3 } } { x ^ { 2 } + 2 x + 2 }
B) y=35ex32(x2+2x+2)y = 35 e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
C) y=35ex+2(x2+2x+2)y = 35 e ^ { x } + 2 \left( x ^ { 2 } + 2 x + 2 \right)
D) y=Cex32(x2+2x+2)y = C e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
Question
Find the general solution of dydx=e7x\frac { d y } { d x } = e ^ { 7 x } .

A) y=e7x7+Cy = \frac { e ^ { 7 x } } { 7 } + C
B) y=(7x)eCy = \frac { ( 7 x ) ^ { e } } { C }
C) y=7xe7x+Cy = 7 x e ^ { 7 x } + C
D) y=Ce7x7y = \frac { C e ^ { 7 x } } { 7 }
Question
A dead body is discovered at 8:00 A.M.on Tuesday in a basement where the air temperature is 60F60 ^ { \circ } \mathrm { F } The temperature of the body at the time of discovery is 72F72 ^ { \circ } \mathrm { F } and 20 minutes later,the temperature is 71F71 ^ { \circ } \mathrm { F } The time of death was 6:00 A.M.on Tuesday.
Question
Find constants A and B so that the given expression yny _ { n } satisfies the specified difference equation. n2yn+nyn1=4n2n3;yn=An+Bn ^ { 2 } y _ { n } + n y _ { n - 1 } = 4 n - 2 n ^ { 3 } ; y _ { n } = A n + B

A) A=2,B=2A = 2 , B = 2
B) A=2,B=2A = - 2 , B = - 2
C) A=2,B=2A = 2 , B = - 2
D) A=2,B=2A = - 2 , B = 2
Question
Find the particular solution of dydx=x2\frac { d y } { d x } = x ^ { 2 } ,given y = 18 when x = 1.

A) y=x3353y = \frac { x ^ { 3 } } { 3 } - 53
B) y=x33533y = \frac { x ^ { 3 } } { 3 } - \frac { 53 } { 3 }
C) y=x33+18y = \frac { x ^ { 3 } } { 3 } + 18
D) y=x33+533y = \frac { x ^ { 3 } } { 3 } + \frac { 53 } { 3 }
Question
The intensity of light I(d)I ( d ) at a depth d below the surface of a body of water changes at a rate proportional to I.If the intensity at a depth of d=2.4d = 2.4 feet is half of the surface intensity I0I _ { 0 } to the nearest tenth of a foot,at what depth is the intensity 15%15 \% of I0?I _ { 0 } ?

A)6.6 feet
B)9.9 feet
C)13.2 feet
D)7.9 feet
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/20
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Differential Equations
1
A desert preserve in the southwest is known for its populations of coyotes and road runners.The growth rate for each population can be modeled by this pair of differential equations: dRdt=2R0.2RCdCdt=1.4C+0.02RC\begin{array} { l } \frac { d R } { d t } = 2 R - 0.2 R C \\\frac { d C } { d t } = - 1.4 C + 0.02 R C\end{array} where C is the number of coyotes and R is the number of road runners.Find the equilibrium populations for this model.(Hint: These are the populations for which dRdt=dCdt=0\frac { d R } { d t } = \frac { d C } { d t } = 0 ).

A)60 coyotes,15 road runners
B)10 coyotes,70 road runners
C)15 coyotes,60 road runners
D)70 coyotes,10 road runners
10 coyotes,70 road runners
2
Find the general solution of dydx=7y\frac { d y } { d x } = 7 y .

A)y = ln x + C
B) y=e7x+Cy = e ^ { 7 x } + C
C)y = 7x + C
D) y=Ce7xy = C e ^ { 7 x }
y=Ce7xy = C e ^ { 7 x }
3
Solve the given first-order linear initial value problem. yn+1=yn;y0=1- y _ { n + 1 } = y _ { n } ; y _ { 0 } = 1

A) yn=1y _ { n } = 1
B) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n + 1 }
C) yn=(1)ny _ { n } = ( - 1 ) ^ { n }
D) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n } + 1
yn=(1)ny _ { n } = ( - 1 ) ^ { n }
4
Find the general solution of the given first-order linear differential equation. dydx+9yx=4x\frac { d y } { d x } + \frac { 9 y } { x } = 4 x

A) y=x211+Cx9y = \frac { x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
B) y=4x211+Cx11y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 11 } }
C) y=4x211+Cx9y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
D) y=11x24+Cx9y = \frac { 11 x ^ { 2 } } { 4 } + \frac { C } { x ^ { 9 } }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
5
The price of a certain house is currently $260,000.Suppose it is estimated that after t months,the price p(t)p ( t ) will be increasing at the rate of 0.01p(t)+1,000t0.01 p ( t ) + 1,000 t dollars per month.
In 7 months from now,to the nearest whole dollar,the price of the house will be $303,934.
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
6
Use Euler's method with the step size h=0.2h = 0.2 to estimate the solution y(1)y ( 1 ) of the given initial value problem.Round your answer to two decimal places. y=xy4x+y;y(0)=4y ^ { \prime } = \frac { x - y } { 4 x + y } ; y ( 0 ) = 4

A)1.64
B)4.92
C)6.56
D)3.28
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
7
Find the general solution of dydx=x3+9\frac { d y } { d x } = x ^ { 3 } + 9 .

A)y = 9x + C
B) y=4x4+9x+Cy = 4 x ^ { 4 } + 9 x + C
C) y=3x2+Cy = 3 x ^ { 2 } + C
D) y=x44+9x+Cy = \frac { x ^ { 4 } } { 4 } + 9 x + C
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
8
Find the general solution of the given first-order linear differential equation. dydx+y20x=x1920ex\frac { d y } { d x } + \frac { y } { 20 x } = \sqrt [ 20 ] { x ^ { 19 } } e ^ { x }

A) y=exx1/20+Cy = \frac { e ^ { x } } { x ^ { 1 / 20 } } + C
B) y=ex(x1)+Cx20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 20 } }
C) y=x1/20ex(x1)+Cy = x ^ { 1 / 20 } e ^ { x } ( x - 1 ) + C
D) y=ex(x1)+Cx1/20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 1 / 20 } }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
9
Find the general solution of dydx=19xy2\frac { d y } { d x } = \frac { 19 x } { y ^ { 2 } } .

A) y=Cy = C
B) y=57x22+C3y = \sqrt [ 3 ] { \frac { 57 x ^ { 2 } } { 2 } + C }
C) y=(38x)23+C3y = \sqrt [ 3 ] { \frac { ( 38 x ) ^ { 2 } } { 3 } + C }
D) y=19x22+Cy = \frac { 19 x ^ { 2 } } { 2 } + C
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
10
The first five terms of the initial value problem yn=yn12;y0=2y _ { n } = y _ { n - 1 } ^ { 2 } ; y _ { 0 } = 2 are 2,4,8,16,and 32.
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
11
Find the particular solution of the given differential equation that satisfies the indicated condition: dydx=y26x\frac { d y } { d x } = y ^ { 2 } \sqrt { 6 - x } ; y = 1 when x = 6.

A) y=2(6x)3/233y = \frac { 2 ( 6 - x ) ^ { 3 / 2 } - 3 } { 3 }
B) y=32(6+x)3/23y = \frac { 3 } { 2 ( 6 + x ) ^ { 3 / 2 } - 3 }
C) y=32(6x)3/23y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } - 3 }
D) y=32(6x)3/2+3y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } + 3 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
12
Write a differential equation describing the given situation.Define all variables you introduce.(Do not try to solve the differential equation at this time.)An investment grows at a rate of 3% of its size.

A)Let Q denote the investment and let t denote time; dQdt=0.03Q\frac { d Q } { d t } = 0.03 Q
B)Let Q denote the investment and let t denote time; dQdt=0.03t\frac { d Q } { d t } = 0.03 t
C)Let Q denote the investment and let t denote time; dQdt=0.3Q\frac { d Q } { d t } = 0.3 Q
D)Let Q denote the investment and let t denote time; dQdt=3Q\frac { d Q } { d t } = 3 Q
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
13
Find an equation for the orthogonal trajectories of the given family of curves. 8x2+y=C8 x ^ { 2 } + y = C

A) ylnx16=Cy - \ln x ^ { 16 } = C
B) yxe1/16=Cy - x e ^ { 1 / 16 } = C
C) ylnx1/6=Cy - \ln x ^ { 1 / 6 } = C
D) lnyx1/6=C\ln y - x ^ { 1 / 6 } = C
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
14
Find the particular solution of dydx=x2y35\frac { d y } { d x } = \frac { x ^ { 2 } y ^ { 3 } } { 5 } ,given y = 6 when x = 0.

A) y=2(x36)2y = \frac { 2 } { \left( x ^ { 3 } - 6 \right) ^ { 2 } }
B) y=4x6+6y = 4 x ^ { 6 } + 6
C) y=180524x3y = \sqrt { \frac { 180 } { 5 - 24 x ^ { 3 } } }
D) y=x33+6y = \frac { x ^ { 3 } } { 3 } + 6
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
15
Find the particular solution of the given differential equation that satisfies the given condition. dydxy=2x2;y=1 when x=3\frac { d y } { d x } - y = 2 x ^ { 2 } ; y = 1 \text { when } x = 3

A) y=35ex3x2+2x+2y = \frac { 35 e ^ { x - 3 } } { x ^ { 2 } + 2 x + 2 }
B) y=35ex32(x2+2x+2)y = 35 e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
C) y=35ex+2(x2+2x+2)y = 35 e ^ { x } + 2 \left( x ^ { 2 } + 2 x + 2 \right)
D) y=Cex32(x2+2x+2)y = C e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
16
Find the general solution of dydx=e7x\frac { d y } { d x } = e ^ { 7 x } .

A) y=e7x7+Cy = \frac { e ^ { 7 x } } { 7 } + C
B) y=(7x)eCy = \frac { ( 7 x ) ^ { e } } { C }
C) y=7xe7x+Cy = 7 x e ^ { 7 x } + C
D) y=Ce7x7y = \frac { C e ^ { 7 x } } { 7 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
17
A dead body is discovered at 8:00 A.M.on Tuesday in a basement where the air temperature is 60F60 ^ { \circ } \mathrm { F } The temperature of the body at the time of discovery is 72F72 ^ { \circ } \mathrm { F } and 20 minutes later,the temperature is 71F71 ^ { \circ } \mathrm { F } The time of death was 6:00 A.M.on Tuesday.
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
18
Find constants A and B so that the given expression yny _ { n } satisfies the specified difference equation. n2yn+nyn1=4n2n3;yn=An+Bn ^ { 2 } y _ { n } + n y _ { n - 1 } = 4 n - 2 n ^ { 3 } ; y _ { n } = A n + B

A) A=2,B=2A = 2 , B = 2
B) A=2,B=2A = - 2 , B = - 2
C) A=2,B=2A = 2 , B = - 2
D) A=2,B=2A = - 2 , B = 2
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
19
Find the particular solution of dydx=x2\frac { d y } { d x } = x ^ { 2 } ,given y = 18 when x = 1.

A) y=x3353y = \frac { x ^ { 3 } } { 3 } - 53
B) y=x33533y = \frac { x ^ { 3 } } { 3 } - \frac { 53 } { 3 }
C) y=x33+18y = \frac { x ^ { 3 } } { 3 } + 18
D) y=x33+533y = \frac { x ^ { 3 } } { 3 } + \frac { 53 } { 3 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
20
The intensity of light I(d)I ( d ) at a depth d below the surface of a body of water changes at a rate proportional to I.If the intensity at a depth of d=2.4d = 2.4 feet is half of the surface intensity I0I _ { 0 } to the nearest tenth of a foot,at what depth is the intensity 15%15 \% of I0?I _ { 0 } ?

A)6.6 feet
B)9.9 feet
C)13.2 feet
D)7.9 feet
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 20 flashcards in this deck.