Deck 4: Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
Solve for x: a7x1=ba ^ { 7 x - 1 } = b

A) (lnblna+1)7\left( \frac { \ln b } { \ln a } + 1 \right) ^ { 7 }
B) x=17(1+lnblna)x = \frac { 1 } { 7 } \left( 1 + \frac { \ln b } { \ln a } \right)
C) x=1+17(1+lnblna)x = 1 + \frac { 1 } { 7 } \left( 1 + \frac { \ln b } { \ln a } \right)
D) lnb7lna\frac { \ln b } { 7 \ln a }
Use Space or
up arrow
down arrow
to flip the card.
Question
Solve for x.Round to three decimal places,if necessary. log4x=5\log _ { 4 } x = 5

A)1)495
B)1)32
C)1,024
D)625
Question
An efficiency expert hired by a manufacturing firm has compiled the following data relating workers' output to their experience: Experience (months)
 Experience (months) 02 Output (units per hour) 300510\begin{array} { l l l } \text { Experience (months) } & 0 & 2 \\\text { Output (units per hour) } & 300 & 510\end{array}
The expert believes that the output Q is related to experience t by a function of the form Q(t)=600AektQ ( t ) = 600 - A e ^ { - k t } .Find the function of this form that fits the data.Round numbers to four decimal places,if necessary.

A) Q(t)=600510e0.6020tQ ( t ) = 600 - 510 e ^ { 0.6020 t }
B) Q(t)=600510e0.6020tQ ( t ) = 600 - 510 e ^ { - 0.6020 t }
C) Q(t)=600300e0.6020tQ ( t ) = 600 - 300 e ^ { - 0.6020 t }
D) Q(t)=600300e0.6020tQ ( t ) = 600 - 300 e ^ { 0.6020 t }
Question
Solve the given equation for x. 6=7+5e7x- 6 = - 7 + 5 e ^ { - 7 x }

A) e57- \frac { e ^ { 5 } } { 7 }
B) ln57\frac { \ln 5 } { 7 }
C) 7e5- 7 e ^ { 5 }
D) ln57- \frac { \ln 5 } { 7 }
Question
Evaluate the given expression. (256625)5/4\left( \frac { 256 } { 625 } \right) ^ { 5 / 4 }

A) 1,0243,125\frac { 1,024 } { 3,125 }
B) 45\frac { 4 } { 5 }
C) 1,024625\frac { 1,024 } { 625 }
D) 256625\frac { 256 } { 625 }
Question
Find the derivative of ln[(lnx6)7]\ln \left[ \left( \ln x ^ { 6 } \right) ^ { 7 } \right] .

A) 42xlnx\frac { 42 } { x \ln x }
B) 42ln(lnx)\frac { 42 } { \ln ( \ln x ) }
C) 7xlnx\frac { 7 } { x \ln x }
D) 42x+lnx\frac { 42 } { x + \ln x }
Question
Find all real numbers x that satisfy the given equation. 3x23x = 13,824

A)15
B)12
C)9
D)3
Question
The consumer demand for a certain commodity is D(p)=8,000.00e057pD ( p ) = 8,000.00 e ^ { - 057 p } units per month when the market price is p dollars per unit.Express consumers' total monthly expenditure for the commodity as a function of p and determine the market price that will result in the greatest consumer expenditure.

A)$8,000.00
B)$14.04
C)$26.32
D)$1.75
Question
It is projected that t years from now,the population of a certain country will be P(t)=70e0.01tP ( t ) = 70 e ^ { 0.01 t } million.What will be the population in 20 years? Round your answer to two decimal places,if necessary.

A)140.96 million
B)86.72 million
C)85.5 million
D)84.28 million
Question
Solve for x: 4lnx15lnx4=164 \ln x - \frac { 1 } { 5 } \ln x ^ { 4 } = 16

A)x = e
B) x=e16x = e ^ { 16 }
C) x=e4x = e ^ { 4 }
D) x=e5x = e ^ { 5 }
Question
Use logarithmic differentiation to find f(x)f ^ { \prime } ( x ) . f(x)=6x+58+6x8f ( x ) = \sqrt [ 8 ] { \frac { 6 x + 5 } { 8 + 6 x } }

A) f(x)=18(66x+568+6x)f(x)f ^ { \prime } ( x ) = \frac { 1 } { 8 } \left( \frac { 6 } { 6 x + 5 } - \frac { 6 } { 8 + 6 x } \right) f ( x )
B) f(x)=f(x)(6x+58+6x)7/8f ^ { \prime } ( x ) = f ( x ) \left( \frac { 6 x + 5 } { 8 + 6 x } \right) ^ { - 7 / 8 }
C) f(x)=(66x+568+6x)f(x)f ^ { \prime } ( x ) = \left( \frac { 6 } { 6 x + 5 } - \frac { 6 } { 8 + 6 x } \right) f ( x )
D) f(x)=(6x+58+6x)7/8f ^ { \prime } ( x ) = \left( \frac { 6 x + 5 } { 8 + 6 x } \right) ^ { - 7 / 8 }
Question
Find all real numbers x that satisfy the given equation. (181)x1=343x2\left( \frac { 1 } { 81 } \right) ^ { x - 1 } = 3 ^ { 4 - 3 x ^ { 2 } }

A)0, 43- \frac { 4 } { 3 }
B)0, 43\frac { 4 } { 3 }
C) 43- \frac { 4 } { 3 }
D)0
Question
Differentiate the given function. f(x)=e6xf ( x ) = e ^ { - 6 x }

A) x=6xe6xx = - 6 x e ^ { - 6 x }
B) x=e6xx = e ^ { - 6 x }
C) x=6e6x1x = - 6 e ^ { - 6 x - 1 }
D) x=6e6xx = - 6 e ^ { - 6 x }
Question
Let f(t)=193+4et/10f ( t ) = \frac { 19 } { 3 + 4 e ^ { - t / 10 } } .Which value of t corresponds to a possible inflection point for f (t)?

A)There is no inflection point.
B) 34ln(110)\frac { 3 } { 4 } \ln ( 110 )
C) ln(34)\ln \left( \frac { 3 } { 4 } \right)
D) 110ln(43)110 \ln \left( \frac { 4 } { 3 } \right)
Question
Determine the monthly car payment for a new car costing $18,228,if there is a down payment of $6,000 and the car is financed over a 6-year period at an annual rate of 9% compounded monthly.

A)$328.57
B)$220.42
C)$231.50
D)$198.37
Question
If $1,500 is invested at 9 percent compounded continuously,what is the balance after 13 years?

A)$4,598.71
B)$465.55
C)$1,635.00
D)$4,832.99
Question
Differentiate the given function. f(x)=lnx3f ( x ) = \ln x ^ { 3 }

A) x3\frac { x } { 3 }
B) 13x\frac { 1 } { 3 x }
C)3x
D) 3x\frac { 3 } { x }
Question
A radioactive substance decays exponentially.If 700 grams were present initially and 300 grams are present 100 years later,how many grams will be present after 400 years? Round your answer to two decimal places,if necessary.

A)22.37 grams
B)21.12 grams
C)0)00 grams
D)23.62 grams
Question
Differentiate the given function. f(x)=353e0.06xf ( x ) = 35 - 3 e ^ { - 0.06 x }

A) 3xe0.06x3 x e ^ { - 0.06 x }
B) 0.18e0.06x- 0.18 e ^ { - 0.06 x }
C) 0.18e006x0.18 e ^ { - 006 x }
D) 3xe0.06x- 3 x e ^ { - 0.06 x }
Question
Solve for x: log5(x1)=3\log _ { 5 } ( x - 1 ) = 3 .

A)125
B)244
C)126
D)124
Question
Let f(x)=6x590lnxf ( x ) = 6 x ^ { 5 } - 90 \ln x ,for x > 0.Find the minimum value of f for x > 0.

A)0
B) 3(3515ln3)3 \left( 3 ^ { 5 } - 15 \ln 3 \right)
C)18(1 - ln 3)
D) 6(3515ln3)6 \left( 3 ^ { 5 } - 15 \ln 3 \right)
Question
Consider the function f(x)=e(x6)2/5f ( x ) = e ^ { - ( x - 6 ) ^ { 2 } / 5 } .For what value of x does this function attain its maximum value,and what is the maximum function value? Round maximum function value to two decimal places,if necessary.

A)x = 6,f (6)= 1
B) x=35x = \frac { 3 } { 5 } , f(35)f \left( \frac { 3 } { 5 } \right) \approx 0.00
C)There is no maximum.
D) x=65x = \frac { 6 } { 5 } , f(65)f \left( \frac { 6 } { 5 } \right) \approx 0.01
Question
Suppose your family owns a rare book whose value t years from now will be V(t)=9e0.8tV ( t ) = 9 e ^ { \sqrt { 0.8 t } } dollars.If the prevailing interest rate remains constant at 6% per year compounded continuously,when will it be most advantageous for your family to sell the book and invest the proceeds? Round your answer to two decimal places.

A)125.00 years
B)48.61 years
C)194.44 years
D)55.56 years
Question
A traffic accident was witnessed by 114\frac { 1 } { 14 } of the residents of a small town.The number of residents who had heard about the accident t hours later is given by a function of the form B1+Cekt\frac { B } { 1 + C e ^ { - k t } } ,where B is the population of the town.If 14\frac { 1 } { 4 } of the residents had heard about the accident after 1 hours,how long did it take for 12\frac { 1 } { 2 } of the residents to hear the news? Round your answer to two decimal places.

A)0.87 hours
B)0.44 hour
C)1.75 hours
D)3.50 hours
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/24
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Exponential and Logarithmic Functions
1
Solve for x: a7x1=ba ^ { 7 x - 1 } = b

A) (lnblna+1)7\left( \frac { \ln b } { \ln a } + 1 \right) ^ { 7 }
B) x=17(1+lnblna)x = \frac { 1 } { 7 } \left( 1 + \frac { \ln b } { \ln a } \right)
C) x=1+17(1+lnblna)x = 1 + \frac { 1 } { 7 } \left( 1 + \frac { \ln b } { \ln a } \right)
D) lnb7lna\frac { \ln b } { 7 \ln a }
x=17(1+lnblna)x = \frac { 1 } { 7 } \left( 1 + \frac { \ln b } { \ln a } \right)
2
Solve for x.Round to three decimal places,if necessary. log4x=5\log _ { 4 } x = 5

A)1)495
B)1)32
C)1,024
D)625
1,024
3
An efficiency expert hired by a manufacturing firm has compiled the following data relating workers' output to their experience: Experience (months)
 Experience (months) 02 Output (units per hour) 300510\begin{array} { l l l } \text { Experience (months) } & 0 & 2 \\\text { Output (units per hour) } & 300 & 510\end{array}
The expert believes that the output Q is related to experience t by a function of the form Q(t)=600AektQ ( t ) = 600 - A e ^ { - k t } .Find the function of this form that fits the data.Round numbers to four decimal places,if necessary.

A) Q(t)=600510e0.6020tQ ( t ) = 600 - 510 e ^ { 0.6020 t }
B) Q(t)=600510e0.6020tQ ( t ) = 600 - 510 e ^ { - 0.6020 t }
C) Q(t)=600300e0.6020tQ ( t ) = 600 - 300 e ^ { - 0.6020 t }
D) Q(t)=600300e0.6020tQ ( t ) = 600 - 300 e ^ { 0.6020 t }
Q(t)=600300e0.6020tQ ( t ) = 600 - 300 e ^ { - 0.6020 t }
4
Solve the given equation for x. 6=7+5e7x- 6 = - 7 + 5 e ^ { - 7 x }

A) e57- \frac { e ^ { 5 } } { 7 }
B) ln57\frac { \ln 5 } { 7 }
C) 7e5- 7 e ^ { 5 }
D) ln57- \frac { \ln 5 } { 7 }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate the given expression. (256625)5/4\left( \frac { 256 } { 625 } \right) ^ { 5 / 4 }

A) 1,0243,125\frac { 1,024 } { 3,125 }
B) 45\frac { 4 } { 5 }
C) 1,024625\frac { 1,024 } { 625 }
D) 256625\frac { 256 } { 625 }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
6
Find the derivative of ln[(lnx6)7]\ln \left[ \left( \ln x ^ { 6 } \right) ^ { 7 } \right] .

A) 42xlnx\frac { 42 } { x \ln x }
B) 42ln(lnx)\frac { 42 } { \ln ( \ln x ) }
C) 7xlnx\frac { 7 } { x \ln x }
D) 42x+lnx\frac { 42 } { x + \ln x }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
7
Find all real numbers x that satisfy the given equation. 3x23x = 13,824

A)15
B)12
C)9
D)3
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
8
The consumer demand for a certain commodity is D(p)=8,000.00e057pD ( p ) = 8,000.00 e ^ { - 057 p } units per month when the market price is p dollars per unit.Express consumers' total monthly expenditure for the commodity as a function of p and determine the market price that will result in the greatest consumer expenditure.

A)$8,000.00
B)$14.04
C)$26.32
D)$1.75
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
9
It is projected that t years from now,the population of a certain country will be P(t)=70e0.01tP ( t ) = 70 e ^ { 0.01 t } million.What will be the population in 20 years? Round your answer to two decimal places,if necessary.

A)140.96 million
B)86.72 million
C)85.5 million
D)84.28 million
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
10
Solve for x: 4lnx15lnx4=164 \ln x - \frac { 1 } { 5 } \ln x ^ { 4 } = 16

A)x = e
B) x=e16x = e ^ { 16 }
C) x=e4x = e ^ { 4 }
D) x=e5x = e ^ { 5 }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
11
Use logarithmic differentiation to find f(x)f ^ { \prime } ( x ) . f(x)=6x+58+6x8f ( x ) = \sqrt [ 8 ] { \frac { 6 x + 5 } { 8 + 6 x } }

A) f(x)=18(66x+568+6x)f(x)f ^ { \prime } ( x ) = \frac { 1 } { 8 } \left( \frac { 6 } { 6 x + 5 } - \frac { 6 } { 8 + 6 x } \right) f ( x )
B) f(x)=f(x)(6x+58+6x)7/8f ^ { \prime } ( x ) = f ( x ) \left( \frac { 6 x + 5 } { 8 + 6 x } \right) ^ { - 7 / 8 }
C) f(x)=(66x+568+6x)f(x)f ^ { \prime } ( x ) = \left( \frac { 6 } { 6 x + 5 } - \frac { 6 } { 8 + 6 x } \right) f ( x )
D) f(x)=(6x+58+6x)7/8f ^ { \prime } ( x ) = \left( \frac { 6 x + 5 } { 8 + 6 x } \right) ^ { - 7 / 8 }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
12
Find all real numbers x that satisfy the given equation. (181)x1=343x2\left( \frac { 1 } { 81 } \right) ^ { x - 1 } = 3 ^ { 4 - 3 x ^ { 2 } }

A)0, 43- \frac { 4 } { 3 }
B)0, 43\frac { 4 } { 3 }
C) 43- \frac { 4 } { 3 }
D)0
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
13
Differentiate the given function. f(x)=e6xf ( x ) = e ^ { - 6 x }

A) x=6xe6xx = - 6 x e ^ { - 6 x }
B) x=e6xx = e ^ { - 6 x }
C) x=6e6x1x = - 6 e ^ { - 6 x - 1 }
D) x=6e6xx = - 6 e ^ { - 6 x }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
14
Let f(t)=193+4et/10f ( t ) = \frac { 19 } { 3 + 4 e ^ { - t / 10 } } .Which value of t corresponds to a possible inflection point for f (t)?

A)There is no inflection point.
B) 34ln(110)\frac { 3 } { 4 } \ln ( 110 )
C) ln(34)\ln \left( \frac { 3 } { 4 } \right)
D) 110ln(43)110 \ln \left( \frac { 4 } { 3 } \right)
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
15
Determine the monthly car payment for a new car costing $18,228,if there is a down payment of $6,000 and the car is financed over a 6-year period at an annual rate of 9% compounded monthly.

A)$328.57
B)$220.42
C)$231.50
D)$198.37
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
16
If $1,500 is invested at 9 percent compounded continuously,what is the balance after 13 years?

A)$4,598.71
B)$465.55
C)$1,635.00
D)$4,832.99
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
17
Differentiate the given function. f(x)=lnx3f ( x ) = \ln x ^ { 3 }

A) x3\frac { x } { 3 }
B) 13x\frac { 1 } { 3 x }
C)3x
D) 3x\frac { 3 } { x }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
18
A radioactive substance decays exponentially.If 700 grams were present initially and 300 grams are present 100 years later,how many grams will be present after 400 years? Round your answer to two decimal places,if necessary.

A)22.37 grams
B)21.12 grams
C)0)00 grams
D)23.62 grams
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
19
Differentiate the given function. f(x)=353e0.06xf ( x ) = 35 - 3 e ^ { - 0.06 x }

A) 3xe0.06x3 x e ^ { - 0.06 x }
B) 0.18e0.06x- 0.18 e ^ { - 0.06 x }
C) 0.18e006x0.18 e ^ { - 006 x }
D) 3xe0.06x- 3 x e ^ { - 0.06 x }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
20
Solve for x: log5(x1)=3\log _ { 5 } ( x - 1 ) = 3 .

A)125
B)244
C)126
D)124
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
21
Let f(x)=6x590lnxf ( x ) = 6 x ^ { 5 } - 90 \ln x ,for x > 0.Find the minimum value of f for x > 0.

A)0
B) 3(3515ln3)3 \left( 3 ^ { 5 } - 15 \ln 3 \right)
C)18(1 - ln 3)
D) 6(3515ln3)6 \left( 3 ^ { 5 } - 15 \ln 3 \right)
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
22
Consider the function f(x)=e(x6)2/5f ( x ) = e ^ { - ( x - 6 ) ^ { 2 } / 5 } .For what value of x does this function attain its maximum value,and what is the maximum function value? Round maximum function value to two decimal places,if necessary.

A)x = 6,f (6)= 1
B) x=35x = \frac { 3 } { 5 } , f(35)f \left( \frac { 3 } { 5 } \right) \approx 0.00
C)There is no maximum.
D) x=65x = \frac { 6 } { 5 } , f(65)f \left( \frac { 6 } { 5 } \right) \approx 0.01
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
23
Suppose your family owns a rare book whose value t years from now will be V(t)=9e0.8tV ( t ) = 9 e ^ { \sqrt { 0.8 t } } dollars.If the prevailing interest rate remains constant at 6% per year compounded continuously,when will it be most advantageous for your family to sell the book and invest the proceeds? Round your answer to two decimal places.

A)125.00 years
B)48.61 years
C)194.44 years
D)55.56 years
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
24
A traffic accident was witnessed by 114\frac { 1 } { 14 } of the residents of a small town.The number of residents who had heard about the accident t hours later is given by a function of the form B1+Cekt\frac { B } { 1 + C e ^ { - k t } } ,where B is the population of the town.If 14\frac { 1 } { 4 } of the residents had heard about the accident after 1 hours,how long did it take for 12\frac { 1 } { 2 } of the residents to hear the news? Round your answer to two decimal places.

A)0.87 hours
B)0.44 hour
C)1.75 hours
D)3.50 hours
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 24 flashcards in this deck.