Deck 2: Differentiation: Basic Concepts

Full screen (f)
exit full mode
Question
You measure the side of a cube to be 14 centimeters long and conclude that the volume of the cube is 143=2,74414 ^ { 3 } = 2,744 cubic centimeters.If your measurement of the side is accurate to within 2%,approximately how accurate is your calculation of this volume? Round to two decimal places,if necessary.

A)Maximum error in volume is about ±164.64 cm3
B)Maximum error in volume is about ±0.84 cm3
C)Maximum error in volume is about ±2,304.96 cm3
D)Maximum error in volume is about ±11.76 cm3
Use Space or
up arrow
down arrow
to flip the card.
Question
Find f(4)(x)f ^ { ( 4 ) } ( x ) if f(x)=x58x4+7x37x2+7x4f ( x ) = x ^ { 5 } - 8 x ^ { 4 } + 7 x ^ { 3 } - 7 x ^ { 2 } + 7 x - 4 .

A) f(4)(x)=120x192f ^ { ( 4 ) } ( x ) = 120 x - 192
B) f(4)(x)=x28xf ^ { ( 4 ) } ( x ) = x ^ { 2 } - 8 x
C) f(4)(x)=x28x+7f ^ { ( 4 ) } ( x ) = x ^ { 2 } - 8 x + 7
D) f(4)(x)=60x2192x+42f ^ { ( 4 ) } ( x ) = 60 x ^ { 2 } - 192 x + 42
Question
Find all points on the graph of the function f(x)=x2x+2f ( x ) = \frac { x ^ { 2 } } { x + 2 } where the tangent line is horizontal.

A)(0,0)and (-4,-8)
B)There are none.
C)(0,0)
D)(2,1)
Question
For f(x)=3xf ( x ) = - \frac { 3 } { \sqrt { x } } ,find the average rate of change of f (x)with respect to x as x changes from 144 to 145.Then use calculus to find the instantaneous rate of change at x = 144.Round your answer to six decimal places,if necessary.

A)Average rate of change: 0.000864; Instantaneous rate of change: 0.000868
B)Average rate of change: -0.000864; Instantaneous rate of change: 0.125
C)Average rate of change: 0.000864; Instantaneous rate of change: -0.125
D)Average rate of change: -0.000864; Instantaneous rate of change: 0.000868
Question
Find the rate of change of the given function f (x)with respect for x for the prescribed value x = -2. f (x)= x3 + 3x + 9

A)6
B)-3
C)15
D)24
Question
The equation of the line tangent to the graph of f(x)=3xf ( x ) = 3 \sqrt { x } at x = 1 is

A) y=12x+12y = \frac { 1 } { 2 } x + \frac { 1 } { 2 }
B) y=32x1y = \frac { 3 } { 2 } x - 1
C) y=12x12y = \frac { 1 } { 2 } x - \frac { 1 } { 2 }
D) y=32x+32y = \frac { 3 } { 2 } x + \frac { 3 } { 2 }
Question
When a certain commodity is sold for p dollars per unit,consumers will buy D(p)=31,500pD ( p ) = \frac { 31,500 } { p } units per month.It is estimated that t months from now,the price of the commodity will be p(t)=t2/3+5.15p ( t ) = t ^ { 2 / 3 } + 5.15 dollars per unit.The approximate rate at which the monthly demand will be changing with respect to time in 27 months is

A)-32 units per month
B)-35 units per month
C)-132 units per month
D)35 units per month
Question
Find the equation of the tangent line to the graph of f(x)=x2+3f ( x ) = x ^ { 2 } + 3 at the point (3,12).

A)y = 12
B)y = 6x - 6
C)x = 3
D)Not defined
Question
An object moves along a line in such a way that its position at time t is s(t)=t39t2+15t+2s ( t ) = t ^ { 3 } - 9 t ^ { 2 } + 15 t + 2 .Find the velocity and acceleration of the object at time t.When is the object stationary?

A) v(t)=3t218t+15v ( t ) = 3 t ^ { 2 } - 18 t + 15 ; a(t)= 6t - 18; t = 3
B) v(t)=3t26t+15v ( t ) = 3 t ^ { 2 } - 6 t + 15 ; a(t)= 6t - 6; t = 1
C) v(t)=3t218t+15v ( t ) = 3 t ^ { 2 } - 18 t + 15 ; a(t)= 6t - 18; t = 1
D) v(t)=3t218t+15v ( t ) = 3 t ^ { 2 } - 18 t + 15 ; a(t)= 6t - 18; t = 1 and 5
Question
What is the rate of change of f(t)=7t5t+2f ( t ) = \frac { 7 t - 5 } { t + 2 } with respect to t when t = 2?

A) 94\frac { 9 } { 4 }
B)4
C) 1916\frac { 19 } { 16 }
D) 174\frac { 17 } { 4 }
Question
An equation for the tangent line to the curve y=(7x2+x1)5y = \left( 7 x ^ { 2 } + x - 1 \right) ^ { 5 } at the point where x = 0 is

A)y = 5x + 1
B)y = 5x - 1
C)y = 10x - 1
D)y = 10x + 1
Question
The largest percentage error you can allow in the measurement of the radius of a sphere if you want the error in the calculation of its surface area using the formula S=4πr2S = 4 \pi r ^ { 2 } to be no greater than 6 percent is about:

A)2%
B)6%
C)3%
D)1%
Question
The function f(x)=x2x+15f ( x ) = \frac { x } { 2 x + 1 } - 5 will decrease by approximately 0.6 as x decreases from 3 to 2.7.
Question
The equation of the line tangent to the graph of f(x)=x2+2xf ( x ) = x ^ { 2 } + 2 x at x = 7 is

A)y = 16x - 7
B)y = 16x - 49
C)y = 16x - 343
D)y = 16x - 686
Question
Differentiate: f(x)=x2x6f ( x ) = \frac { x ^ { 2 } } { x - 6 }

A)2x
B)-x
C) 3x2+12x(x6)2\frac { 3 x ^ { 2 } + 12 x } { ( x - 6 ) ^ { 2 } }
D) x212x(x6)2\frac { x ^ { 2 } - 12 x } { ( x - 6 ) ^ { 2 } }
Question
Differentiate: f(x)=(x2+1)(x+6)f ( x ) = \left( x ^ { 2 } + 1 \right) ( x + 6 )

A) x2+1x ^ { 2 } + 1
B) 3x2+12x+13 x ^ { 2 } + 12 x + 1
C)2x + 1
D)12x + 1
Question
Find f(x)f ^ { \prime \prime \prime } ( x ) if f(x)=13x3x2+7f ( x ) = \frac { 1 } { \sqrt { 3 x } } - \frac { 3 } { x ^ { 2 } } + \sqrt { 7 }

A) f(x)=1516x33x+72x5f ^ { \prime \prime \prime } ( x ) = - \frac { 15 } { 16 x ^ { 3 } \sqrt { 3 x } } + \frac { 72 } { x ^ { 5 } }
B) f(x)=158x33x+72x5f ^ { \prime \prime \prime } ( x ) = - \frac { 15 } { 8 x ^ { 3 } \sqrt { 3 x } } + \frac { 72 } { x ^ { 5 } }
C) f(x)=572x33x+72x5f ^ { \prime \prime \prime } ( x ) = - \frac { 5 } { 72 x ^ { 3 } \sqrt { 3 x } } + \frac { 72 } { x ^ { 5 } }
D) f(x)=38x33x+3x3f ^ { \prime \prime \prime } ( x ) = - \frac { 3 } { 8 x ^ { 3 } \sqrt { 3 x } } + \frac { 3 } { x ^ { 3 } }
Question
An efficiency study of the morning shift at a certain factory indicates that an average worker arriving on the job at 7:00 A.M.will have assembled f(x)=x3+7x23xf ( x ) = - x ^ { 3 } + 7 x ^ { 2 } - 3 x transistor radios x hours later.Approximately how many radios will the worker assemble between 9:00 and 9:30 A.M.?

A)Approximately 7 radios
B)Approximately 13 radios
C)Approximately 14 radios
D)Approximately 390 radios
Question
If f(x)=13x2f ( x ) = \sqrt { 1 - 3 x ^ { 2 } } ,then f(x)=3(13x2)3/2f ^ { \prime \prime } ( x ) = \frac { - 3 } { \left( 1 - 3 x ^ { 2 } \right) ^ { 3 / 2 } } .
Question
Differentiate: f(x)=x+7xf ( x ) = \sqrt { x } + \frac { 7 } { \sqrt { x } }

A)7
B) 12x+72x3\frac { 1 } { 2 \sqrt { x } } + \frac { 7 } { 2 \sqrt { x ^ { 3 } } }
C)0
D) 12x72x3\frac { 1 } { 2 \sqrt { x } } - \frac { 7 } { 2 \sqrt { x ^ { 3 } } }
Question
Find the equation of the tangent line to the given curve at the specified point. x5y55xy=6x+y8x ^ { 5 } y ^ { 5 } - 5 x y = 6 x + y - 8 ; (0,8)

A) y=146x+8y = - \frac { 1 } { 46 } x + 8
B)y = -46x + 8
C)y = 46x + 8
D) y=146x+8y = \frac { 1 } { 46 } x + 8
Question
Find dydx\frac { d y } { d x } ,where xy33x2=7yx y ^ { 3 } - 3 x ^ { 2 } = 7 y .

A) 6xy33xy27\frac { 6 x - y ^ { 3 } } { 3 x y ^ { 2 } - 7 }
B) y36xy ^ { 3 } - 6 x
C) 6x2y3\frac { 6 x ^ { 2 } } { y ^ { 3 } }
D) y36x7y ^ { 3 } - 6 x - 7
Question
Use implicit differentiation to find d2ydx2\frac { d ^ { 2 } y } { d x ^ { 2 } } for 4x5+11y=1004 x ^ { 5 } + 11 y = 100 .

A) 60x2+1160 x ^ { 2 } + 11
B) 80x380 x ^ { 3 }
C) 60x210060 x ^ { 2 } - 100
D) 8011x3- \frac { 80 } { 11 } x ^ { 3 }
Question
Suppose the output at a certain factory is Q=4x3+5x3y4+3y3Q = 4 x ^ { 3 } + 5 x ^ { 3 } y ^ { 4 } + 3 y ^ { 3 } units,where x is the number of hours of skilled labor used and y is the number of hours of unskilled labor.The current labor force consists of 20 hours of skilled labor and 10 hours of unskilled labor.Use calculus to estimate the change in unskilled labor y that should be made to offset a 1-hour increase in skilled labor x so that output will be maintained at its current level.Round you answer to two decimal places,if necessary.

A)-2.67 hours
B)2.67 hours
C)-1 hours
D)-0.38 hours
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/24
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 2: Differentiation: Basic Concepts
1
You measure the side of a cube to be 14 centimeters long and conclude that the volume of the cube is 143=2,74414 ^ { 3 } = 2,744 cubic centimeters.If your measurement of the side is accurate to within 2%,approximately how accurate is your calculation of this volume? Round to two decimal places,if necessary.

A)Maximum error in volume is about ±164.64 cm3
B)Maximum error in volume is about ±0.84 cm3
C)Maximum error in volume is about ±2,304.96 cm3
D)Maximum error in volume is about ±11.76 cm3
Maximum error in volume is about ±164.64 cm3
2
Find f(4)(x)f ^ { ( 4 ) } ( x ) if f(x)=x58x4+7x37x2+7x4f ( x ) = x ^ { 5 } - 8 x ^ { 4 } + 7 x ^ { 3 } - 7 x ^ { 2 } + 7 x - 4 .

A) f(4)(x)=120x192f ^ { ( 4 ) } ( x ) = 120 x - 192
B) f(4)(x)=x28xf ^ { ( 4 ) } ( x ) = x ^ { 2 } - 8 x
C) f(4)(x)=x28x+7f ^ { ( 4 ) } ( x ) = x ^ { 2 } - 8 x + 7
D) f(4)(x)=60x2192x+42f ^ { ( 4 ) } ( x ) = 60 x ^ { 2 } - 192 x + 42
f(4)(x)=120x192f ^ { ( 4 ) } ( x ) = 120 x - 192
3
Find all points on the graph of the function f(x)=x2x+2f ( x ) = \frac { x ^ { 2 } } { x + 2 } where the tangent line is horizontal.

A)(0,0)and (-4,-8)
B)There are none.
C)(0,0)
D)(2,1)
(0,0)and (-4,-8)
4
For f(x)=3xf ( x ) = - \frac { 3 } { \sqrt { x } } ,find the average rate of change of f (x)with respect to x as x changes from 144 to 145.Then use calculus to find the instantaneous rate of change at x = 144.Round your answer to six decimal places,if necessary.

A)Average rate of change: 0.000864; Instantaneous rate of change: 0.000868
B)Average rate of change: -0.000864; Instantaneous rate of change: 0.125
C)Average rate of change: 0.000864; Instantaneous rate of change: -0.125
D)Average rate of change: -0.000864; Instantaneous rate of change: 0.000868
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
5
Find the rate of change of the given function f (x)with respect for x for the prescribed value x = -2. f (x)= x3 + 3x + 9

A)6
B)-3
C)15
D)24
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
6
The equation of the line tangent to the graph of f(x)=3xf ( x ) = 3 \sqrt { x } at x = 1 is

A) y=12x+12y = \frac { 1 } { 2 } x + \frac { 1 } { 2 }
B) y=32x1y = \frac { 3 } { 2 } x - 1
C) y=12x12y = \frac { 1 } { 2 } x - \frac { 1 } { 2 }
D) y=32x+32y = \frac { 3 } { 2 } x + \frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
7
When a certain commodity is sold for p dollars per unit,consumers will buy D(p)=31,500pD ( p ) = \frac { 31,500 } { p } units per month.It is estimated that t months from now,the price of the commodity will be p(t)=t2/3+5.15p ( t ) = t ^ { 2 / 3 } + 5.15 dollars per unit.The approximate rate at which the monthly demand will be changing with respect to time in 27 months is

A)-32 units per month
B)-35 units per month
C)-132 units per month
D)35 units per month
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
8
Find the equation of the tangent line to the graph of f(x)=x2+3f ( x ) = x ^ { 2 } + 3 at the point (3,12).

A)y = 12
B)y = 6x - 6
C)x = 3
D)Not defined
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
9
An object moves along a line in such a way that its position at time t is s(t)=t39t2+15t+2s ( t ) = t ^ { 3 } - 9 t ^ { 2 } + 15 t + 2 .Find the velocity and acceleration of the object at time t.When is the object stationary?

A) v(t)=3t218t+15v ( t ) = 3 t ^ { 2 } - 18 t + 15 ; a(t)= 6t - 18; t = 3
B) v(t)=3t26t+15v ( t ) = 3 t ^ { 2 } - 6 t + 15 ; a(t)= 6t - 6; t = 1
C) v(t)=3t218t+15v ( t ) = 3 t ^ { 2 } - 18 t + 15 ; a(t)= 6t - 18; t = 1
D) v(t)=3t218t+15v ( t ) = 3 t ^ { 2 } - 18 t + 15 ; a(t)= 6t - 18; t = 1 and 5
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
10
What is the rate of change of f(t)=7t5t+2f ( t ) = \frac { 7 t - 5 } { t + 2 } with respect to t when t = 2?

A) 94\frac { 9 } { 4 }
B)4
C) 1916\frac { 19 } { 16 }
D) 174\frac { 17 } { 4 }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
11
An equation for the tangent line to the curve y=(7x2+x1)5y = \left( 7 x ^ { 2 } + x - 1 \right) ^ { 5 } at the point where x = 0 is

A)y = 5x + 1
B)y = 5x - 1
C)y = 10x - 1
D)y = 10x + 1
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
12
The largest percentage error you can allow in the measurement of the radius of a sphere if you want the error in the calculation of its surface area using the formula S=4πr2S = 4 \pi r ^ { 2 } to be no greater than 6 percent is about:

A)2%
B)6%
C)3%
D)1%
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
13
The function f(x)=x2x+15f ( x ) = \frac { x } { 2 x + 1 } - 5 will decrease by approximately 0.6 as x decreases from 3 to 2.7.
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
14
The equation of the line tangent to the graph of f(x)=x2+2xf ( x ) = x ^ { 2 } + 2 x at x = 7 is

A)y = 16x - 7
B)y = 16x - 49
C)y = 16x - 343
D)y = 16x - 686
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
15
Differentiate: f(x)=x2x6f ( x ) = \frac { x ^ { 2 } } { x - 6 }

A)2x
B)-x
C) 3x2+12x(x6)2\frac { 3 x ^ { 2 } + 12 x } { ( x - 6 ) ^ { 2 } }
D) x212x(x6)2\frac { x ^ { 2 } - 12 x } { ( x - 6 ) ^ { 2 } }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
16
Differentiate: f(x)=(x2+1)(x+6)f ( x ) = \left( x ^ { 2 } + 1 \right) ( x + 6 )

A) x2+1x ^ { 2 } + 1
B) 3x2+12x+13 x ^ { 2 } + 12 x + 1
C)2x + 1
D)12x + 1
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
17
Find f(x)f ^ { \prime \prime \prime } ( x ) if f(x)=13x3x2+7f ( x ) = \frac { 1 } { \sqrt { 3 x } } - \frac { 3 } { x ^ { 2 } } + \sqrt { 7 }

A) f(x)=1516x33x+72x5f ^ { \prime \prime \prime } ( x ) = - \frac { 15 } { 16 x ^ { 3 } \sqrt { 3 x } } + \frac { 72 } { x ^ { 5 } }
B) f(x)=158x33x+72x5f ^ { \prime \prime \prime } ( x ) = - \frac { 15 } { 8 x ^ { 3 } \sqrt { 3 x } } + \frac { 72 } { x ^ { 5 } }
C) f(x)=572x33x+72x5f ^ { \prime \prime \prime } ( x ) = - \frac { 5 } { 72 x ^ { 3 } \sqrt { 3 x } } + \frac { 72 } { x ^ { 5 } }
D) f(x)=38x33x+3x3f ^ { \prime \prime \prime } ( x ) = - \frac { 3 } { 8 x ^ { 3 } \sqrt { 3 x } } + \frac { 3 } { x ^ { 3 } }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
18
An efficiency study of the morning shift at a certain factory indicates that an average worker arriving on the job at 7:00 A.M.will have assembled f(x)=x3+7x23xf ( x ) = - x ^ { 3 } + 7 x ^ { 2 } - 3 x transistor radios x hours later.Approximately how many radios will the worker assemble between 9:00 and 9:30 A.M.?

A)Approximately 7 radios
B)Approximately 13 radios
C)Approximately 14 radios
D)Approximately 390 radios
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
19
If f(x)=13x2f ( x ) = \sqrt { 1 - 3 x ^ { 2 } } ,then f(x)=3(13x2)3/2f ^ { \prime \prime } ( x ) = \frac { - 3 } { \left( 1 - 3 x ^ { 2 } \right) ^ { 3 / 2 } } .
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
20
Differentiate: f(x)=x+7xf ( x ) = \sqrt { x } + \frac { 7 } { \sqrt { x } }

A)7
B) 12x+72x3\frac { 1 } { 2 \sqrt { x } } + \frac { 7 } { 2 \sqrt { x ^ { 3 } } }
C)0
D) 12x72x3\frac { 1 } { 2 \sqrt { x } } - \frac { 7 } { 2 \sqrt { x ^ { 3 } } }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
21
Find the equation of the tangent line to the given curve at the specified point. x5y55xy=6x+y8x ^ { 5 } y ^ { 5 } - 5 x y = 6 x + y - 8 ; (0,8)

A) y=146x+8y = - \frac { 1 } { 46 } x + 8
B)y = -46x + 8
C)y = 46x + 8
D) y=146x+8y = \frac { 1 } { 46 } x + 8
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
22
Find dydx\frac { d y } { d x } ,where xy33x2=7yx y ^ { 3 } - 3 x ^ { 2 } = 7 y .

A) 6xy33xy27\frac { 6 x - y ^ { 3 } } { 3 x y ^ { 2 } - 7 }
B) y36xy ^ { 3 } - 6 x
C) 6x2y3\frac { 6 x ^ { 2 } } { y ^ { 3 } }
D) y36x7y ^ { 3 } - 6 x - 7
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
23
Use implicit differentiation to find d2ydx2\frac { d ^ { 2 } y } { d x ^ { 2 } } for 4x5+11y=1004 x ^ { 5 } + 11 y = 100 .

A) 60x2+1160 x ^ { 2 } + 11
B) 80x380 x ^ { 3 }
C) 60x210060 x ^ { 2 } - 100
D) 8011x3- \frac { 80 } { 11 } x ^ { 3 }
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
24
Suppose the output at a certain factory is Q=4x3+5x3y4+3y3Q = 4 x ^ { 3 } + 5 x ^ { 3 } y ^ { 4 } + 3 y ^ { 3 } units,where x is the number of hours of skilled labor used and y is the number of hours of unskilled labor.The current labor force consists of 20 hours of skilled labor and 10 hours of unskilled labor.Use calculus to estimate the change in unskilled labor y that should be made to offset a 1-hour increase in skilled labor x so that output will be maintained at its current level.Round you answer to two decimal places,if necessary.

A)-2.67 hours
B)2.67 hours
C)-1 hours
D)-0.38 hours
Unlock Deck
Unlock for access to all 24 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 24 flashcards in this deck.