Deck 18: Final Exam

Full screen (f)
exit full mode
Question
Evaluate the integral. xsinxcosxdx\int x \sin x \cos x d x

A) 12cosxsinx+12x+C- \frac { 1 } { 2 } \cos x \sin x + \frac { 1 } { 2 } x + C
B) 12xsin2x+12cosx+C- \frac { 1 } { 2 } x \sin ^ { 2 } x + \frac { 1 } { 2 } \cos x + C
C) 18[sin2x2cos2x]+C\frac { 1 } { 8 } [ \sin 2 x - 2 \cos 2 x ] + C
D) 18[sin8x8cos8x]+C\frac { 1 } { 8 } [ \sin 8 x - 8 \cos 8 x ] + C
E)  none of these \text { none of these }
Use Space or
up arrow
down arrow
to flip the card.
Question
A piece of wire 1010 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut for the square so that the total area enclosed is a minimum? Round your answer to the nearest hundredth.

A) 17.048917.0489 m
B) 3.34963.3496 m
C) 6.34966.3496 m
D) 5.34965.3496 m
E) 4.34964.3496 m
Question
Use implicit differentiation to find an equation of the tangent line to the curve at the given point. ysin7x=xcos7y,(π7,π14)y \sin 7 x = x \cos 7 y , \left( \frac { \pi } { 7 } , \frac { \pi } { 14 } \right)

A) y=x7+π14y = \frac { x } { 7 } + \frac { \pi } { 14 }
B) y=x7y = \frac { x } { 7 }
C) y=x2+π2y = - \frac { x } { 2 } + \frac { \pi } { 2 }
D) y=x14y = \frac { x } { 14 }
E) y=2x3π7y = 2 x - \frac { 3 \pi } { 7 }
Question
The acceleration function (in m / s2s ^ { 2 } ) and the initial velocity are given for a particle moving along a line. Find the velocity at time t and the distance traveled during the given time interval. a(t)=t+4,v(0)=3,0t10a ( t ) = t + 4 , v ( 0 ) = 3,0 \leq t \leq 10

A) v(t)=t22+3t m/s,57123 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 3 t \mathrm {~m} / \mathrm { s } , 571 \frac { 2 } { 3 } \mathrm {~m}
B) v(t)=t22+3 m/s,59623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 3 \mathrm {~m} / \mathrm { s } , 596 \frac { 2 } { 3 } \mathrm {~m}
C) v(t)=t22+4t+3 m/s,49623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 4 t + 3 \mathrm {~m} / \mathrm { s } , 496 \frac { 2 } { 3 } \mathrm {~m}
D) v(t)=t22+3t m/s,54623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 3 t \mathrm {~m} / \mathrm { s } , 546 \frac { 2 } { 3 } \mathrm {~m}
E) v(t)=t22+4t+3 m/s,39623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 4 t + 3 \mathrm {~m} / \mathrm { s } , 396 \frac { 2 } { 3 } \mathrm {~m}
Question
Find the average value of the function f(t)=6tsin(t2)f ( t ) = 6 t \sin \left( t ^ { 2 } \right) on the interval [0,20][ 0,20 ] . Round your answer to 3 decimal places.

A) 0.288
B) 6.228
C) 0.3
D) 0.2280.228
E) 12
Question
Find the length of the curve. x=y48+14y2,1y2x = \frac { y ^ { 4 } } { 8 } + \frac { 1 } { 4 y ^ { 2 } } , 1 \leq y \leq 2

A) 25.05 55
B) 13.05
C) 36.05
D) 2.06252.0625
E) None of these
Question
Determine whether the series is convergent or divergent by expressing sns _ { n } as a telescoping sum. If it is convergent, find its sum. n=110n2+2n\sum _ { n = 1 } ^ { \infty } \frac { 10 } { n ^ { 2 } + 2 n } .

A) 152\frac { 15 } { 2 }
B) diverges
C) 22
D) 110\frac { 1 } { 10 }
E) 215\frac { 2 } { 15 }
Question
Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. y=5(x2+4),y=5(12x2); about y=5y = 5 \left( x ^ { 2 } + 4 \right) , y = 5 \left( 12 - x ^ { 2 } \right) ; \text { about } y = - 5

A) 9525π9525 \pi
B) 9575π9575 \pi
C) 9550π9550 \pi
D) 9600π9600 \pi
E) None of these
Question
How would you define f(7)f ( 7 ) in order to make f continuous at 77 ? f(x)=x24x4x3f ( x ) = \frac { x ^ { 2 } - 4 x - 4 } { x - 3 }

A) f(7)=10f ( 7 ) = - 10
B) f(7)=0f ( 7 ) = 0
C) f(7)=10f ( 7 ) = 10
D) f(3)=6f ( 3 ) = - 6
E) None of these
Question
Find the area of the region that lies under the given curve. Round the answer to three decimal places. y=5x+1,0x1y = \sqrt { 5 } \sqrt { x + 1 } , 0 \leq x \leq 1

A) 4.734.73
B) 2.732.73
C) 3.733.73
D) 6.736.73
E) 5.735.73
Question
Evaluate the integral. 16dxxlnx\int _ { 1 } ^ { \infty } \frac { 6 d x } { x \ln x }

A) 12\frac { 1 } { 2 }
B) 14- \frac { 1 } { 4 }
C) 00
D) 14\frac { 1 } { 4 }
E)  divergent \text { divergent }
Question
The height (in meters) of a projectile shot vertically upward from a point 2.52.5 m above ground level with an initial velocity of 25.48 m/s is h=2.5+25.48t4.9t2h = 2.5 + 25.48 t - 4.9 t ^ { 2 } after t seconds.
a. When does the projectile reach its maximum height?
b. What is the maximum height?

A) 2.8 s2.8 \mathrm {~s}
34.428 m34.428 \mathrm {~m}
B) 2 s2 \mathrm {~s}
32.86 m32.86 \mathrm {~m}
C) 2.382.38
34.183 m34.183 \mathrm {~m}
D) 2.4s2.4 s
34.428 m34.428 \mathrm {~m}
E) 2.6 s2.6 \mathrm {~s}
35.624 m35.624 \mathrm {~m}
Question
Which equation does the function y=e3ty = e ^ { - 3 t } satisfy?

A) yy+12y=0y ^ { \prime \prime } - y ^ { \prime } + 12 y = 0
B) y+y12y=0y ^ { \prime \prime } + y ^ { \prime } - 12 y = 0
C) y+y+12y=0y ^ { \prime \prime } + y ^ { \prime } + 12 y = 0
D) y3y+12y=0y ^ { \prime \prime } - 3 y ^ { \prime } + 12 y = 0
E) yy12y=0y ^ { \prime \prime } - y ^ { \prime } - 12 y = 0
Question
If f(x)=x2x+4f ( x ) = x ^ { 2 } - x + 4 , evaluate the difference quotient f(a+h)f(a)h\frac { f ( a + h ) - f ( a ) } { h } .

A) 2a42 a - 4
B) 2a+h42 a + h - 4
C) h
D) 2ah42 a - h - 4
E) None of these
Question
The graphs of f(x)f ( x ) and g(x)g ( x ) are given. For what values of x is f(x)=g(x)f ( x ) = g ( x ) ?  <strong>The graphs of  f ( x )  and  g ( x )  are given. For what values of x is  f ( x ) = g ( x )  ?  </strong> A)  - 1  B)  - 2,5  C) -4, 12 D) 0 E) 4, 2 <div style=padding-top: 35px>

A) 1- 1
B) 2,5- 2,5
C) -4, 12
D) 0
E) 4, 2
Question
Find the number c that satisfies the conclusion of the Mean Value Theorem on the given interval. f(x)=2xf ( x ) = 2 \sqrt { x } , [0,9][ 0,9 ]

A) c=c = 94\frac { 9 } { 4 }
B) c=5c = 5
C) c=0c = 0
D) c=13c = \frac { 1 } { 3 }
E) None of these
Question
Solve the initial-value problem. xy=y+x2sinx,y(7π)=0x y ^ { \prime } = y + x ^ { 2 } \sin x , y ( 7 \pi ) = 0

A) y=xsinx+7xy = - x \sin x + 7 x
B) y=xsinx7xy = x \sin x - 7 x
C) y=7xcosxsinxy = 7 x \cos x - \sin x
D) y=7xsinxy = 7 x \sin x
E) y=xcosxxy = - x \cos x - x
Question
If an equation of the tangent line to the curve y=f(x)y = f ( x ) at the point where a=8 is y=4x7a = 8 \text { is } y = 4 x - 7 \text {, }  find f(8) and f(8)\text { find } f ( 8 ) \text { and } f ^ { \prime } ( 8 ) \text {. }

A) f(2)=25f(2)=3\begin{array} { l } f ( 2 ) = 25 \\f ^ { \prime } ( 2 ) = 3\end{array}
B) f(2)=8f(2)=8\begin{array} { l } f ( 2 ) = - 8 \\f ^ { \prime } ( 2 ) = 8\end{array}
C) f(2)=7f(2)=4\begin{array} { l } f ( 2 ) = 7 \\f ^ { \prime } ( 2 ) = 4\end{array}
D) f(2)=25f(2)=4\begin{array} { l } f ( 2 ) = 25 \\f ^ { \prime } ( 2 ) = 4\end{array}
E) None of these
Question
Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x=t2sint,y=t2cost,0t4πx = t - 2 \sin t , \quad y = t - 2 \cos t , \quad 0 \leq t \leq 4 \pi

A) 28.729828.7298
B) 26.729826.7298
C) 25.729825.7298
D) 24.729824.7298
E) 27.729827.7298
Question
The masses mim _ { i } are located at the point P1P _ { 1 } . Find the moments MxM _ { x } and MyM _ { y } and the center of mass of the system. m1=3,m2=7,m3=111m _ { 1 } = 3 , m _ { 2 } = 7 , m _ { 3 } = 111 ; P1(1,5),P2(3,2),P3(2,1)P _ { 1 } ( 1,5 ) , P _ { 2 } ( 3 , - 2 ) , P _ { 3 } ( - 2 , - 1 )

A) Mx=18,My=44,(4421,1821)M _ { x } = 18 , M _ { y } = 44 , \left( \frac { 44 } { 21 } , \frac { 18 } { 21 } \right)
B) Mx=44,My=18,(4421,1821)M _ { x } = 44 , M _ { y } = 18 , \left( \frac { 44 } { 21 } , \frac { 18 } { 21 } \right)
C) Mx=18,My=44,(1821,4421)M _ { x } = 18 , M _ { y } = 44 , \left( \frac { 18 } { 21 } , \frac { 44 } { 21 } \right)
D) Mx=44,My=18,(4421,1821)M _ { x } = 44 , M _ { y } = - 18 , \left( - \frac { 44 } { 21 } , \frac { 18 } { 21 } \right)
E) Mx=44,My=18,(4421,1821)M _ { x } = - 44 , M _ { y } = 18 , \left( \frac { 44 } { 21 } , - \frac { 18 } { 21 } \right)
Question
Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 66 .

A) 43747π\frac { 4374 } { 7 } \pi
B) 5598727π\frac { 559872 } { 7 } \pi
C) 11197447π\frac { 1119744 } { 7 } \pi
D) 43747\frac { 4374 } { 7 }
E) None of these
Question
Find fxyf _ { x y } for the function f(x,y)=5x3y6xy2f ( x , y ) = 5 x ^ { 3 } y - 6 x y ^ { 2 } .

A) fxy=15x2+12yf _ { x y } = 15 x ^ { 2 } + 12 y
B) fxy=15x212yf _ { x y } = 15 x ^ { 2 } - 12 y
C) fxy=24x212yf _ { x y } = 24 x ^ { 2 } - 12 y
D) fxy=12x215yf _ { x y } = 12 x ^ { 2 } - 15 y
E) fxy=12x2+15yf _ { x y } = 12 x ^ { 2 } + 15 y
Question
Find a nonzero vector orthogonal to the plane through the points P, Q, and R. P(3,0,0),Q(5,6,0),R(0,6,3)P ( 3,0,0 ) , Q ( 5,6,0 ) , R ( 0,6,3 )

A) i6j+5k\mathbf { i } - 6 \mathbf { j } + 5 \mathbf { k }
B) i5j+6k\mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }
C) 18i6j+30k18 \mathbf { i } - 6 \mathbf { j } + 30 \mathbf { k }
D) 5i+j+6k- 5 \mathbf { i } + \mathbf { j } + 6 \mathbf { k }
E) None of these
Question
Find the unit tangent vector for the curve given by Find the unit tangent vector for the curve given by   .<div style=padding-top: 35px> .
Question
If r(t)=5i+3tcosπj+4sinπtk\mathbf { r } ( t ) = 5 \mathbf { i } + 3 t \cos \pi \mathbf { j } + 4 \sin \pi t \mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t .

A) 5i6π2j1πk5 \mathbf { i } - \frac { 6 } { \pi ^ { 2 } } \mathbf { j } - \frac { 1 } { \pi } \mathbf { k }
B) i6π2j+1πk\mathbf { i } - \frac { 6 } { \pi ^ { 2 } } \mathbf { j } + \frac { 1 } { \pi } \mathbf { k }
C) i+6π2j8πk\mathbf { i } + \frac { 6 } { \pi ^ { 2 } } \mathbf { j } - \frac { 8 } { \pi } \mathbf { k }
D) 5i6π2j+8πk5 \mathbf { i } - \frac { 6 } { \pi ^ { 2 } } \mathbf { j } + \frac { 8 } { \pi } \mathbf { k }
E) 5i+6π2j+8πk5 \mathbf { i } + \frac { 6 } { \pi ^ { 2 } } \mathbf { j } + \frac { 8 } { \pi } \mathbf { k }
Question
The graphs of The graphs of   and   are given. Find the values of   and   .  <div style=padding-top: 35px> and The graphs of   and   are given. Find the values of   and   .  <div style=padding-top: 35px> are given.
Find the values of The graphs of   and   are given. Find the values of   and   .  <div style=padding-top: 35px> and The graphs of   and   are given. Find the values of   and   .  <div style=padding-top: 35px> . The graphs of   and   are given. Find the values of   and   .  <div style=padding-top: 35px>
Question
If If   , find the Riemann sum with n = 5 correct to 3 decimal places, taking the sample points to be midpoints.<div style=padding-top: 35px> , find the Riemann sum with n = 5 correct to 3 decimal places, taking the sample points to be midpoints.
Question
Find the volume of the resulting solid if the region under the curve Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. <div style=padding-top: 35px> from Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. <div style=padding-top: 35px> to Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. <div style=padding-top: 35px> is rotated about the x-axis. Round your answer to four decimal places.
Question
Find the sum of the series. 21.9222.92+233.93244.94+\frac { 2 } { 1.9 } - \frac { 2 ^ { 2 } } { 2.9 ^ { 2 } } + \frac { 2 ^ { 3 } } { 3.9 ^ { 3 } } - \frac { 2 ^ { 4 } } { 4.9 ^ { 4 } } + \ldots

A) 11e9\frac { 11 e } { 9 }
B) ln(19)\ln \left( \frac { 1 } { 9 } \right)
C) 119\frac { 11 } { 9 }
D) ln(119)\ln \left( \frac { 11 } { 9 } \right)
E) ln(109)\ln \left( \frac { 10 } { 9 } \right)
Question
Find the area of the region that is bounded by the given curve and lies in the specified sector. Find the area of the region that is bounded by the given curve and lies in the specified sector.  <div style=padding-top: 35px>
Question
Solve the initial-value problem. Solve the initial-value problem.  <div style=padding-top: 35px>
Question
Evaluate the integral using the indicated trigonometric substitution. Evaluate the integral using the indicated trigonometric substitution.  <div style=padding-top: 35px>
Question
Find the directional derivative of f(x,y)=20xy3f ( x , y ) = 20 \sqrt { x } - y ^ { 3 } at the point (1, 3) in the direction toward the point (3, 1).

A) 37237 \sqrt { 2 }
B) 372\frac { 37 } { \sqrt { 2 } }
C) 2\sqrt { 2 }
D) 3737
E) None of these
Question
Calculate the given quantities if Calculate the given quantities if    <div style=padding-top: 35px> Calculate the given quantities if    <div style=padding-top: 35px>
Question
Find the curvature of y=x7y = x ^ { 7 } .

A) x5(1+49x12)1/2\frac { | x | ^ { 5 } } { \left( 1 + 49 x ^ { 12 } \right) ^ { 1 / 2 } }
B) 42x5(1+49x12)3/2\frac { 42 | x | ^ { 5 } } { \left( 1 + 49 x ^ { 12 } \right) ^ { 3 / 2 } }
C) 42x5(149x12)3/2\frac { 42 | x | ^ { 5 } } { \left( 1 - 49 x ^ { 12 } \right) ^ { 3 / 2 } }
D) x5(1+x12)3/2\frac { | x | ^ { 5 } } { \left( 1 + x ^ { 12 } \right) ^ { 3 / 2 } }
E) 42x5(1+49x12)1/2\frac { 42 | x | ^ { 5 } } { \left( 1 + 49 x ^ { 12 } \right) ^ { 1 / 2 } }
Question
Find the local and absolute extreme values of the function on the given interval. Find the local and absolute extreme values of the function on the given interval.   ,  <div style=padding-top: 35px> , Find the local and absolute extreme values of the function on the given interval.   ,  <div style=padding-top: 35px>
Question
Use Euler's method with step size 0.1 to estimate Use Euler's method with step size 0.1 to estimate   , where   is the solution of the initial-value problem. Round your answer to four decimal places.   <div style=padding-top: 35px> , where Use Euler's method with step size 0.1 to estimate   , where   is the solution of the initial-value problem. Round your answer to four decimal places.   <div style=padding-top: 35px> is the solution of the initial-value problem. Round your answer to four decimal places. Use Euler's method with step size 0.1 to estimate   , where   is the solution of the initial-value problem. Round your answer to four decimal places.   <div style=padding-top: 35px>
Question
The top of a ladder slides down a vertical wall at a rate of 0.1m/s . At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s .
How long is the ladder?
Question
Find the length of the curve. Find the length of the curve.   ,  <div style=padding-top: 35px> , Find the length of the curve.   ,  <div style=padding-top: 35px>
Question
Evaluate the line integral. cyzcosxds\int _ { c } y z \cos x d s C:x=t,y=4cost,z=4sint0tπC : x = t , y = 4 \cos t , z = 4 \sin t \quad 0 \leq t \leq \pi

A) 453\frac { 4 \sqrt { 5 } } { 3 }
B) 3253\frac { 32 \sqrt { 5 } } { 3 }
C) 223\frac { 2 \sqrt { 2 } } { 3 }
D) 3255\frac { 32 \sqrt { 5 } } { 5 }
E) 53\frac { \sqrt { 5 } } { 3 }
Question
Find the volume of the given solid.
Under the paraboloid Find the volume of the given solid. Under the paraboloid   and above the rectangle   .<div style=padding-top: 35px> and above the rectangle Find the volume of the given solid. Under the paraboloid   and above the rectangle   .<div style=padding-top: 35px> .
Question
Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s). Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s).  <div style=padding-top: 35px>
Question
Find the volume of the given solid.
Under the paraboloid Find the volume of the given solid. Under the paraboloid   and above the rectangle   .<div style=padding-top: 35px> and above the rectangle Find the volume of the given solid. Under the paraboloid   and above the rectangle   .<div style=padding-top: 35px> .
Question
Find all the second partial derivatives of Find all the second partial derivatives of  <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/44
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 18: Final Exam
1
Evaluate the integral. xsinxcosxdx\int x \sin x \cos x d x

A) 12cosxsinx+12x+C- \frac { 1 } { 2 } \cos x \sin x + \frac { 1 } { 2 } x + C
B) 12xsin2x+12cosx+C- \frac { 1 } { 2 } x \sin ^ { 2 } x + \frac { 1 } { 2 } \cos x + C
C) 18[sin2x2cos2x]+C\frac { 1 } { 8 } [ \sin 2 x - 2 \cos 2 x ] + C
D) 18[sin8x8cos8x]+C\frac { 1 } { 8 } [ \sin 8 x - 8 \cos 8 x ] + C
E)  none of these \text { none of these }
18[sin2x2cos2x]+C\frac { 1 } { 8 } [ \sin 2 x - 2 \cos 2 x ] + C
2
A piece of wire 1010 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut for the square so that the total area enclosed is a minimum? Round your answer to the nearest hundredth.

A) 17.048917.0489 m
B) 3.34963.3496 m
C) 6.34966.3496 m
D) 5.34965.3496 m
E) 4.34964.3496 m
4.34964.3496 m
3
Use implicit differentiation to find an equation of the tangent line to the curve at the given point. ysin7x=xcos7y,(π7,π14)y \sin 7 x = x \cos 7 y , \left( \frac { \pi } { 7 } , \frac { \pi } { 14 } \right)

A) y=x7+π14y = \frac { x } { 7 } + \frac { \pi } { 14 }
B) y=x7y = \frac { x } { 7 }
C) y=x2+π2y = - \frac { x } { 2 } + \frac { \pi } { 2 }
D) y=x14y = \frac { x } { 14 }
E) y=2x3π7y = 2 x - \frac { 3 \pi } { 7 }
y=x7y = \frac { x } { 7 }
4
The acceleration function (in m / s2s ^ { 2 } ) and the initial velocity are given for a particle moving along a line. Find the velocity at time t and the distance traveled during the given time interval. a(t)=t+4,v(0)=3,0t10a ( t ) = t + 4 , v ( 0 ) = 3,0 \leq t \leq 10

A) v(t)=t22+3t m/s,57123 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 3 t \mathrm {~m} / \mathrm { s } , 571 \frac { 2 } { 3 } \mathrm {~m}
B) v(t)=t22+3 m/s,59623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 3 \mathrm {~m} / \mathrm { s } , 596 \frac { 2 } { 3 } \mathrm {~m}
C) v(t)=t22+4t+3 m/s,49623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 4 t + 3 \mathrm {~m} / \mathrm { s } , 496 \frac { 2 } { 3 } \mathrm {~m}
D) v(t)=t22+3t m/s,54623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 3 t \mathrm {~m} / \mathrm { s } , 546 \frac { 2 } { 3 } \mathrm {~m}
E) v(t)=t22+4t+3 m/s,39623 mv ( t ) = \frac { t ^ { 2 } } { 2 } + 4 t + 3 \mathrm {~m} / \mathrm { s } , 396 \frac { 2 } { 3 } \mathrm {~m}
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
5
Find the average value of the function f(t)=6tsin(t2)f ( t ) = 6 t \sin \left( t ^ { 2 } \right) on the interval [0,20][ 0,20 ] . Round your answer to 3 decimal places.

A) 0.288
B) 6.228
C) 0.3
D) 0.2280.228
E) 12
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
6
Find the length of the curve. x=y48+14y2,1y2x = \frac { y ^ { 4 } } { 8 } + \frac { 1 } { 4 y ^ { 2 } } , 1 \leq y \leq 2

A) 25.05 55
B) 13.05
C) 36.05
D) 2.06252.0625
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
7
Determine whether the series is convergent or divergent by expressing sns _ { n } as a telescoping sum. If it is convergent, find its sum. n=110n2+2n\sum _ { n = 1 } ^ { \infty } \frac { 10 } { n ^ { 2 } + 2 n } .

A) 152\frac { 15 } { 2 }
B) diverges
C) 22
D) 110\frac { 1 } { 10 }
E) 215\frac { 2 } { 15 }
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
8
Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. y=5(x2+4),y=5(12x2); about y=5y = 5 \left( x ^ { 2 } + 4 \right) , y = 5 \left( 12 - x ^ { 2 } \right) ; \text { about } y = - 5

A) 9525π9525 \pi
B) 9575π9575 \pi
C) 9550π9550 \pi
D) 9600π9600 \pi
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
9
How would you define f(7)f ( 7 ) in order to make f continuous at 77 ? f(x)=x24x4x3f ( x ) = \frac { x ^ { 2 } - 4 x - 4 } { x - 3 }

A) f(7)=10f ( 7 ) = - 10
B) f(7)=0f ( 7 ) = 0
C) f(7)=10f ( 7 ) = 10
D) f(3)=6f ( 3 ) = - 6
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
10
Find the area of the region that lies under the given curve. Round the answer to three decimal places. y=5x+1,0x1y = \sqrt { 5 } \sqrt { x + 1 } , 0 \leq x \leq 1

A) 4.734.73
B) 2.732.73
C) 3.733.73
D) 6.736.73
E) 5.735.73
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate the integral. 16dxxlnx\int _ { 1 } ^ { \infty } \frac { 6 d x } { x \ln x }

A) 12\frac { 1 } { 2 }
B) 14- \frac { 1 } { 4 }
C) 00
D) 14\frac { 1 } { 4 }
E)  divergent \text { divergent }
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
12
The height (in meters) of a projectile shot vertically upward from a point 2.52.5 m above ground level with an initial velocity of 25.48 m/s is h=2.5+25.48t4.9t2h = 2.5 + 25.48 t - 4.9 t ^ { 2 } after t seconds.
a. When does the projectile reach its maximum height?
b. What is the maximum height?

A) 2.8 s2.8 \mathrm {~s}
34.428 m34.428 \mathrm {~m}
B) 2 s2 \mathrm {~s}
32.86 m32.86 \mathrm {~m}
C) 2.382.38
34.183 m34.183 \mathrm {~m}
D) 2.4s2.4 s
34.428 m34.428 \mathrm {~m}
E) 2.6 s2.6 \mathrm {~s}
35.624 m35.624 \mathrm {~m}
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
13
Which equation does the function y=e3ty = e ^ { - 3 t } satisfy?

A) yy+12y=0y ^ { \prime \prime } - y ^ { \prime } + 12 y = 0
B) y+y12y=0y ^ { \prime \prime } + y ^ { \prime } - 12 y = 0
C) y+y+12y=0y ^ { \prime \prime } + y ^ { \prime } + 12 y = 0
D) y3y+12y=0y ^ { \prime \prime } - 3 y ^ { \prime } + 12 y = 0
E) yy12y=0y ^ { \prime \prime } - y ^ { \prime } - 12 y = 0
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
14
If f(x)=x2x+4f ( x ) = x ^ { 2 } - x + 4 , evaluate the difference quotient f(a+h)f(a)h\frac { f ( a + h ) - f ( a ) } { h } .

A) 2a42 a - 4
B) 2a+h42 a + h - 4
C) h
D) 2ah42 a - h - 4
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
15
The graphs of f(x)f ( x ) and g(x)g ( x ) are given. For what values of x is f(x)=g(x)f ( x ) = g ( x ) ?  <strong>The graphs of  f ( x )  and  g ( x )  are given. For what values of x is  f ( x ) = g ( x )  ?  </strong> A)  - 1  B)  - 2,5  C) -4, 12 D) 0 E) 4, 2

A) 1- 1
B) 2,5- 2,5
C) -4, 12
D) 0
E) 4, 2
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
16
Find the number c that satisfies the conclusion of the Mean Value Theorem on the given interval. f(x)=2xf ( x ) = 2 \sqrt { x } , [0,9][ 0,9 ]

A) c=c = 94\frac { 9 } { 4 }
B) c=5c = 5
C) c=0c = 0
D) c=13c = \frac { 1 } { 3 }
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
17
Solve the initial-value problem. xy=y+x2sinx,y(7π)=0x y ^ { \prime } = y + x ^ { 2 } \sin x , y ( 7 \pi ) = 0

A) y=xsinx+7xy = - x \sin x + 7 x
B) y=xsinx7xy = x \sin x - 7 x
C) y=7xcosxsinxy = 7 x \cos x - \sin x
D) y=7xsinxy = 7 x \sin x
E) y=xcosxxy = - x \cos x - x
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
18
If an equation of the tangent line to the curve y=f(x)y = f ( x ) at the point where a=8 is y=4x7a = 8 \text { is } y = 4 x - 7 \text {, }  find f(8) and f(8)\text { find } f ( 8 ) \text { and } f ^ { \prime } ( 8 ) \text {. }

A) f(2)=25f(2)=3\begin{array} { l } f ( 2 ) = 25 \\f ^ { \prime } ( 2 ) = 3\end{array}
B) f(2)=8f(2)=8\begin{array} { l } f ( 2 ) = - 8 \\f ^ { \prime } ( 2 ) = 8\end{array}
C) f(2)=7f(2)=4\begin{array} { l } f ( 2 ) = 7 \\f ^ { \prime } ( 2 ) = 4\end{array}
D) f(2)=25f(2)=4\begin{array} { l } f ( 2 ) = 25 \\f ^ { \prime } ( 2 ) = 4\end{array}
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
19
Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x=t2sint,y=t2cost,0t4πx = t - 2 \sin t , \quad y = t - 2 \cos t , \quad 0 \leq t \leq 4 \pi

A) 28.729828.7298
B) 26.729826.7298
C) 25.729825.7298
D) 24.729824.7298
E) 27.729827.7298
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
20
The masses mim _ { i } are located at the point P1P _ { 1 } . Find the moments MxM _ { x } and MyM _ { y } and the center of mass of the system. m1=3,m2=7,m3=111m _ { 1 } = 3 , m _ { 2 } = 7 , m _ { 3 } = 111 ; P1(1,5),P2(3,2),P3(2,1)P _ { 1 } ( 1,5 ) , P _ { 2 } ( 3 , - 2 ) , P _ { 3 } ( - 2 , - 1 )

A) Mx=18,My=44,(4421,1821)M _ { x } = 18 , M _ { y } = 44 , \left( \frac { 44 } { 21 } , \frac { 18 } { 21 } \right)
B) Mx=44,My=18,(4421,1821)M _ { x } = 44 , M _ { y } = 18 , \left( \frac { 44 } { 21 } , \frac { 18 } { 21 } \right)
C) Mx=18,My=44,(1821,4421)M _ { x } = 18 , M _ { y } = 44 , \left( \frac { 18 } { 21 } , \frac { 44 } { 21 } \right)
D) Mx=44,My=18,(4421,1821)M _ { x } = 44 , M _ { y } = - 18 , \left( - \frac { 44 } { 21 } , \frac { 18 } { 21 } \right)
E) Mx=44,My=18,(4421,1821)M _ { x } = - 44 , M _ { y } = 18 , \left( \frac { 44 } { 21 } , - \frac { 18 } { 21 } \right)
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
21
Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 66 .

A) 43747π\frac { 4374 } { 7 } \pi
B) 5598727π\frac { 559872 } { 7 } \pi
C) 11197447π\frac { 1119744 } { 7 } \pi
D) 43747\frac { 4374 } { 7 }
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
22
Find fxyf _ { x y } for the function f(x,y)=5x3y6xy2f ( x , y ) = 5 x ^ { 3 } y - 6 x y ^ { 2 } .

A) fxy=15x2+12yf _ { x y } = 15 x ^ { 2 } + 12 y
B) fxy=15x212yf _ { x y } = 15 x ^ { 2 } - 12 y
C) fxy=24x212yf _ { x y } = 24 x ^ { 2 } - 12 y
D) fxy=12x215yf _ { x y } = 12 x ^ { 2 } - 15 y
E) fxy=12x2+15yf _ { x y } = 12 x ^ { 2 } + 15 y
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
23
Find a nonzero vector orthogonal to the plane through the points P, Q, and R. P(3,0,0),Q(5,6,0),R(0,6,3)P ( 3,0,0 ) , Q ( 5,6,0 ) , R ( 0,6,3 )

A) i6j+5k\mathbf { i } - 6 \mathbf { j } + 5 \mathbf { k }
B) i5j+6k\mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }
C) 18i6j+30k18 \mathbf { i } - 6 \mathbf { j } + 30 \mathbf { k }
D) 5i+j+6k- 5 \mathbf { i } + \mathbf { j } + 6 \mathbf { k }
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
24
Find the unit tangent vector for the curve given by Find the unit tangent vector for the curve given by   . .
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
25
If r(t)=5i+3tcosπj+4sinπtk\mathbf { r } ( t ) = 5 \mathbf { i } + 3 t \cos \pi \mathbf { j } + 4 \sin \pi t \mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t .

A) 5i6π2j1πk5 \mathbf { i } - \frac { 6 } { \pi ^ { 2 } } \mathbf { j } - \frac { 1 } { \pi } \mathbf { k }
B) i6π2j+1πk\mathbf { i } - \frac { 6 } { \pi ^ { 2 } } \mathbf { j } + \frac { 1 } { \pi } \mathbf { k }
C) i+6π2j8πk\mathbf { i } + \frac { 6 } { \pi ^ { 2 } } \mathbf { j } - \frac { 8 } { \pi } \mathbf { k }
D) 5i6π2j+8πk5 \mathbf { i } - \frac { 6 } { \pi ^ { 2 } } \mathbf { j } + \frac { 8 } { \pi } \mathbf { k }
E) 5i+6π2j+8πk5 \mathbf { i } + \frac { 6 } { \pi ^ { 2 } } \mathbf { j } + \frac { 8 } { \pi } \mathbf { k }
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
26
The graphs of The graphs of   and   are given. Find the values of   and   .  and The graphs of   and   are given. Find the values of   and   .  are given.
Find the values of The graphs of   and   are given. Find the values of   and   .  and The graphs of   and   are given. Find the values of   and   .  . The graphs of   and   are given. Find the values of   and   .
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
27
If If   , find the Riemann sum with n = 5 correct to 3 decimal places, taking the sample points to be midpoints. , find the Riemann sum with n = 5 correct to 3 decimal places, taking the sample points to be midpoints.
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
28
Find the volume of the resulting solid if the region under the curve Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. from Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. to Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. is rotated about the x-axis. Round your answer to four decimal places.
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
29
Find the sum of the series. 21.9222.92+233.93244.94+\frac { 2 } { 1.9 } - \frac { 2 ^ { 2 } } { 2.9 ^ { 2 } } + \frac { 2 ^ { 3 } } { 3.9 ^ { 3 } } - \frac { 2 ^ { 4 } } { 4.9 ^ { 4 } } + \ldots

A) 11e9\frac { 11 e } { 9 }
B) ln(19)\ln \left( \frac { 1 } { 9 } \right)
C) 119\frac { 11 } { 9 }
D) ln(119)\ln \left( \frac { 11 } { 9 } \right)
E) ln(109)\ln \left( \frac { 10 } { 9 } \right)
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
30
Find the area of the region that is bounded by the given curve and lies in the specified sector. Find the area of the region that is bounded by the given curve and lies in the specified sector.
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
31
Solve the initial-value problem. Solve the initial-value problem.
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
32
Evaluate the integral using the indicated trigonometric substitution. Evaluate the integral using the indicated trigonometric substitution.
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
33
Find the directional derivative of f(x,y)=20xy3f ( x , y ) = 20 \sqrt { x } - y ^ { 3 } at the point (1, 3) in the direction toward the point (3, 1).

A) 37237 \sqrt { 2 }
B) 372\frac { 37 } { \sqrt { 2 } }
C) 2\sqrt { 2 }
D) 3737
E) None of these
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
34
Calculate the given quantities if Calculate the given quantities if    Calculate the given quantities if
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
35
Find the curvature of y=x7y = x ^ { 7 } .

A) x5(1+49x12)1/2\frac { | x | ^ { 5 } } { \left( 1 + 49 x ^ { 12 } \right) ^ { 1 / 2 } }
B) 42x5(1+49x12)3/2\frac { 42 | x | ^ { 5 } } { \left( 1 + 49 x ^ { 12 } \right) ^ { 3 / 2 } }
C) 42x5(149x12)3/2\frac { 42 | x | ^ { 5 } } { \left( 1 - 49 x ^ { 12 } \right) ^ { 3 / 2 } }
D) x5(1+x12)3/2\frac { | x | ^ { 5 } } { \left( 1 + x ^ { 12 } \right) ^ { 3 / 2 } }
E) 42x5(1+49x12)1/2\frac { 42 | x | ^ { 5 } } { \left( 1 + 49 x ^ { 12 } \right) ^ { 1 / 2 } }
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
36
Find the local and absolute extreme values of the function on the given interval. Find the local and absolute extreme values of the function on the given interval.   ,  , Find the local and absolute extreme values of the function on the given interval.   ,
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
37
Use Euler's method with step size 0.1 to estimate Use Euler's method with step size 0.1 to estimate   , where   is the solution of the initial-value problem. Round your answer to four decimal places.   , where Use Euler's method with step size 0.1 to estimate   , where   is the solution of the initial-value problem. Round your answer to four decimal places.   is the solution of the initial-value problem. Round your answer to four decimal places. Use Euler's method with step size 0.1 to estimate   , where   is the solution of the initial-value problem. Round your answer to four decimal places.
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
38
The top of a ladder slides down a vertical wall at a rate of 0.1m/s . At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s .
How long is the ladder?
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
39
Find the length of the curve. Find the length of the curve.   ,  , Find the length of the curve.   ,
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
40
Evaluate the line integral. cyzcosxds\int _ { c } y z \cos x d s C:x=t,y=4cost,z=4sint0tπC : x = t , y = 4 \cos t , z = 4 \sin t \quad 0 \leq t \leq \pi

A) 453\frac { 4 \sqrt { 5 } } { 3 }
B) 3253\frac { 32 \sqrt { 5 } } { 3 }
C) 223\frac { 2 \sqrt { 2 } } { 3 }
D) 3255\frac { 32 \sqrt { 5 } } { 5 }
E) 53\frac { \sqrt { 5 } } { 3 }
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
41
Find the volume of the given solid.
Under the paraboloid Find the volume of the given solid. Under the paraboloid   and above the rectangle   . and above the rectangle Find the volume of the given solid. Under the paraboloid   and above the rectangle   . .
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
42
Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s). Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s).
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
43
Find the volume of the given solid.
Under the paraboloid Find the volume of the given solid. Under the paraboloid   and above the rectangle   . and above the rectangle Find the volume of the given solid. Under the paraboloid   and above the rectangle   . .
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
44
Find all the second partial derivatives of Find all the second partial derivatives of
Unlock Deck
Unlock for access to all 44 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 44 flashcards in this deck.