Deck 14: Partial Derivatives

Full screen (f)
exit full mode
Question
Find three positive numbers whose sum is 291291 and whose product is a maximum.

A) x=y=z=97x = y = z = 97
B) x=109,y=99,z=89x = 109 , y = 99 , z = 89
C) x=100,y=108,z=89x = 100 , y = 108 , z = 89
D) x=99,y=z=99x = 99 , y = z = - 99
E) x=129,y=79,z=89x = 129 , y = 79 , z = 89
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the direction in which the maximum rate of change of f at the given point occurs. f(x,y)=2sin(xy),(1,0)f ( x , y ) = 2 \sin ( x y ) , ( 1,0 )

A) 2,0\langle2,0 \rangle
B) 1,2\langle1 , - \sqrt { 2 } \rangle
C) 2,0\langle \sqrt { 2 } , 0 \rangle
D) 0,2\langle0,2 \rangle
E) 12,12\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
Question
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y)=8x24y2,8x2+4y2=9f ( x , y ) = 8 x ^ { 2 } - 4 y ^ { 2 } , 8 x ^ { 2 } + 4 y ^ { 2 } = 9

A) f(x,y)=8f ( x , y ) = 8
B) f(x,y)=14f ( x , y ) = \frac { 1 } { 4 }
C) f(x,y)=19f ( x , y ) = \frac { 1 } { 9 }
D) f(x,y)=18f ( x , y ) = \frac { 1 } { 8 }
E) f(x,y)=9f ( x , y ) = 9
Question
Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is 8484

A) 77 , 8484 , 77
B) 4, 8, 16
C) 77 , 77 , 77
D) 32, 77 , 16
E) 32, 32, 32
Question
Use Lagrange multipliers to find the maximum value of the function subject to the given constraints. Use Lagrange multipliers to find the maximum value of the function subject to the given constraints.  <div style=padding-top: 35px>
Question
Find the points on the surface z2=xy+49z ^ { 2 } = x y + 49 that are closest to the origin.

A) (0,0,49)( 0,0 , - 49 )
B) (0,0,49)(0,0,49)( 0,0,49 ) ( 0,0 , - 49 )
C) (0,7,0)( 0,7,0 )
D) (0,0,7)(0,0,7)( 0,0,7 ) ( 0,0 , - 7 )
E) (0,0,7)( 0,0,7 )
Question
Suppose (1, 1) is a critical point of a function f with continuous second derivatives. In the case of fx(1,1)=8f _ { x } ( 1,1 ) = 8 , fxy(1,1)=8f _ { x y } ( 1,1 ) = 8 , fyy(1,1)=10f _ { y y } ( 1,1 ) = 10 what can you say about f ?

A) f has a local maximum at (1,1)
B) f has a saddle point at (1,1)
C) f has a local minimum at (1,1)
Question
Find and classify the relative extrema and saddle points of the function f(x,y)=e2xsin4yf ( x , y ) = e ^ { - 2 x } \sin 4 y for x0x \geq 0 and 0yπ20 \leq y \leq \frac { \pi } { 2 } .

A) None
B) Relative maximum f(0,π8)=1f \left( 0 , \frac { \pi } { 8 } \right) = 1
C) Saddle point (0,0,0)( 0,0,0 )
D) Relative minimum f(0,π4)=0f \left( 0 , \frac { \pi } { 4 } \right) = 0
Question
Use Lagrange multipliers to find the maximum and minimum values of the function Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   .<div style=padding-top: 35px> subject to the constraints Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   .<div style=padding-top: 35px> and Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   .<div style=padding-top: 35px> .
Question
Find all the saddle points of the function. f(x,y)=xsiny2f ( x , y ) = x \sin \frac { y } { 2 }

A) (3πn,0)( 3 \pi n , 0 )
B) (0,πn2)\left( 0 , \frac { \pi n } { 2 } \right)
C) (2πn,1)( 2 \pi n , 1 )
D) (0,2πn)( 0,2 \pi n )
E) (2nπ,0)\left( \frac { 2 n } { \pi } , 0 \right)
Question
Find the dimensions of the rectangular box with largest volume if the total surface area is given as 294294 cm2\mathrm { cm } ^ { 2 } .

A) 1414 cm, 1.75 cm, 1.75 cm
B) 2121 cm, 1414 cm, 1.75 cm
C) 294294 cm, 77 cm, 77 cm
D) 77 cm, 77 cm, 77 cm
E) 1414 cm, 1414 cm, 3.5 cm
Question
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y,z)=14x+8y+12z,x2+y2+z2=101f ( x , y , z ) = 14 x + 8 y + 12 z , x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 101

A) f(14,8,12)=404f ( 14,8,12 ) = 404
B) f(20,9,18)=568f ( 20,9,18 ) = 568
C) f(7,4,6)=202f ( 7,4,6 ) = 202
D) f(18,17,5)=308f ( 18,17,5 ) = 308
E) f(8,4,12)=212f ( 8,4,12 ) = 212
Question
Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s). Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s).  <div style=padding-top: 35px>
Question
At what point is the following function a local minimum? f(x,y)=8x2+5y2f ( x , y ) = 8 x ^ { 2 } + 5 y ^ { 2 }

A) (5,0)( 5,0 )
B) (8,5)( 8 , - 5 )
C) (8,0)( 8,0 )
D) (8,5)( 8,5 )
E) (0,0)( 0,0 )
Question
Use Lagrange multipliers to find the minimum value of the function subject to the given constraints. Use Lagrange multipliers to find the minimum value of the function subject to the given constraints.  <div style=padding-top: 35px>
Question
Find the critical points of the function. f(x,y)=72+684xy+76x2+2160y+9y44f ( x , y ) = 72 + 684 x y + 76 x ^ { 2 } + 2160 y + \frac { 9 y ^ { 4 } } { 4 }

A) (4,4),(6,6),(10,10)( - 4,4 ) , ( - 6,6 ) , ( 10 , - 10 )
B) (4,6),(8,6),(8,6)( - 4,6 ) , ( - 8,6 ) , ( 8 , - 6 )
C) (4,6),(6,10),(10,4)( - 4,6 ) , ( - 6 , - 10 ) , ( 10,4 )
D) (6,6),(8,8),(8,8)( - 6,6 ) , ( - 8,8 ) , ( 8 , - 8 )
E) (4,4),(6,6),(10,0)( 4,4 ) , ( 6,6 ) , ( - 10,0 )
Question
Find the shortest distance from the point (3,9,8)( 3,9,8 ) to the plane 3x+9y+4z=163 x + 9 y + 4 z = 16 .

A) D=61D = 61
B) D=90D = 90
C) D=10.29D = 10.29
D) D=61D = \sqrt { 61 }
E) D=106D = 106
Question
At what point is the following function a local maximum? f(x,y)=310x+12y5x26y2f ( x , y ) = 3 - 10 x + 12 y - 5 x ^ { 2 } - 6 y ^ { 2 }

A) (1,1)( 1,1 )
B) (1,1)( - 1,1 )
C) (3,1)( 3,1 )
D) (0,1)( 0,1 )
E) (1,1)( 1 , - 1 )
Question
Find the absolute extrema of the function f(x,y)=2x+3y5f ( x , y ) = 2 x + 3 y - 5 on the closed triangular region with vertices (0,0)( 0,0 ) , (5,0)( 5,0 ) and (5,4)( 5,4 ) .

A) Absolute minimum 0, Absolute maximum 5
B) Absolute minimum -5, Absolute maximum 5
C) Absolute minimum -5, Absolute maximum 17
D) Absolute minimum 5, Absolute maximum 17
Question
Find the absolute minimum value of the function f(x,y)=6+3xy2x4yf ( x , y ) = 6 + 3 x y - 2 x - 4 y on the set D. D is the region bounded by the parabola y=x2y = x ^ { 2 } and the line y=4y = 4

A) 31- 31
B) 32- 32
C) 30- 30
D) 30
E) 0
Question
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.  <div style=padding-top: 35px>
Question
Find the directional derivative of the function f(x,y)=(x+5)eyf ( x , y ) = ( x + 5 ) e ^ { y } at the point P(6,0)P ( 6,0 ) in the direction of the unit vector that makes the angle θ=π2\theta = \frac { \pi } { 2 } with the positive x-axis.

A) e6e ^ { 6 }
B) 1
C) 5e65 e ^ { 6 }
D) 11
Question
Find the directional derivative of f(x,y)=2xy3f ( x , y ) = 2 \sqrt { x } - y ^ { 3 } at the point (1, 3) in the direction toward the point (3, 1). Select the correct answer.

A) 727 \sqrt { 2 }
B) 14214 \sqrt { 2 }
C) 2\sqrt { 2 }
D) 28
E) none of these
Question
Find three positive numbers whose sum is Find three positive numbers whose sum is   and whose product is a maximum.<div style=padding-top: 35px> and whose product is a maximum.
Question
Suppose that over a certain region of space the electrical potential V is given by V(x,y,z)=8x27xy+7xyzV ( x , y , z ) = 8 x ^ { 2 } - 7 x y + 7 x y z . Find the rate of change of the potential at (1,1,1)( - 1,1 , - 1 ) in the direction of the vector v=8i+10j8k\mathbf { v } = 8 \mathbf { i } + 10 \mathbf { j } - 8 \mathbf { k } .

A) 15.099- 15.099
B) 44
C) -2.91
D) 20
E)  14. 569856\text { 14. } 569856
Question
Find the equation of the normal line to the given surface at the specified point. 2x2+8y2+3z2=235,(4,4,5)2 x ^ { 2 } + 8 y ^ { 2 } + 3 z ^ { 2 } = 235 , ( 4,4,5 )

A) 2x+8y+3z=12 x + 8 y + 3 z = 1
B) 16x+64y+30z=23516 x + 64 y + 30 z = 235
C) x455=y455=z555\frac { x - 4 } { 55 } = \frac { y - 4 } { 55 } = \frac { z - 5 } { 55 }
D) x416=y464=z530\frac { x - 4 } { 16 } = \frac { y - 4 } { 64 } = \frac { z - 5 } { 30 }
E) x+416=y+464=z+530\frac { x + 4 } { 16 } = \frac { y + 4 } { 64 } = \frac { z + 5 } { 30 }
Question
Find and classify the relative extrema and saddle points of the function Find and classify the relative extrema and saddle points of the function   .<div style=padding-top: 35px> .
Question
Which of the given points are the points on the hyperboloid x2y2+4z2=4x ^ { 2 } - y ^ { 2 } + 4 z ^ { 2 } = 4 where the normal line is parallel to the line that joins the points (1,1,3)( - 1,1,3 ) and (0,2,5)( 0,2,5 ) .
Select all that apply.

A) (2,2,1)( - 2,2,1 )
B) (2,2,1)( - 2,2 , - 1 )
C) (2,2,1)( 2 , - 2,1 )
D) (2,2,1)( 2 , - 2 , - 1 )
E) (2,2,1)( 2,2,1 )
Question
Find the maximum rate of change of f(x,y)=xy2+yf ( x , y ) = x y ^ { 2 } + \sqrt { y } at the point (4,1)( 4,1 ) (2,1). In what direction does it occur?

A) 292,1,52\frac { \sqrt { 29 } } { 2 } , \left\langle1 , \frac { 5 } { 2 } \right\rangle
B) 852,2,72\frac { 85 } { 2 } , \left\langle2 , \frac { 7 } { 2 } \right\rangle
C) 292,1,92\frac { 29 } { 2 } , \left\langle 1 , \frac { 9 } { 2 } \right\rangle
D) 2932,1,172\frac { \sqrt { 293 } } { 2 } , \left\langle1 , \frac { 17 } { 2 } \right\rangle
E) none of these
Question
Find the maximum rate of change of f at the given point. Find the maximum rate of change of f at the given point.  <div style=padding-top: 35px>
Question
Find equations for the tangent plane and the normal line to the surface with equation x2+3y2+9z2=16x ^ { 2 } + 3 y ^ { 2 } + 9 z ^ { 2 } = 16 at the point P(2,1,1)P ( 2,1,1 )

A) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
B) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
C) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
D) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
Question
Find the gradient of the function f(x,y,z)=z6e2xyf ( x , y , z ) = z ^ { 6 } e ^ { 2 x \sqrt { y } } .

A) ze2xy2z5y,xz5y,6z4z e ^ { 2 x \sqrt { y } } \left\langle 2 z ^ { 5 } \sqrt { y } , \frac { x z ^ { 5 } } { \sqrt { y } } , 6 z ^ { 4 } \right\rangle
B) ex2y6xzy,x2z2y,2e ^ { x ^ { 2 } \sqrt { y } } \left\langle 6 x z \sqrt { y } , \frac { x ^ { 2 } z } { 2 \sqrt { y } } , 2 \right\rangle
C) zexyzy,xz2y,6z e ^ { x \sqrt { y } } \left\langle z \sqrt { y } , \frac { x z } { 2 \sqrt { y } } , 6 \right\rangle
D) ex2y2xzy,x2z6y,1e ^ { x ^ { 2 } \sqrt { y } } \left\langle 2 x z \sqrt { y } , \frac { x ^ { 2 } z } { 6 \sqrt { y } } , 1 \right\rangle
E) ze2xy2zy,xzy,2z e ^ { 2 x \sqrt { y } } \left\langle 2 z \sqrt { y } , \frac { x z } { \sqrt { y } } , 2 \right\rangle
Question
A cardboard box without a lid is to have a volume of A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used.<div style=padding-top: 35px> cm A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used.<div style=padding-top: 35px> . Find the dimensions that minimize the amount of cardboard used.
Question
Evaluate the gradient of f at the point P. Evaluate the gradient of f at the point P.  <div style=padding-top: 35px>
Question
Find equations for the tangent plane and the normal line to the surface with equation xy+yz+xz=38x y + y z + x z = 38 at the point P(2,4,5)P ( 2,4,5 )

A) 6x+7y+9z=766 x + 7 y + 9 z = 76 , x26=y47=z59\frac { x - 2 } { 6 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 9 }
B) 9x+7y+6z=769 x + 7 y + 6 z = 76 , x29=y47=z56\frac { x - 2 } { 9 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 6 }
C) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x62=y74=z95\frac { x - 6 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 9 } { 5 }
D) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x92=y74=z65\frac { x - 9 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 6 } { 5 }
Question
Find the absolute extrema of the function Find the absolute extrema of the function   on the region bounded by the disk defined by   .<div style=padding-top: 35px> on the region bounded by the disk defined by Find the absolute extrema of the function   on the region bounded by the disk defined by   .<div style=padding-top: 35px> .
Question
Find three positive real numbers whose sum is 388 and whose product is as large as possible.
Question
Find the direction in which the function Find the direction in which the function   decreases fastest at the point   .<div style=padding-top: 35px> decreases fastest at the point Find the direction in which the function   decreases fastest at the point   .<div style=padding-top: 35px> .
Question
Find the local maximum, and minimum value and saddle points of the function. Find the local maximum, and minimum value and saddle points of the function.  <div style=padding-top: 35px>
Question
If f(x,y)=x2+7y2f ( x , y ) = x ^ { 2 } + 7 y ^ { 2 } use the gradient vector f(10,2)\nabla f ( 10,2 ) to find the tangent line to the level curve f(x,y)=136f ( x , y ) = 136 at the point (10,2)( 10,2 ) .

A) 10x+14y=1210 x + 14 y = 12
B) 10x+14y=13610 x + 14 y = 136
C) 100x49y=12100 x - 49 y = 12
D) 100x+49y=136100 x + 49 y = 136
E) 100x14y=12100 x - 14 y = 12
Question
Use the Chain Rule to find up\frac { \partial u } { \partial p } . u=x+yy+zu = \frac { x + y } { y + z } x=p+5r+7t,y=p5r+7t,z=p+5r7tx = p + 5 r + 7 t , y = p - 5 r + 7 t , z = p + 5 r - 7 t

A) up=7tp2\frac { \partial u } { \partial p } = - \frac { 7 t } { p ^ { 2 } }
B) up=7tp\frac { \partial u } { \partial p } = \frac { 7 t } { p }
C) up=5tp3\frac { \partial u } { \partial p } = - \frac { 5 t } { p ^ { 3 } }
D) up=35tp2\frac { \partial u } { \partial p } = - \frac { 35 t } { p ^ { 2 } }
E) up=35tp2+t\frac { \partial u } { \partial p } = \frac { 35 t } { p ^ { 2 } } + t
Question
Find the limit if Find the limit if   .  <div style=padding-top: 35px> . Find the limit if   .  <div style=padding-top: 35px>
Question
The radius of a right circular cone is increasing at a rate of 5 in/s while its height is decreasing at a rate of 3.6 in/s. At what rate is the volume of the cone changing when the radius is 108108 in. and the height is 132132 in.?

A) 108316.24in3/s108316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
B) 105316.24in3/s105316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
C) 111316.24in3/s111316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
D) 102316.24in3/s102316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
E) 99316.24in3/s99316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
Question
Find the differential of the function z=3x3y6z = 3 x ^ { 3 } y ^ { 6 }

A) dz=9x2y5dx+18x2y5dyd z = 9 x ^ { 2 } y ^ { 5 } d x + 18 x ^ { 2 } y ^ { 5 } d y
B) dz=9x2y6dx+18x3y5dyd z = 9 x ^ { 2 } y ^ { 6 } d x + 18 x ^ { 3 } y ^ { 5 } d y
C) dz=18x2y5dx+9x2y5dyd z = 18 x ^ { 2 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 5 } d y
D) dz=18x3y5dx+9x2y6dyd z = 18 x ^ { 3 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 6 } d y
Question
Use the Chain Rule to find zs\frac { \partial z } { \partial s } . z=eycos(θ),r=8st,θ=s2+t2z = e ^ { y } \cos ( \theta ) , r = 8 s t , \theta = \sqrt { s ^ { 2 } + t ^ { 2 } }

A) zs=eγ(8tcos(θ)ssin(θ)s2+t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
B) zs=eγ(8tcos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
C) zs=(8tcos(θ)+seγsin(θ)s2+t2)\frac { \partial z } { \partial s } = \left( 8 t \cos ( \theta ) + \frac { s e ^ { \gamma } \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
D) zs=eγ(cos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
E) zs=eγ(tcos(θ)ssin(θ)s2+t)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t } } \right)
Question
Use the Chain Rule to find Use the Chain Rule to find   where   .  <div style=padding-top: 35px> where Use the Chain Rule to find   where   .  <div style=padding-top: 35px> . Use the Chain Rule to find   where   .  <div style=padding-top: 35px>
Question
Find an equation of the tangent plane to the given surface at the specified point. Find an equation of the tangent plane to the given surface at the specified point.  <div style=padding-top: 35px>
Question
Use the Chain Rule to find wr\frac { \partial w } { \partial r } and wt\frac { \partial w } { \partial t } if r=5r = 5 s=2s = 2 and t=0t = 0 w=x2yz2,x=rest,y=sent,z=erstw = \frac { x ^ { 2 } y } { z ^ { 2 } } , \quad x = r e ^ { s t } , \quad y = s e ^ { n t } , \quad z = e ^ { r s t }

A) wr=20,wt=550\frac { \partial w } { \partial r } = 20 , \quad \frac { \partial w } { \partial t } = - 550
B) wr=100,wt=200\frac { \partial w } { \partial r } = 100 , \quad \frac { \partial w } { \partial t } = 200
C) wr=10,wt=0\frac { \partial w } { \partial r } = 10 , \quad \frac { \partial w } { \partial t } = 0
D) wr=7,wt=550\frac { \partial w } { \partial r } = 7 , \quad \frac { \partial w } { \partial t } = - 550
Question
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.  <div style=padding-top: 35px>
Question
Use the equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } . cos(x7y)=xe4y\cos ( x - 7 y ) = x e ^ { 4 y }

A) dydx=sin(xy)+e4y7sin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - x e ^ { 4 y } }
B) dydx=sin(xy)+e4ysin(xy)xey\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - y ) - x e ^ { y } }
C) dydx=sin(x7y)+e4y7sin(x7y)4xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - 4 x e ^ { 4 y } }
D) dydx=7sin(xy)+e4ysin(x7y)7xey\frac { d y } { d x } = \frac { 7 \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - 7 x e ^ { y } }
E) dydx=sin(x7y)+e4ysin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - x e ^ { 4 y } }
Question
The length l, width w and height h of a box change with time. At a certain instant the dimensions are The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.<div style=padding-top: 35px> and The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.<div style=padding-top: 35px> , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.
Question
Use implicit differentiation to find Use implicit differentiation to find   .  <div style=padding-top: 35px> . Use implicit differentiation to find   .  <div style=padding-top: 35px>
Question
Find the equation of the tangent plane to the given surface at the specified point. z+7=xeycosz,(7,0,0)z + 7 = x e ^ { y } \cos z , ( 7,0,0 )

A) x+7y+z=7x + 7 y + z = 7
B) x+7yz=7x + 7 y - z = 7
C) x+yz=7x + y - z = 7
D) 7x+yz=77 x + y - z = 7
E) x+y7z=7x + y - 7 z = 7
Question
Use the Chain Rule to find dwdt\frac { d w } { d t } w=9x4y3z,x=6t,y=cos7t,z=tsintw = 9 x ^ { 4 } y ^ { 3 } z , \quad x = 6 t , \quad y = \cos 7 t , \quad z = t \sin t

A) 4,536x4y3zsin7t(sint+tcost)4,536 x ^ { 4 } y ^ { 3 } z \sin 7 t ( \sin t + t \cos t )
B) 9x4y3(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 4 } y ^ { 3 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
C) 4,536x3y2sin7t(sint+tcost)4,536 x ^ { 3 } y ^ { 2 } \sin 7 t ( \sin t + t \cos t )
D) 9x3y2(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 3 } y ^ { 2 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
Question
Find the gradient of the function Find the gradient of the function   .<div style=padding-top: 35px> .
Question
Find the equation of the normal line to the given surface at the specified point. Find the equation of the normal line to the given surface at the specified point.  <div style=padding-top: 35px>
Question
A boundary stripe 2 in. wide is painted around a rectangle whose dimensions are 100 ft by 240 ft. Use differentials to approximate the number of square feet of paint in the stripe.

A) 113 ft2\mathrm { ft } ^ { 2 }
B) 113.81 ft2\mathrm { ft } ^ { 2 }
C) 113.23 ft2\mathrm { ft } ^ { 2 }
D) 113.89 ft2\mathrm { ft } ^ { 2 }
E) 113.33 ft2\mathrm { ft } ^ { 2 }
Question
Use partial derivatives to find the implicit partial derivatives Use partial derivatives to find the implicit partial derivatives   and    <div style=padding-top: 35px> and Use partial derivatives to find the implicit partial derivatives   and    <div style=padding-top: 35px> Use partial derivatives to find the implicit partial derivatives   and    <div style=padding-top: 35px>
Question
Find the gradient of Find the gradient of   at the point  <div style=padding-top: 35px> at the point Find the gradient of   at the point  <div style=padding-top: 35px>
Question
Use differentials to estimate the amount of metal in a closed cylindrical can that is 12 cm high and 8 cm in diameter if the metal in the top and bottom is 0.09 cm thick and the metal in the sides is 0.01 cm thick. (rounded to the nearest hundredth.)

A) 8.34 cm3\mathrm { cm } ^ { 3 }
B) 6.99 cm3\mathrm { cm } ^ { 3 }
C) 6.91 cm3\mathrm { cm } ^ { 3 }
D) 6.7 cm3\mathrm { cm } ^ { 3 }
E) 12.0612.06 cm3\mathrm { cm } ^ { 3 }
Question
Find fxyf _ { x y } for the function f(x,y)=2x3y7xy2f ( x , y ) = 2 x ^ { 3 } y - 7 x y ^ { 2 } .

A) fxy=6x214yf _ { x y } = 6 x ^ { 2 } - 14 y
B) fxy=6x2+14yf _ { x y } = 6 x ^ { 2 } + 14 y
C) fxy=14x2+6yf _ { x y } = 14 x ^ { 2 } + 6 y
D) fxy=14x26yf _ { x y } = 14 x ^ { 2 } - 6 y
E) fxy=24x214yf _ { x y } = 24 x ^ { 2 } - 14 y
Question
If If   and   changes from (2, 1) to   find dz.<div style=padding-top: 35px> and If   and   changes from (2, 1) to   find dz.<div style=padding-top: 35px> changes from (2, 1) to If   and   changes from (2, 1) to   find dz.<div style=padding-top: 35px> find dz.
Question
Find the differential of the function. Find the differential of the function.  <div style=padding-top: 35px>
Question
Use the linearization L(x, y) of the function. Use the linearization L(x, y) of the function.   at   to approximate   .<div style=padding-top: 35px> at Use the linearization L(x, y) of the function.   at   to approximate   .<div style=padding-top: 35px> to approximate Use the linearization L(x, y) of the function.   at   to approximate   .<div style=padding-top: 35px> .
Question
How many nth-order partial derivatives does a function of two variables have?

A) n2n ^ { 2 }
B) 2n2 ^ { n }
C) 2n2 n
D) n2\frac { n } { 2 }
E) n2nn 2 ^ { n }
Question
Find the differential of the function Find the differential of the function  <div style=padding-top: 35px>
Question
Find fmw(x,y)f _ { m w } ( x , y ) for the function f(x,y)=x49x2y2+2xy3+6y4f ( x , y ) = x ^ { 4 } - 9 x ^ { 2 } y ^ { 2 } + 2 x y ^ { 3 } + 6 y ^ { 4 }

A) 24x24 x
B) 92x292 x ^ { 2 }
C) 15y2- 15 y ^ { 2 }
D) 36y- 36 y
Question
Find the indicated partial derivative. f(x,y)=x2y43x4y;fmxf ( x , y ) = x ^ { 2 } y ^ { 4 } - 3 x ^ { 4 } y ; f _ { m x }

A) fmx=12x2yf _ { m x } = 12 x ^ { 2 } y
B) fmx=36xyf _ { m x } = - 36 x y
C) fmx=3xyf _ { m x } = 3 x y
D) fmx=72xyf _ { m x } = - 72 x y
E) fmx=3xyf _ { m x } = - 3 x y
Question
Use implicit differentiation to find zx\frac { \partial z } { \partial x } ln(x2+z2)+yz3+4x2=6\ln \left( x ^ { 2 } + z ^ { 2 } \right) + y z ^ { 3 } + 4 x ^ { 2 } = 6

A) zx=2x(x2+z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( x ^ { 2 } + z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
B) zx=2x(4x2+4z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
C) zx=2x(4x2+4z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
D) zx=2x(6x2+6z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 6 x ^ { 2 } + 6 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
Question
Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height   cm if the tin is 0.04 cm thick.<div style=padding-top: 35px> cm if the tin is 0.04 cm thick.
Question
Find the indicated partial derivative. u=xeybzc;6uxy2z3,a>1,b>2,c>3u = x ^ { e } y ^ { b } z ^ { c } ; \frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } , a > 1 , b > 2 , c > 3

A) 6uxy2z3=cb(b1)c(a1)(a2)xc1yb2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = c b ( b - 1 ) c ( a - 1 ) ( a - 2 ) x ^ { c - 1 } y ^ { b - 2 } z ^ { a - 3 }
B) 6uxy2z3=xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
C) 6uxy2z3=ab(b1)c(c1)(c2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a b ( b - 1 ) c ( c - 1 ) ( c - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
D) 6uxy2z3=acb(a1)(a2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a c b ( a - 1 ) ( a - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
E) 6uxy2z3=xb1yc2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { b - 1 } y ^ { c - 2 } z ^ { a - 3 }
Question
Find the differential of the function Find the differential of the function  <div style=padding-top: 35px>
Question
Let Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> and suppose that Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> changes from Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> to Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> (a) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> (b) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px>
Question
The height of a hill (in feet) is given by h(x,y)=30(145x22y2+3xy+30x18y)h ( x , y ) = 30 \left( 14 - 5 x ^ { 2 } - 2 y ^ { 2 } + 3 x y + 30 x - 18 y \right) where x is the distance (in miles) east and y is the distance (in miles) north of your cabin. If you are at a point on the hill 1 mile north and 1 mile east of your cabin, what is the rate of change of the height of the hill (a) in a northerly direction and (b) in an easterly direction?

A) (a) 570 ft/mi, (b) 690 ft/mi
B) (a) -570 ft/mi, (b) 690 ft/mi
C) (a) 690 ft/mi, (b) 570 ft/mi
D) (a) 690 ft/mi, (b) -570 ft/mi
Question
Find hmy(x,y,z)h_{m y}(x, y, z) for the function h(x,y,z)=e9xcos(y+7z)h ( x , y , z ) = e ^ { 9 x } \cos ( y + 7 z )

A) 63e9xcos(y+7z)63 e ^ { 9 x } \cos ( y + 7 z )
B) 49e9xsin(y+7z)49 e ^ { 9 x } \sin ( y + 7 z )
C) 63e9xsin(y+7z)- 63 e ^ { 9 x } \sin ( y + 7 z )
D) 49e9xcos(y+7z)- 49 e ^ { 9 x } \cos ( y + 7 z )
Question
Use the definition of partial derivatives as limits to find fx(x,y)f _ { x } ( x , y ) if f(x,y)=5x29xy+2y2f ( x , y ) = 5 x ^ { 2 } - 9 x y + 2 y ^ { 2 } .

A) 5y9x5 y - 9 x
B) 10x9y10 x - 9 y
C) 10x910 x - 9
D) 10x9xy10 x - 9 x y
E) 5x9y5 x - 9 y
Question
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px> . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px> to the wind chill index function when T is near The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px> and v is near 30 kmh.
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px>
Question
Find the linearization L(x, y) of the function at the given point. Find the linearization L(x, y) of the function at the given point.   Round the answers to the nearest hundredth. <div style=padding-top: 35px> Round the answers to the nearest hundredth.
Question
Use implicit differentiation to find zx\frac { \partial z } { \partial x } x4y+xz+yz2=7x ^ { 4 } y + x z + y z ^ { 2 } = 7

A) zx=4x3y1+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y } { 1 + 2 y }
B) zx=4x3y+zx+2yz\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y + z } { x + 2 y z }
C) zx=4x31+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } } { 1 + 2 y }
D) zx=11+2y\frac { \partial z } { \partial x } = \frac { 1 } { 1 + 2 y }
Question
Find fy(24,8)f _ { y } ( - 24,8 ) for f(x,y)=sin(4x+12y)f ( x , y ) = \sin ( 4 x + 12 y ) .

A) 1212
B) 4- 4
C) 12- 12
D) 44
E) 0
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/132
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Partial Derivatives
1
Find three positive numbers whose sum is 291291 and whose product is a maximum.

A) x=y=z=97x = y = z = 97
B) x=109,y=99,z=89x = 109 , y = 99 , z = 89
C) x=100,y=108,z=89x = 100 , y = 108 , z = 89
D) x=99,y=z=99x = 99 , y = z = - 99
E) x=129,y=79,z=89x = 129 , y = 79 , z = 89
x=y=z=97x = y = z = 97
2
Find the direction in which the maximum rate of change of f at the given point occurs. f(x,y)=2sin(xy),(1,0)f ( x , y ) = 2 \sin ( x y ) , ( 1,0 )

A) 2,0\langle2,0 \rangle
B) 1,2\langle1 , - \sqrt { 2 } \rangle
C) 2,0\langle \sqrt { 2 } , 0 \rangle
D) 0,2\langle0,2 \rangle
E) 12,12\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
0,2\langle0,2 \rangle
3
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y)=8x24y2,8x2+4y2=9f ( x , y ) = 8 x ^ { 2 } - 4 y ^ { 2 } , 8 x ^ { 2 } + 4 y ^ { 2 } = 9

A) f(x,y)=8f ( x , y ) = 8
B) f(x,y)=14f ( x , y ) = \frac { 1 } { 4 }
C) f(x,y)=19f ( x , y ) = \frac { 1 } { 9 }
D) f(x,y)=18f ( x , y ) = \frac { 1 } { 8 }
E) f(x,y)=9f ( x , y ) = 9
f(x,y)=9f ( x , y ) = 9
4
Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is 8484

A) 77 , 8484 , 77
B) 4, 8, 16
C) 77 , 77 , 77
D) 32, 77 , 16
E) 32, 32, 32
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
5
Use Lagrange multipliers to find the maximum value of the function subject to the given constraints. Use Lagrange multipliers to find the maximum value of the function subject to the given constraints.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
6
Find the points on the surface z2=xy+49z ^ { 2 } = x y + 49 that are closest to the origin.

A) (0,0,49)( 0,0 , - 49 )
B) (0,0,49)(0,0,49)( 0,0,49 ) ( 0,0 , - 49 )
C) (0,7,0)( 0,7,0 )
D) (0,0,7)(0,0,7)( 0,0,7 ) ( 0,0 , - 7 )
E) (0,0,7)( 0,0,7 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
7
Suppose (1, 1) is a critical point of a function f with continuous second derivatives. In the case of fx(1,1)=8f _ { x } ( 1,1 ) = 8 , fxy(1,1)=8f _ { x y } ( 1,1 ) = 8 , fyy(1,1)=10f _ { y y } ( 1,1 ) = 10 what can you say about f ?

A) f has a local maximum at (1,1)
B) f has a saddle point at (1,1)
C) f has a local minimum at (1,1)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
8
Find and classify the relative extrema and saddle points of the function f(x,y)=e2xsin4yf ( x , y ) = e ^ { - 2 x } \sin 4 y for x0x \geq 0 and 0yπ20 \leq y \leq \frac { \pi } { 2 } .

A) None
B) Relative maximum f(0,π8)=1f \left( 0 , \frac { \pi } { 8 } \right) = 1
C) Saddle point (0,0,0)( 0,0,0 )
D) Relative minimum f(0,π4)=0f \left( 0 , \frac { \pi } { 4 } \right) = 0
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
9
Use Lagrange multipliers to find the maximum and minimum values of the function Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   . subject to the constraints Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   . and Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   . .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
10
Find all the saddle points of the function. f(x,y)=xsiny2f ( x , y ) = x \sin \frac { y } { 2 }

A) (3πn,0)( 3 \pi n , 0 )
B) (0,πn2)\left( 0 , \frac { \pi n } { 2 } \right)
C) (2πn,1)( 2 \pi n , 1 )
D) (0,2πn)( 0,2 \pi n )
E) (2nπ,0)\left( \frac { 2 n } { \pi } , 0 \right)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
11
Find the dimensions of the rectangular box with largest volume if the total surface area is given as 294294 cm2\mathrm { cm } ^ { 2 } .

A) 1414 cm, 1.75 cm, 1.75 cm
B) 2121 cm, 1414 cm, 1.75 cm
C) 294294 cm, 77 cm, 77 cm
D) 77 cm, 77 cm, 77 cm
E) 1414 cm, 1414 cm, 3.5 cm
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
12
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y,z)=14x+8y+12z,x2+y2+z2=101f ( x , y , z ) = 14 x + 8 y + 12 z , x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 101

A) f(14,8,12)=404f ( 14,8,12 ) = 404
B) f(20,9,18)=568f ( 20,9,18 ) = 568
C) f(7,4,6)=202f ( 7,4,6 ) = 202
D) f(18,17,5)=308f ( 18,17,5 ) = 308
E) f(8,4,12)=212f ( 8,4,12 ) = 212
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
13
Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s). Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s).
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
14
At what point is the following function a local minimum? f(x,y)=8x2+5y2f ( x , y ) = 8 x ^ { 2 } + 5 y ^ { 2 }

A) (5,0)( 5,0 )
B) (8,5)( 8 , - 5 )
C) (8,0)( 8,0 )
D) (8,5)( 8,5 )
E) (0,0)( 0,0 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
15
Use Lagrange multipliers to find the minimum value of the function subject to the given constraints. Use Lagrange multipliers to find the minimum value of the function subject to the given constraints.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
16
Find the critical points of the function. f(x,y)=72+684xy+76x2+2160y+9y44f ( x , y ) = 72 + 684 x y + 76 x ^ { 2 } + 2160 y + \frac { 9 y ^ { 4 } } { 4 }

A) (4,4),(6,6),(10,10)( - 4,4 ) , ( - 6,6 ) , ( 10 , - 10 )
B) (4,6),(8,6),(8,6)( - 4,6 ) , ( - 8,6 ) , ( 8 , - 6 )
C) (4,6),(6,10),(10,4)( - 4,6 ) , ( - 6 , - 10 ) , ( 10,4 )
D) (6,6),(8,8),(8,8)( - 6,6 ) , ( - 8,8 ) , ( 8 , - 8 )
E) (4,4),(6,6),(10,0)( 4,4 ) , ( 6,6 ) , ( - 10,0 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
17
Find the shortest distance from the point (3,9,8)( 3,9,8 ) to the plane 3x+9y+4z=163 x + 9 y + 4 z = 16 .

A) D=61D = 61
B) D=90D = 90
C) D=10.29D = 10.29
D) D=61D = \sqrt { 61 }
E) D=106D = 106
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
18
At what point is the following function a local maximum? f(x,y)=310x+12y5x26y2f ( x , y ) = 3 - 10 x + 12 y - 5 x ^ { 2 } - 6 y ^ { 2 }

A) (1,1)( 1,1 )
B) (1,1)( - 1,1 )
C) (3,1)( 3,1 )
D) (0,1)( 0,1 )
E) (1,1)( 1 , - 1 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
19
Find the absolute extrema of the function f(x,y)=2x+3y5f ( x , y ) = 2 x + 3 y - 5 on the closed triangular region with vertices (0,0)( 0,0 ) , (5,0)( 5,0 ) and (5,4)( 5,4 ) .

A) Absolute minimum 0, Absolute maximum 5
B) Absolute minimum -5, Absolute maximum 5
C) Absolute minimum -5, Absolute maximum 17
D) Absolute minimum 5, Absolute maximum 17
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
20
Find the absolute minimum value of the function f(x,y)=6+3xy2x4yf ( x , y ) = 6 + 3 x y - 2 x - 4 y on the set D. D is the region bounded by the parabola y=x2y = x ^ { 2 } and the line y=4y = 4

A) 31- 31
B) 32- 32
C) 30- 30
D) 30
E) 0
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
21
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
22
Find the directional derivative of the function f(x,y)=(x+5)eyf ( x , y ) = ( x + 5 ) e ^ { y } at the point P(6,0)P ( 6,0 ) in the direction of the unit vector that makes the angle θ=π2\theta = \frac { \pi } { 2 } with the positive x-axis.

A) e6e ^ { 6 }
B) 1
C) 5e65 e ^ { 6 }
D) 11
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
23
Find the directional derivative of f(x,y)=2xy3f ( x , y ) = 2 \sqrt { x } - y ^ { 3 } at the point (1, 3) in the direction toward the point (3, 1). Select the correct answer.

A) 727 \sqrt { 2 }
B) 14214 \sqrt { 2 }
C) 2\sqrt { 2 }
D) 28
E) none of these
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
24
Find three positive numbers whose sum is Find three positive numbers whose sum is   and whose product is a maximum. and whose product is a maximum.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
25
Suppose that over a certain region of space the electrical potential V is given by V(x,y,z)=8x27xy+7xyzV ( x , y , z ) = 8 x ^ { 2 } - 7 x y + 7 x y z . Find the rate of change of the potential at (1,1,1)( - 1,1 , - 1 ) in the direction of the vector v=8i+10j8k\mathbf { v } = 8 \mathbf { i } + 10 \mathbf { j } - 8 \mathbf { k } .

A) 15.099- 15.099
B) 44
C) -2.91
D) 20
E)  14. 569856\text { 14. } 569856
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
26
Find the equation of the normal line to the given surface at the specified point. 2x2+8y2+3z2=235,(4,4,5)2 x ^ { 2 } + 8 y ^ { 2 } + 3 z ^ { 2 } = 235 , ( 4,4,5 )

A) 2x+8y+3z=12 x + 8 y + 3 z = 1
B) 16x+64y+30z=23516 x + 64 y + 30 z = 235
C) x455=y455=z555\frac { x - 4 } { 55 } = \frac { y - 4 } { 55 } = \frac { z - 5 } { 55 }
D) x416=y464=z530\frac { x - 4 } { 16 } = \frac { y - 4 } { 64 } = \frac { z - 5 } { 30 }
E) x+416=y+464=z+530\frac { x + 4 } { 16 } = \frac { y + 4 } { 64 } = \frac { z + 5 } { 30 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
27
Find and classify the relative extrema and saddle points of the function Find and classify the relative extrema and saddle points of the function   . .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
28
Which of the given points are the points on the hyperboloid x2y2+4z2=4x ^ { 2 } - y ^ { 2 } + 4 z ^ { 2 } = 4 where the normal line is parallel to the line that joins the points (1,1,3)( - 1,1,3 ) and (0,2,5)( 0,2,5 ) .
Select all that apply.

A) (2,2,1)( - 2,2,1 )
B) (2,2,1)( - 2,2 , - 1 )
C) (2,2,1)( 2 , - 2,1 )
D) (2,2,1)( 2 , - 2 , - 1 )
E) (2,2,1)( 2,2,1 )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
29
Find the maximum rate of change of f(x,y)=xy2+yf ( x , y ) = x y ^ { 2 } + \sqrt { y } at the point (4,1)( 4,1 ) (2,1). In what direction does it occur?

A) 292,1,52\frac { \sqrt { 29 } } { 2 } , \left\langle1 , \frac { 5 } { 2 } \right\rangle
B) 852,2,72\frac { 85 } { 2 } , \left\langle2 , \frac { 7 } { 2 } \right\rangle
C) 292,1,92\frac { 29 } { 2 } , \left\langle 1 , \frac { 9 } { 2 } \right\rangle
D) 2932,1,172\frac { \sqrt { 293 } } { 2 } , \left\langle1 , \frac { 17 } { 2 } \right\rangle
E) none of these
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
30
Find the maximum rate of change of f at the given point. Find the maximum rate of change of f at the given point.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
31
Find equations for the tangent plane and the normal line to the surface with equation x2+3y2+9z2=16x ^ { 2 } + 3 y ^ { 2 } + 9 z ^ { 2 } = 16 at the point P(2,1,1)P ( 2,1,1 )

A) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
B) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
C) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
D) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
32
Find the gradient of the function f(x,y,z)=z6e2xyf ( x , y , z ) = z ^ { 6 } e ^ { 2 x \sqrt { y } } .

A) ze2xy2z5y,xz5y,6z4z e ^ { 2 x \sqrt { y } } \left\langle 2 z ^ { 5 } \sqrt { y } , \frac { x z ^ { 5 } } { \sqrt { y } } , 6 z ^ { 4 } \right\rangle
B) ex2y6xzy,x2z2y,2e ^ { x ^ { 2 } \sqrt { y } } \left\langle 6 x z \sqrt { y } , \frac { x ^ { 2 } z } { 2 \sqrt { y } } , 2 \right\rangle
C) zexyzy,xz2y,6z e ^ { x \sqrt { y } } \left\langle z \sqrt { y } , \frac { x z } { 2 \sqrt { y } } , 6 \right\rangle
D) ex2y2xzy,x2z6y,1e ^ { x ^ { 2 } \sqrt { y } } \left\langle 2 x z \sqrt { y } , \frac { x ^ { 2 } z } { 6 \sqrt { y } } , 1 \right\rangle
E) ze2xy2zy,xzy,2z e ^ { 2 x \sqrt { y } } \left\langle 2 z \sqrt { y } , \frac { x z } { \sqrt { y } } , 2 \right\rangle
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
33
A cardboard box without a lid is to have a volume of A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used. cm A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used. . Find the dimensions that minimize the amount of cardboard used.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate the gradient of f at the point P. Evaluate the gradient of f at the point P.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
35
Find equations for the tangent plane and the normal line to the surface with equation xy+yz+xz=38x y + y z + x z = 38 at the point P(2,4,5)P ( 2,4,5 )

A) 6x+7y+9z=766 x + 7 y + 9 z = 76 , x26=y47=z59\frac { x - 2 } { 6 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 9 }
B) 9x+7y+6z=769 x + 7 y + 6 z = 76 , x29=y47=z56\frac { x - 2 } { 9 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 6 }
C) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x62=y74=z95\frac { x - 6 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 9 } { 5 }
D) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x92=y74=z65\frac { x - 9 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 6 } { 5 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
36
Find the absolute extrema of the function Find the absolute extrema of the function   on the region bounded by the disk defined by   . on the region bounded by the disk defined by Find the absolute extrema of the function   on the region bounded by the disk defined by   . .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
37
Find three positive real numbers whose sum is 388 and whose product is as large as possible.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
38
Find the direction in which the function Find the direction in which the function   decreases fastest at the point   . decreases fastest at the point Find the direction in which the function   decreases fastest at the point   . .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
39
Find the local maximum, and minimum value and saddle points of the function. Find the local maximum, and minimum value and saddle points of the function.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
40
If f(x,y)=x2+7y2f ( x , y ) = x ^ { 2 } + 7 y ^ { 2 } use the gradient vector f(10,2)\nabla f ( 10,2 ) to find the tangent line to the level curve f(x,y)=136f ( x , y ) = 136 at the point (10,2)( 10,2 ) .

A) 10x+14y=1210 x + 14 y = 12
B) 10x+14y=13610 x + 14 y = 136
C) 100x49y=12100 x - 49 y = 12
D) 100x+49y=136100 x + 49 y = 136
E) 100x14y=12100 x - 14 y = 12
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
41
Use the Chain Rule to find up\frac { \partial u } { \partial p } . u=x+yy+zu = \frac { x + y } { y + z } x=p+5r+7t,y=p5r+7t,z=p+5r7tx = p + 5 r + 7 t , y = p - 5 r + 7 t , z = p + 5 r - 7 t

A) up=7tp2\frac { \partial u } { \partial p } = - \frac { 7 t } { p ^ { 2 } }
B) up=7tp\frac { \partial u } { \partial p } = \frac { 7 t } { p }
C) up=5tp3\frac { \partial u } { \partial p } = - \frac { 5 t } { p ^ { 3 } }
D) up=35tp2\frac { \partial u } { \partial p } = - \frac { 35 t } { p ^ { 2 } }
E) up=35tp2+t\frac { \partial u } { \partial p } = \frac { 35 t } { p ^ { 2 } } + t
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
42
Find the limit if Find the limit if   .  . Find the limit if   .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
43
The radius of a right circular cone is increasing at a rate of 5 in/s while its height is decreasing at a rate of 3.6 in/s. At what rate is the volume of the cone changing when the radius is 108108 in. and the height is 132132 in.?

A) 108316.24in3/s108316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
B) 105316.24in3/s105316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
C) 111316.24in3/s111316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
D) 102316.24in3/s102316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
E) 99316.24in3/s99316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
44
Find the differential of the function z=3x3y6z = 3 x ^ { 3 } y ^ { 6 }

A) dz=9x2y5dx+18x2y5dyd z = 9 x ^ { 2 } y ^ { 5 } d x + 18 x ^ { 2 } y ^ { 5 } d y
B) dz=9x2y6dx+18x3y5dyd z = 9 x ^ { 2 } y ^ { 6 } d x + 18 x ^ { 3 } y ^ { 5 } d y
C) dz=18x2y5dx+9x2y5dyd z = 18 x ^ { 2 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 5 } d y
D) dz=18x3y5dx+9x2y6dyd z = 18 x ^ { 3 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 6 } d y
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
45
Use the Chain Rule to find zs\frac { \partial z } { \partial s } . z=eycos(θ),r=8st,θ=s2+t2z = e ^ { y } \cos ( \theta ) , r = 8 s t , \theta = \sqrt { s ^ { 2 } + t ^ { 2 } }

A) zs=eγ(8tcos(θ)ssin(θ)s2+t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
B) zs=eγ(8tcos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
C) zs=(8tcos(θ)+seγsin(θ)s2+t2)\frac { \partial z } { \partial s } = \left( 8 t \cos ( \theta ) + \frac { s e ^ { \gamma } \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
D) zs=eγ(cos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
E) zs=eγ(tcos(θ)ssin(θ)s2+t)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t } } \right)
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
46
Use the Chain Rule to find Use the Chain Rule to find   where   .  where Use the Chain Rule to find   where   .  . Use the Chain Rule to find   where   .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
47
Find an equation of the tangent plane to the given surface at the specified point. Find an equation of the tangent plane to the given surface at the specified point.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
48
Use the Chain Rule to find wr\frac { \partial w } { \partial r } and wt\frac { \partial w } { \partial t } if r=5r = 5 s=2s = 2 and t=0t = 0 w=x2yz2,x=rest,y=sent,z=erstw = \frac { x ^ { 2 } y } { z ^ { 2 } } , \quad x = r e ^ { s t } , \quad y = s e ^ { n t } , \quad z = e ^ { r s t }

A) wr=20,wt=550\frac { \partial w } { \partial r } = 20 , \quad \frac { \partial w } { \partial t } = - 550
B) wr=100,wt=200\frac { \partial w } { \partial r } = 100 , \quad \frac { \partial w } { \partial t } = 200
C) wr=10,wt=0\frac { \partial w } { \partial r } = 10 , \quad \frac { \partial w } { \partial t } = 0
D) wr=7,wt=550\frac { \partial w } { \partial r } = 7 , \quad \frac { \partial w } { \partial t } = - 550
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
49
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
50
Use the equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } . cos(x7y)=xe4y\cos ( x - 7 y ) = x e ^ { 4 y }

A) dydx=sin(xy)+e4y7sin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - x e ^ { 4 y } }
B) dydx=sin(xy)+e4ysin(xy)xey\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - y ) - x e ^ { y } }
C) dydx=sin(x7y)+e4y7sin(x7y)4xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - 4 x e ^ { 4 y } }
D) dydx=7sin(xy)+e4ysin(x7y)7xey\frac { d y } { d x } = \frac { 7 \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - 7 x e ^ { y } }
E) dydx=sin(x7y)+e4ysin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - x e ^ { 4 y } }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
51
The length l, width w and height h of a box change with time. At a certain instant the dimensions are The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing. and The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing. , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
52
Use implicit differentiation to find Use implicit differentiation to find   .  . Use implicit differentiation to find   .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
53
Find the equation of the tangent plane to the given surface at the specified point. z+7=xeycosz,(7,0,0)z + 7 = x e ^ { y } \cos z , ( 7,0,0 )

A) x+7y+z=7x + 7 y + z = 7
B) x+7yz=7x + 7 y - z = 7
C) x+yz=7x + y - z = 7
D) 7x+yz=77 x + y - z = 7
E) x+y7z=7x + y - 7 z = 7
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
54
Use the Chain Rule to find dwdt\frac { d w } { d t } w=9x4y3z,x=6t,y=cos7t,z=tsintw = 9 x ^ { 4 } y ^ { 3 } z , \quad x = 6 t , \quad y = \cos 7 t , \quad z = t \sin t

A) 4,536x4y3zsin7t(sint+tcost)4,536 x ^ { 4 } y ^ { 3 } z \sin 7 t ( \sin t + t \cos t )
B) 9x4y3(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 4 } y ^ { 3 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
C) 4,536x3y2sin7t(sint+tcost)4,536 x ^ { 3 } y ^ { 2 } \sin 7 t ( \sin t + t \cos t )
D) 9x3y2(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 3 } y ^ { 2 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
55
Find the gradient of the function Find the gradient of the function   . .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
56
Find the equation of the normal line to the given surface at the specified point. Find the equation of the normal line to the given surface at the specified point.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
57
A boundary stripe 2 in. wide is painted around a rectangle whose dimensions are 100 ft by 240 ft. Use differentials to approximate the number of square feet of paint in the stripe.

A) 113 ft2\mathrm { ft } ^ { 2 }
B) 113.81 ft2\mathrm { ft } ^ { 2 }
C) 113.23 ft2\mathrm { ft } ^ { 2 }
D) 113.89 ft2\mathrm { ft } ^ { 2 }
E) 113.33 ft2\mathrm { ft } ^ { 2 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
58
Use partial derivatives to find the implicit partial derivatives Use partial derivatives to find the implicit partial derivatives   and    and Use partial derivatives to find the implicit partial derivatives   and    Use partial derivatives to find the implicit partial derivatives   and
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
59
Find the gradient of Find the gradient of   at the point  at the point Find the gradient of   at the point
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
60
Use differentials to estimate the amount of metal in a closed cylindrical can that is 12 cm high and 8 cm in diameter if the metal in the top and bottom is 0.09 cm thick and the metal in the sides is 0.01 cm thick. (rounded to the nearest hundredth.)

A) 8.34 cm3\mathrm { cm } ^ { 3 }
B) 6.99 cm3\mathrm { cm } ^ { 3 }
C) 6.91 cm3\mathrm { cm } ^ { 3 }
D) 6.7 cm3\mathrm { cm } ^ { 3 }
E) 12.0612.06 cm3\mathrm { cm } ^ { 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
61
Find fxyf _ { x y } for the function f(x,y)=2x3y7xy2f ( x , y ) = 2 x ^ { 3 } y - 7 x y ^ { 2 } .

A) fxy=6x214yf _ { x y } = 6 x ^ { 2 } - 14 y
B) fxy=6x2+14yf _ { x y } = 6 x ^ { 2 } + 14 y
C) fxy=14x2+6yf _ { x y } = 14 x ^ { 2 } + 6 y
D) fxy=14x26yf _ { x y } = 14 x ^ { 2 } - 6 y
E) fxy=24x214yf _ { x y } = 24 x ^ { 2 } - 14 y
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
62
If If   and   changes from (2, 1) to   find dz. and If   and   changes from (2, 1) to   find dz. changes from (2, 1) to If   and   changes from (2, 1) to   find dz. find dz.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
63
Find the differential of the function. Find the differential of the function.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
64
Use the linearization L(x, y) of the function. Use the linearization L(x, y) of the function.   at   to approximate   . at Use the linearization L(x, y) of the function.   at   to approximate   . to approximate Use the linearization L(x, y) of the function.   at   to approximate   . .
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
65
How many nth-order partial derivatives does a function of two variables have?

A) n2n ^ { 2 }
B) 2n2 ^ { n }
C) 2n2 n
D) n2\frac { n } { 2 }
E) n2nn 2 ^ { n }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
66
Find the differential of the function Find the differential of the function
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
67
Find fmw(x,y)f _ { m w } ( x , y ) for the function f(x,y)=x49x2y2+2xy3+6y4f ( x , y ) = x ^ { 4 } - 9 x ^ { 2 } y ^ { 2 } + 2 x y ^ { 3 } + 6 y ^ { 4 }

A) 24x24 x
B) 92x292 x ^ { 2 }
C) 15y2- 15 y ^ { 2 }
D) 36y- 36 y
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
68
Find the indicated partial derivative. f(x,y)=x2y43x4y;fmxf ( x , y ) = x ^ { 2 } y ^ { 4 } - 3 x ^ { 4 } y ; f _ { m x }

A) fmx=12x2yf _ { m x } = 12 x ^ { 2 } y
B) fmx=36xyf _ { m x } = - 36 x y
C) fmx=3xyf _ { m x } = 3 x y
D) fmx=72xyf _ { m x } = - 72 x y
E) fmx=3xyf _ { m x } = - 3 x y
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
69
Use implicit differentiation to find zx\frac { \partial z } { \partial x } ln(x2+z2)+yz3+4x2=6\ln \left( x ^ { 2 } + z ^ { 2 } \right) + y z ^ { 3 } + 4 x ^ { 2 } = 6

A) zx=2x(x2+z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( x ^ { 2 } + z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
B) zx=2x(4x2+4z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
C) zx=2x(4x2+4z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
D) zx=2x(6x2+6z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 6 x ^ { 2 } + 6 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
70
Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height   cm if the tin is 0.04 cm thick. cm if the tin is 0.04 cm thick.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
71
Find the indicated partial derivative. u=xeybzc;6uxy2z3,a>1,b>2,c>3u = x ^ { e } y ^ { b } z ^ { c } ; \frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } , a > 1 , b > 2 , c > 3

A) 6uxy2z3=cb(b1)c(a1)(a2)xc1yb2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = c b ( b - 1 ) c ( a - 1 ) ( a - 2 ) x ^ { c - 1 } y ^ { b - 2 } z ^ { a - 3 }
B) 6uxy2z3=xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
C) 6uxy2z3=ab(b1)c(c1)(c2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a b ( b - 1 ) c ( c - 1 ) ( c - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
D) 6uxy2z3=acb(a1)(a2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a c b ( a - 1 ) ( a - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
E) 6uxy2z3=xb1yc2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { b - 1 } y ^ { c - 2 } z ^ { a - 3 }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
72
Find the differential of the function Find the differential of the function
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
73
Let Let   and suppose that   changes from   to   (a) Compute   (b) Compute  and suppose that Let   and suppose that   changes from   to   (a) Compute   (b) Compute  changes from Let   and suppose that   changes from   to   (a) Compute   (b) Compute  to Let   and suppose that   changes from   to   (a) Compute   (b) Compute  (a) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute  (b) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
74
The height of a hill (in feet) is given by h(x,y)=30(145x22y2+3xy+30x18y)h ( x , y ) = 30 \left( 14 - 5 x ^ { 2 } - 2 y ^ { 2 } + 3 x y + 30 x - 18 y \right) where x is the distance (in miles) east and y is the distance (in miles) north of your cabin. If you are at a point on the hill 1 mile north and 1 mile east of your cabin, what is the rate of change of the height of the hill (a) in a northerly direction and (b) in an easterly direction?

A) (a) 570 ft/mi, (b) 690 ft/mi
B) (a) -570 ft/mi, (b) 690 ft/mi
C) (a) 690 ft/mi, (b) 570 ft/mi
D) (a) 690 ft/mi, (b) -570 ft/mi
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
75
Find hmy(x,y,z)h_{m y}(x, y, z) for the function h(x,y,z)=e9xcos(y+7z)h ( x , y , z ) = e ^ { 9 x } \cos ( y + 7 z )

A) 63e9xcos(y+7z)63 e ^ { 9 x } \cos ( y + 7 z )
B) 49e9xsin(y+7z)49 e ^ { 9 x } \sin ( y + 7 z )
C) 63e9xsin(y+7z)- 63 e ^ { 9 x } \sin ( y + 7 z )
D) 49e9xcos(y+7z)- 49 e ^ { 9 x } \cos ( y + 7 z )
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
76
Use the definition of partial derivatives as limits to find fx(x,y)f _ { x } ( x , y ) if f(x,y)=5x29xy+2y2f ( x , y ) = 5 x ^ { 2 } - 9 x y + 2 y ^ { 2 } .

A) 5y9x5 y - 9 x
B) 10x9y10 x - 9 y
C) 10x910 x - 9
D) 10x9xy10 x - 9 x y
E) 5x9y5 x - 9 y
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
77
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  to the wind chill index function when T is near The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  and v is near 30 kmh.
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
78
Find the linearization L(x, y) of the function at the given point. Find the linearization L(x, y) of the function at the given point.   Round the answers to the nearest hundredth. Round the answers to the nearest hundredth.
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
79
Use implicit differentiation to find zx\frac { \partial z } { \partial x } x4y+xz+yz2=7x ^ { 4 } y + x z + y z ^ { 2 } = 7

A) zx=4x3y1+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y } { 1 + 2 y }
B) zx=4x3y+zx+2yz\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y + z } { x + 2 y z }
C) zx=4x31+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } } { 1 + 2 y }
D) zx=11+2y\frac { \partial z } { \partial x } = \frac { 1 } { 1 + 2 y }
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
80
Find fy(24,8)f _ { y } ( - 24,8 ) for f(x,y)=sin(4x+12y)f ( x , y ) = \sin ( 4 x + 12 y ) .

A) 1212
B) 4- 4
C) 12- 12
D) 44
E) 0
Unlock Deck
Unlock for access to all 132 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 132 flashcards in this deck.