Deck 1: Fundamentals

Full screen (f)
exit full mode
Question
State whether the inequality is true or false. 110>1100- \frac { 1 } { 10 } > - \frac { 1 } { 100 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Perform the indicated operation. 14+112\frac { 1 } { 4 } + \frac { 1 } { 12 }

A) 116\frac { 1 } { 16 }
B) 148\frac { 1 } { 48 }
C) 14\frac { 1 } { 4 }
D) 13\frac { 1 } { 3 }
E) 33
Question
Write the following statement in terms of inequalities. ZZ is greater than or equal to 1- 1 .

A) z1z \leq - 1
B) z1z \geq - 1
C) z<1z < - 1
D) z>1z > - 1
E) z=0z = 0
Question
Perform the indicated operation. 16÷23\frac { 1 } { 6 } \div \frac { 2 } { 3 }

A) 12- \frac { 1 } { 2 }
B) 218\frac { 2 } { 18 }
C) 118\frac { 1 } { 18 }
D) 13\frac { 1 } { 3 }
E) 14\frac { 1 } { 4 }
Question
Perform the indicated operations. Perform the indicated operations.  <div style=padding-top: 35px>
Question
State whether the inequality is true or false. 227>π\frac { 22 } { 7 } > \pi
Question
Write the following statement in terms of inequalities. xx is negative.

A) x>0x > 0
B) x<0x < 0
C) x0x \geq 0
D) x0x \leq 0
E) x=0x = 0
Question
Use properties of real numbers to write r(s2)- r ( s - 2 ) without parentheses.

A) 2r+2s- 2 r + 2 s
B) rS+2- r S + 2
C) rs+2rrs + 2 r
D) rs+2r- r s + 2 r
E) rs2r- rs- 2 r
Question
Perform the indicated operations. Perform the indicated operations.  <div style=padding-top: 35px>
Question
Use the properties of real numbers to write the expression without parentheses. 2x(ab2c+d2)2 x \left( a - b - 2 c + \frac { d } { 2 } \right)

A) xaxb2xc+xdx a - x b - 2 x c + x d
B) 2xa2xbxc+4xd2 x a - 2 x b - x c + 4 x d
C) xa2xb4xc+xdx a - 2 x b - 4 x c + x d
D) 2xa2xb4xc+xd2 x a - 2 x b - 4 x c + x d
E) 2xaxb2xc+2xd2 x a - x b - 2 x c + 2 x d
Question
State the property of real numbers being used. x+4=4+xx + 4 = 4 + x

A) Commutative Property for addition
B) Commutative Property for multiplication
C) Associative Property for addition
D) Associative Property for multiplication
E) Distributive Property
Question
State the property of real numbers being used. 2(x+5y)=2x+10y2 ( x + 5 y ) = 2 x + 10 y

A) Commutative Property for addition
B) Commutative Property for multiplication
C) Associative Property for addition
D) Associative Property for multiplication
E) Distributive Property
Question
Perform the indicated operations. Perform the indicated operations.  <div style=padding-top: 35px>
Question
State whether the inequality is true or false. 2<1.41- \sqrt { 2 } < - 1.41
Question
Perform the indicated operations. Perform the indicated operations.  <div style=padding-top: 35px>
Question
Perform the indicated operation(s) and simplify. 15÷[14(12+13)]\frac { 1 } { 5 } \div \left[ \frac { 1 } { 4 } \left( \frac { 1 } { 2 } + \frac { 1 } { 3 } \right) \right]

A) 32\frac { 3 } { 2 }
B) 2524\frac { 25 } { 24 }
C) 11
D) 23\frac { 2 } { 3 }
E) 2425\frac { 24 } { 25 }
Question
Use properties of real numbers to write 12(z/4)12 ( z / 4 ) without parentheses.

A) 14Z\frac { 1 } { 4 } Z
B) 112z\frac { 1 } { 12 } z
C) 48z48 z
D) 12z12 z
E) 3z3 z
Question
Use properties of real numbers to write 3(2a+b)3 ( 2 a + b ) without parentheses.

A) 6a+6b6 a + 6 b
B) 3+2ab3 + 2 a b
C) 6ab6 a - b
D) 6a+3b6 a + 3 b
E) 6a3b6 a - 3 b
Question
State the property of real numbers being used. 3xy=yx33 x y = y x 3

A) Commutative Property for addition
B) Commutative Property for multiplication
C) Associative Property for addition
D) Associative Property for multiplication
E) Distributive Property
Question
Perform the indicated operation(s) and simplify. 14+5(1415)34\frac { 1 } { 4 } + 5 \left( \frac { 1 } { 4 } \cdot \frac { 1 } { 5 } \right) - \frac { 3 } { 4 }

A) 34- \frac { 3 } { 4 }
B) 34\frac { 3 } { 4 }
C) 125\frac { 1 } { 25 }
D) 14- \frac { 1 } { 4 }
E) 14\frac { 1 } { 4 }
Question
Evaluate (32)0.2( 32 ) ^ { - 0.2 }

A) 22
B) 12\frac { 1 } { 2 }
C) 1616
D) 14\frac { 1 } { 4 }
E) 11024\frac { 1 } { 1024 }
Question
Evaluate the expression. Evaluate the expression.  <div style=padding-top: 35px>
Question
Evaluate each expression.
(a) Evaluate each expression. (a)   (b)   (c)  <div style=padding-top: 35px>
(b) Evaluate each expression. (a)   (b)   (c)  <div style=padding-top: 35px>
(c) Evaluate each expression. (a)   (b)   (c)  <div style=padding-top: 35px>
Question
Evaluate the expression. 434 ^ { - 3 }

A) 1256- \frac { 1 } { 256 }
B) 164- \frac { 1 } { 64 }
C) 164\frac { 1 } { 64 }
D) 1256\frac { 1 } { 256 }
E) 1512\frac { 1 } { 512 }
Question
Evaluate the expression. Evaluate the expression.  <div style=padding-top: 35px>
Question
Express the repeating decimal as a fraction. Express the repeating decimal as a fraction.  <div style=padding-top: 35px>
Question
Find the set ABA \cup B if A={3,2,0,13,23,6,9}A = \left\{ - 3 , - 2,0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } , 6,9 \right\} and B={0,13,23}B = \left\{ 0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } \right\}

A) (0,2,3,6,9,13,23)\left( 0 , - 2 , - 3,6,9 , \frac { 1 } { 3 } , \frac { 2 } { 3 } \right)
B) (0,2,3,6,9,13,23)\left( 0 , - 2,3,6,9 , \frac { - 1 } { 3 } , \frac { 2 } { 3 } \right)
C) {0,2,3,6,9,13,23}\left\{ 0,2 , - 3,6,9 , \frac { 1 } { 3 } , \frac { - 2 } { 3 } \right\}
D) {0,2,3,6,9}\{ 0 , - 2 , - 3,6 , - 9 \}
E) {0,2,3,6,9,23)\left\{ 0 , - 2 , - 3,6,9 , \frac { 2 } { 3 } \right)
Question
Evaluate (14)2(12)4\left( \frac { 1 } { 4 } \right) ^ { - 2 } \left( \frac { 1 } { 2 } \right) ^ { - 4 }

A) 164\frac { 1 } { 64 }
B) 1256\frac { 1 } { 256 }
C) 6464
D) 14\frac { - 1 } { 4 }
E) 256256
Question
Write the statement in terms of inequalities. The distance from x to 3 is at most 66 .

A) x36| x - 3 | \leq 6
B) x36| x - 3 | \geq 6
C) x3<6| x - 3 | < 6
D) x63| x - 6 | \leq 3
E) x63| x - 6 | \geq 3
Question
Express the repeating decimal Express the repeating decimal   as a fraction.<div style=padding-top: 35px> as a fraction.
Question
Simplify ab3c2(2a2bc4)1a b ^ { 3 } c ^ { 2 } \left( \frac { 2 a ^ { 2 } b } { c ^ { 4 } } \right) ^ { - 1 } and eliminate any negative exponents.

A)
b2c6b ^ { 2 } c ^ { 6 }
B)
b6c22a2\frac { b ^ { 6 } c ^ { 2 } } { 2 a ^ { 2 } }
C)
2b2c63a\frac { 2 b ^ { 2 } c ^ { 6 } } { 3 a }
D)
b2c62a\frac { b ^ { 2 } c ^ { 6 } } { 2 a }
E)
2b2c62 b ^ { 2 } c ^ { 6 }
Question
Evaluate the expression. Evaluate the expression.  <div style=padding-top: 35px>
Question
Simplify x1/3y1/3(xy)2/3\frac { x ^ { 1 / 3 } y ^ { 1 / 3 } } { ( x y ) ^ { - 2 / 3 } } and eliminate any negative exponents.

A) xyx y
B) (xy)2/3( x y ) ^ { -2 / 3 }
C) (xy)1/3( x y ) ^ { 1 / 3 }
D) yy
E) x1/3yx ^ { 1 / 3 } y
Question
Evaluate each expression.
(a) Evaluate each expression. (a)   (b)   (c)  <div style=padding-top: 35px>
(b) Evaluate each expression. (a)   (b)   (c)  <div style=padding-top: 35px>
(c) Evaluate each expression. (a)   (b)   (c)  <div style=padding-top: 35px>
Question
Find the distance between Find the distance between   and .  <div style=padding-top: 35px> and . Find the distance between   and .  <div style=padding-top: 35px>
Question
Evaluate (23)2\left( - \frac { 2 } { 3 } \right) ^ { - 2 }

A) 94\frac { 9 } { 4 }
B) 49\frac { 4 } { 9 }
C) 94\frac { - 9 } { 4 }
D) 14\frac { 1 } { 4 }
E) 11
Question
Find ABA \cup B if A={xx>π}A = \{ x \mid x > \pi \} and B={x1<x<π}B = \{ x \mid - 1 < x < \pi \} .

A) \varnothing
B) {xx>1 and xπ}\{ x \mid x > - 1 \text { and } x \neq \pi \}
C) {x1<x<π}\{ x \mid - 1 < x < \pi \}
D) {xπ<x1}\{ x \mid - \pi < x \leq 1 \}
E) {xx>π}\{ x \mid x > - \pi \}
Question
Evaluate 23- 2 ^ { 3 }

A) 16- 16
B) 8- 8
C) 4- 4
D) 88
E) 1616
Question
Express the repeating decimal as a fraction. Express the repeating decimal as a fraction.  <div style=padding-top: 35px>
Question
Evaluate (512)19( 512 ) ^ { - \frac { 1 } { 9 } }

A) 14\frac { 1 } { 4 }
B) 12\frac { 1 } { 2 }
C) 1616
D) 116\frac { 1 } { 16 }
E) 256256
Question
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.  <div style=padding-top: 35px>
Question
Write the number in the statement in scientific notation. The distance to the edge of the observable universe is about Write the number in the statement in scientific notation. The distance to the edge of the observable universe is about   m.<div style=padding-top: 35px> m.
Question
Write Write   in scientific notation.<div style=padding-top: 35px> in scientific notation.
Question
Simplify the expression and eliminate any negative exponents(s).
Assume that all letters denote positive numbers. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.  <div style=padding-top: 35px>
Question
Find the sum, difference, or product. Find the sum, difference, or product.  <div style=padding-top: 35px>
Question
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.  <div style=padding-top: 35px>
Question
A sealed warehouse measuring A sealed warehouse measuring   m wide,   m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains   molecules. How many molecules of oxygen are there in the room?<div style=padding-top: 35px> m wide, A sealed warehouse measuring   m wide,   m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains   molecules. How many molecules of oxygen are there in the room?<div style=padding-top: 35px> m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains A sealed warehouse measuring   m wide,   m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains   molecules. How many molecules of oxygen are there in the room?<div style=padding-top: 35px> molecules. How many molecules of oxygen are there in the room?
Question
Simplify the expression and eliminate any negative exponents(s).
Assume that all letters denote positive numbers. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.  <div style=padding-top: 35px>
Question
Perform the indicated operations and simplify. 3(3x4)5(x1)3 ( 3 x - 4 ) - 5 ( x - 1 )

A) 4x134 x - 13
B) 2x132 x - 13
C) 4x74 x - 7
D) 2x+132 x + 13
E) 2x+292 x + 29
Question
Rationalize the denominator. Rationalize the denominator.  <div style=padding-top: 35px>
Question
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.  <div style=padding-top: 35px>
Question
Write the number in the statement in scientific notation:
The mass of a proton is Write the number in the statement in scientific notation: The mass of a proton is   kg.<div style=padding-top: 35px> kg.
Question
Rationalize the denominator. Rationalize the denominator.  <div style=padding-top: 35px>
Question
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.  <div style=padding-top: 35px>
Question
Which of the numbers Which of the numbers   and   is smaller?<div style=padding-top: 35px> and Which of the numbers   and   is smaller?<div style=padding-top: 35px> is smaller?
Question
Write Write   in scientific notation.<div style=padding-top: 35px> in scientific notation.
Question
Simplify the expression Simplify the expression   .<div style=padding-top: 35px> .
Question
Use scientific notation, laws of exponents, and a calculator to perform the indicated operations. State your answer correct to the number of significant digits indicated by the data. Use scientific notation, laws of exponents, and a calculator to perform the indicated operations. State your answer correct to the number of significant digits indicated by the data.  <div style=padding-top: 35px>
Question
Simplify the expression and eliminate any negative exponents(s).
Assume that all letters denote positive numbers. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.  <div style=padding-top: 35px>
Question
Perform the indicated operations and simplify. (2x3+6x24x+8)+(3x3+x4)\left( - 2 x ^ { 3 } + 6 x ^ { 2 } - 4 x + 8 \right) + \left( 3 x ^ { 3 } + x - 4 \right)

A) 2x3+6x2+3x+52 x ^ { 3 } + 6 x ^ { 2 } + 3 x + 5
B) 2x3+6x2+3x+122 x ^ { 3 } + 6 x ^ { 2 } + 3 x + 12
C) 2x3+6x2+3x12 x ^ { 3 } + 6 x ^ { 2 } + 3 x - 1
D) x3+6x2+3x4x ^ { 3 } + 6 x ^ { 2 } + 3 x - 4
E) x3+6x23x+4x ^ { 3 } + 6 x ^ { 2 } - 3 x + 4
Question
Perform the indicated operations and simplify. (x+1y2)3\left( x + \frac { 1 } { y ^ { 2 } } \right) ^ { 3 }

A) x3+3x2y2+3xy4+1y6x ^ { 3 } + \frac { 3 x ^ { 2 } } { y ^ { 2 } } + \frac { 3 x } { y ^ { 4 } } + \frac { 1 } { y ^ { 6 } }
B) x3+3x2y2+xy2+1y6x ^ { 3 } + \frac { 3 x ^ { 2 } } { y ^ { 2 } } + \frac { x } { y ^ { 2 } } + \frac { 1 } { y ^ { 6 } }
C) x3+3x2y+3x2y4+3y3x ^ { 3 } + \frac { 3 x ^ { 2 } } { y } + \frac { 3 x ^ { 2 } } { y ^ { 4 } } + \frac { 3 } { y ^ { 3 } }
D) x3+3x2y+1y6x ^ { 3 } + \frac { 3 x ^ { 2 } } { y } + \frac { 1 } { y ^ { 6 } }
E) x3+1y6x ^ { 3 } + \frac { 1 } { y ^ { 6 } }
Question
Factor the expression. x2+7x8x ^ { 2 } + 7 x - 8

A) (x4)(x+2)( x - 4 ) ( x + 2 )
B) (x+4)(x+2)( x + 4 ) ( x + 2 )
C) (x8)(x1)( x - 8 ) ( x - 1 )
D) (x+8)(x1)( x + 8 ) ( x - 1 )
E) (x+4)(x2)( x + 4 ) ( x - 2 )
Question
Perform the indicated operations and simplify. (αx2y2)(αx2+y2)\left( \alpha x ^ { 2 } - y ^ { 2 } \right) \left( \alpha x ^ { 2 } + y ^ { 2 } \right)

A) a2x2y2a ^ { 2 } x ^ { 2 } - y ^ { 2 }
B) a2x4+ax2y2y4a ^ { 2 } x ^ { 4 } + a x ^ { 2 } y ^ { 2 } - y ^ { 4 }
C) a2x4y4a ^ { 2 } x ^ { 4 } - y ^ { 4 }
D) a2x4ax2y2y4a ^ { 2 } x ^ { 4 } - a x ^ { 2 } y ^ { 2 } - y ^ { 4 }
E) a2x4+y4a ^ { 2 } x ^ { 4 } + y ^ { 4 }
Question
Perform the indicated operations and simplify. (2uv)(2u+v)( 2 u - v ) ( 2 u + v )

A) 4u2v24 u ^ { 2 } - v ^ { 2 }
B) 8u2+4v28 u ^ { 2 } + 4 v ^ { 2 }
C) 16u2+4v216 u ^ { 2 } + 4 v ^ { 2 }
D) 16u2+2v216 u ^ { 2 } + 2 v ^ { 2 }
E) 16u24v216 u ^ { 2 } - 4 v ^ { 2 }
Question
Perform the indicated operations and simplify. (1x2/3)(2+x1/3)\left( 1 - x ^ { 2 / 3 } \right) \left( 2 + x ^ { 1 / 3 } \right)

A) 2+x32(x3)3+x2 + \sqrt [ 3 ] { x } - 2 ( \sqrt [ 3 ] { x } ) ^ { 3 } + x
B) 1+x3(x3)2x1 + \sqrt [ 3 ] { x } - ( \sqrt [ 3 ] { x } ) ^ { 2 } - x
C) 2+x3x3x22 + \sqrt [ 3 ] { x } - \sqrt [ 3 ] { x } - x ^ { 2 }
D) 2+x32(x3)2x2 + \sqrt [ 3 ] { x } - 2 ( \sqrt [ 3 ] { x } ) ^ { 2 } - x
E) 2+x3+2(x3)22 + \sqrt [ 3 ] { x } + 2 ( \sqrt [ 3 ] { x } ) ^ { 2 }
Question
Factor the expression. x2(x5)3+x3(x5)2x ^ { 2 } ( x - 5 ) ^ { 3 } + x ^ { 3 } ( x - 5 ) ^ { 2 }

A) x(2x+5)(x5)2x ( 2 x + 5 ) ( x - 5 ) ^ { 2 }
B) x2(2x+5)(x5)2x ^ { 2 } ( 2 x + 5 ) ( x - 5 ) ^ { 2 }
C) x(2x5)2(x5)2x ( 2 x - 5 ) ^ { 2 } ( x - 5 ) ^ { 2 }
D) x2(5x5)(2x5)x ^ { 2 } ( 5 x - 5 ) ( 2 x - 5 )
E) x2(2x5)(x5)2x ^ { 2 } ( 2 x - 5 ) ( x - 5 ) ^ { 2 }
Question
Factor the expression. y2+xy2x2y ^ { 2 } + x y - 2 x ^ { 2 }

A) (2x+xy)(y2x)- ( 2 x + x y ) ( y - 2 x )
B) (2x+y)(xy)- ( 2 x + y ) ( x - y )
C) (2xy)(xy)( 2 x - y ) ( x - y )
D) (2x+y)(x+y)( 2 x + y ) ( x + y )
E) (2x+y)(x2y)- ( 2 x + y ) ( x - 2 y )
Question
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.  <div style=padding-top: 35px>
Question
Factor out the common factor. Factor out the common factor.  <div style=padding-top: 35px>
Question
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.  <div style=padding-top: 35px>
Question
Factor the expression. x(ny)+(x1)(yn)x ( n - y ) + ( x - 1 ) ( y - n )

A) xnyxn - y
B) x+(x1)(yn)x + ( x - 1 ) ( y - n )
C) nyn - y
D) x+yx + y
E) xyx y
Question
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.  <div style=padding-top: 35px>
Question
Use a Factoring Formula to factor the expression. Use a Factoring Formula to factor the expression.  <div style=padding-top: 35px>
Question
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.  <div style=padding-top: 35px>
Question
Find the sum, difference, or product. Find the sum, difference, or product.  <div style=padding-top: 35px>
Question
Multiply the algebraic expressions using the FOIL method and simplify. Multiply the algebraic expressions using the FOIL method and simplify.  <div style=padding-top: 35px>
Question
Factor the expression. x2+8x+15x ^ { 2 } + 8 x + 15

A)
(x+3)(x+5)( x + 3 ) ( x + 5 )
B)
(x3)(x+5)( x - 3 ) ( x + 5 )
C)
(x3)(x5)( x - 3 ) ( x - 5 )
D)
(x+3)(x5)( x + 3 ) ( x - 5 )
E)
(x3)(x5)( - x - 3 ) ( x - 5 )
Question
Perform the indicated operations and simplify. (t+3)(2t1)3(t+2)( t + 3 ) ( 2 t - 1 ) - 3 ( t + 2 )

A) 2t2+6t+42 t ^ { 2 } + 6 t + 4
B) 2t2+2t92 t ^ { 2 } + 2 t - 9
C) 2t22t102 t ^ { 2 } - 2 t - 10
D) 2t23t52 t ^ { 2 } - 3 t - 5
E) 2t2+5t+42 t ^ { 2 } + 5 t + 4
Question
Factor the expression. 6x2+13x+66 x ^ { 2 } + 13 x + 6

A) (2x+3)2( 2 x + 3 ) ^ { 2 }
B) (x+3)(6x+2)( x + 3 ) ( 6 x + 2 )
C) (2x+1)(3x+6)( 2 x + 1 ) ( 3 x + 6 )
D) (6x+1)(x+6)( 6 x + 1 ) ( x + 6 )
E) (2x+3)(3x+2)( 2 x + 3 ) ( 3 x + 2 )
Question
Perform the indicated operations and simplify. (x2b2y2)(x2cxy+ay2)\left( x ^ { 2 } - b ^ { 2 } y ^ { 2 } \right) \left( x ^ { 2 } - c x y + a y ^ { 2 } \right)

A) x4cx3y+ax2y2b2y2x2+b2cy3xab2y4x ^ { 4 } - c x ^ { 3 } y + a x ^ { 2 } y ^ { 2 } - b ^ { 2 } y ^ { 2 } x ^ { 2 } + b ^ { 2 } c y ^ { 3 } x - a b ^ { 2 } y ^ { 4 }
B) x4x3cy+x2ay2+b2y3cxb2y4ax ^ { 4 } - x ^ { 3 } c y + x ^ { 2 } a y ^ { 2 } + b ^ { 2 } y ^ { 3 } c x - b ^ { 2 } y ^ { 4 } a
C) x2x3y+x2ay2b2y3cxab2y4x ^ { 2 } - x ^ { 3 } y + x ^ { 2 } a y ^ { 2 } - b ^ { 2 } y ^ { 3 } c x - a b ^ { 2 } y ^ { 4 }
D) a2x4ax2y2y4a ^ { 2 } x ^ { 4 } - a x ^ { 2 } y ^ { 2 } - y ^ { 4 }
E) x4cx3y+ax2y2cy3xab2y4x ^ { 4 } - c x ^ { 3 } y + a x ^ { 2 } y ^ { 2 } - c y ^ { 3 } x - a b ^ { 2 } y ^ { 4 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/229
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Fundamentals
1
State whether the inequality is true or false. 110>1100- \frac { 1 } { 10 } > - \frac { 1 } { 100 }
False
2
Perform the indicated operation. 14+112\frac { 1 } { 4 } + \frac { 1 } { 12 }

A) 116\frac { 1 } { 16 }
B) 148\frac { 1 } { 48 }
C) 14\frac { 1 } { 4 }
D) 13\frac { 1 } { 3 }
E) 33
13\frac { 1 } { 3 }
3
Write the following statement in terms of inequalities. ZZ is greater than or equal to 1- 1 .

A) z1z \leq - 1
B) z1z \geq - 1
C) z<1z < - 1
D) z>1z > - 1
E) z=0z = 0
z1z \geq - 1
4
Perform the indicated operation. 16÷23\frac { 1 } { 6 } \div \frac { 2 } { 3 }

A) 12- \frac { 1 } { 2 }
B) 218\frac { 2 } { 18 }
C) 118\frac { 1 } { 18 }
D) 13\frac { 1 } { 3 }
E) 14\frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
5
Perform the indicated operations. Perform the indicated operations.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
6
State whether the inequality is true or false. 227>π\frac { 22 } { 7 } > \pi
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
7
Write the following statement in terms of inequalities. xx is negative.

A) x>0x > 0
B) x<0x < 0
C) x0x \geq 0
D) x0x \leq 0
E) x=0x = 0
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
8
Use properties of real numbers to write r(s2)- r ( s - 2 ) without parentheses.

A) 2r+2s- 2 r + 2 s
B) rS+2- r S + 2
C) rs+2rrs + 2 r
D) rs+2r- r s + 2 r
E) rs2r- rs- 2 r
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
9
Perform the indicated operations. Perform the indicated operations.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
10
Use the properties of real numbers to write the expression without parentheses. 2x(ab2c+d2)2 x \left( a - b - 2 c + \frac { d } { 2 } \right)

A) xaxb2xc+xdx a - x b - 2 x c + x d
B) 2xa2xbxc+4xd2 x a - 2 x b - x c + 4 x d
C) xa2xb4xc+xdx a - 2 x b - 4 x c + x d
D) 2xa2xb4xc+xd2 x a - 2 x b - 4 x c + x d
E) 2xaxb2xc+2xd2 x a - x b - 2 x c + 2 x d
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
11
State the property of real numbers being used. x+4=4+xx + 4 = 4 + x

A) Commutative Property for addition
B) Commutative Property for multiplication
C) Associative Property for addition
D) Associative Property for multiplication
E) Distributive Property
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
12
State the property of real numbers being used. 2(x+5y)=2x+10y2 ( x + 5 y ) = 2 x + 10 y

A) Commutative Property for addition
B) Commutative Property for multiplication
C) Associative Property for addition
D) Associative Property for multiplication
E) Distributive Property
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
13
Perform the indicated operations. Perform the indicated operations.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
14
State whether the inequality is true or false. 2<1.41- \sqrt { 2 } < - 1.41
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
15
Perform the indicated operations. Perform the indicated operations.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
16
Perform the indicated operation(s) and simplify. 15÷[14(12+13)]\frac { 1 } { 5 } \div \left[ \frac { 1 } { 4 } \left( \frac { 1 } { 2 } + \frac { 1 } { 3 } \right) \right]

A) 32\frac { 3 } { 2 }
B) 2524\frac { 25 } { 24 }
C) 11
D) 23\frac { 2 } { 3 }
E) 2425\frac { 24 } { 25 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
17
Use properties of real numbers to write 12(z/4)12 ( z / 4 ) without parentheses.

A) 14Z\frac { 1 } { 4 } Z
B) 112z\frac { 1 } { 12 } z
C) 48z48 z
D) 12z12 z
E) 3z3 z
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
18
Use properties of real numbers to write 3(2a+b)3 ( 2 a + b ) without parentheses.

A) 6a+6b6 a + 6 b
B) 3+2ab3 + 2 a b
C) 6ab6 a - b
D) 6a+3b6 a + 3 b
E) 6a3b6 a - 3 b
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
19
State the property of real numbers being used. 3xy=yx33 x y = y x 3

A) Commutative Property for addition
B) Commutative Property for multiplication
C) Associative Property for addition
D) Associative Property for multiplication
E) Distributive Property
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
20
Perform the indicated operation(s) and simplify. 14+5(1415)34\frac { 1 } { 4 } + 5 \left( \frac { 1 } { 4 } \cdot \frac { 1 } { 5 } \right) - \frac { 3 } { 4 }

A) 34- \frac { 3 } { 4 }
B) 34\frac { 3 } { 4 }
C) 125\frac { 1 } { 25 }
D) 14- \frac { 1 } { 4 }
E) 14\frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
21
Evaluate (32)0.2( 32 ) ^ { - 0.2 }

A) 22
B) 12\frac { 1 } { 2 }
C) 1616
D) 14\frac { 1 } { 4 }
E) 11024\frac { 1 } { 1024 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate the expression. Evaluate the expression.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
23
Evaluate each expression.
(a) Evaluate each expression. (a)   (b)   (c)
(b) Evaluate each expression. (a)   (b)   (c)
(c) Evaluate each expression. (a)   (b)   (c)
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
24
Evaluate the expression. 434 ^ { - 3 }

A) 1256- \frac { 1 } { 256 }
B) 164- \frac { 1 } { 64 }
C) 164\frac { 1 } { 64 }
D) 1256\frac { 1 } { 256 }
E) 1512\frac { 1 } { 512 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
25
Evaluate the expression. Evaluate the expression.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
26
Express the repeating decimal as a fraction. Express the repeating decimal as a fraction.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
27
Find the set ABA \cup B if A={3,2,0,13,23,6,9}A = \left\{ - 3 , - 2,0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } , 6,9 \right\} and B={0,13,23}B = \left\{ 0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } \right\}

A) (0,2,3,6,9,13,23)\left( 0 , - 2 , - 3,6,9 , \frac { 1 } { 3 } , \frac { 2 } { 3 } \right)
B) (0,2,3,6,9,13,23)\left( 0 , - 2,3,6,9 , \frac { - 1 } { 3 } , \frac { 2 } { 3 } \right)
C) {0,2,3,6,9,13,23}\left\{ 0,2 , - 3,6,9 , \frac { 1 } { 3 } , \frac { - 2 } { 3 } \right\}
D) {0,2,3,6,9}\{ 0 , - 2 , - 3,6 , - 9 \}
E) {0,2,3,6,9,23)\left\{ 0 , - 2 , - 3,6,9 , \frac { 2 } { 3 } \right)
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
28
Evaluate (14)2(12)4\left( \frac { 1 } { 4 } \right) ^ { - 2 } \left( \frac { 1 } { 2 } \right) ^ { - 4 }

A) 164\frac { 1 } { 64 }
B) 1256\frac { 1 } { 256 }
C) 6464
D) 14\frac { - 1 } { 4 }
E) 256256
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
29
Write the statement in terms of inequalities. The distance from x to 3 is at most 66 .

A) x36| x - 3 | \leq 6
B) x36| x - 3 | \geq 6
C) x3<6| x - 3 | < 6
D) x63| x - 6 | \leq 3
E) x63| x - 6 | \geq 3
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
30
Express the repeating decimal Express the repeating decimal   as a fraction. as a fraction.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
31
Simplify ab3c2(2a2bc4)1a b ^ { 3 } c ^ { 2 } \left( \frac { 2 a ^ { 2 } b } { c ^ { 4 } } \right) ^ { - 1 } and eliminate any negative exponents.

A)
b2c6b ^ { 2 } c ^ { 6 }
B)
b6c22a2\frac { b ^ { 6 } c ^ { 2 } } { 2 a ^ { 2 } }
C)
2b2c63a\frac { 2 b ^ { 2 } c ^ { 6 } } { 3 a }
D)
b2c62a\frac { b ^ { 2 } c ^ { 6 } } { 2 a }
E)
2b2c62 b ^ { 2 } c ^ { 6 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
32
Evaluate the expression. Evaluate the expression.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
33
Simplify x1/3y1/3(xy)2/3\frac { x ^ { 1 / 3 } y ^ { 1 / 3 } } { ( x y ) ^ { - 2 / 3 } } and eliminate any negative exponents.

A) xyx y
B) (xy)2/3( x y ) ^ { -2 / 3 }
C) (xy)1/3( x y ) ^ { 1 / 3 }
D) yy
E) x1/3yx ^ { 1 / 3 } y
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate each expression.
(a) Evaluate each expression. (a)   (b)   (c)
(b) Evaluate each expression. (a)   (b)   (c)
(c) Evaluate each expression. (a)   (b)   (c)
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
35
Find the distance between Find the distance between   and .  and . Find the distance between   and .
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
36
Evaluate (23)2\left( - \frac { 2 } { 3 } \right) ^ { - 2 }

A) 94\frac { 9 } { 4 }
B) 49\frac { 4 } { 9 }
C) 94\frac { - 9 } { 4 }
D) 14\frac { 1 } { 4 }
E) 11
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
37
Find ABA \cup B if A={xx>π}A = \{ x \mid x > \pi \} and B={x1<x<π}B = \{ x \mid - 1 < x < \pi \} .

A) \varnothing
B) {xx>1 and xπ}\{ x \mid x > - 1 \text { and } x \neq \pi \}
C) {x1<x<π}\{ x \mid - 1 < x < \pi \}
D) {xπ<x1}\{ x \mid - \pi < x \leq 1 \}
E) {xx>π}\{ x \mid x > - \pi \}
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
38
Evaluate 23- 2 ^ { 3 }

A) 16- 16
B) 8- 8
C) 4- 4
D) 88
E) 1616
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
39
Express the repeating decimal as a fraction. Express the repeating decimal as a fraction.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
40
Evaluate (512)19( 512 ) ^ { - \frac { 1 } { 9 } }

A) 14\frac { 1 } { 4 }
B) 12\frac { 1 } { 2 }
C) 1616
D) 116\frac { 1 } { 16 }
E) 256256
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
41
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
42
Write the number in the statement in scientific notation. The distance to the edge of the observable universe is about Write the number in the statement in scientific notation. The distance to the edge of the observable universe is about   m. m.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
43
Write Write   in scientific notation. in scientific notation.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
44
Simplify the expression and eliminate any negative exponents(s).
Assume that all letters denote positive numbers. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
45
Find the sum, difference, or product. Find the sum, difference, or product.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
46
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
47
A sealed warehouse measuring A sealed warehouse measuring   m wide,   m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains   molecules. How many molecules of oxygen are there in the room? m wide, A sealed warehouse measuring   m wide,   m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains   molecules. How many molecules of oxygen are there in the room? m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains A sealed warehouse measuring   m wide,   m long and 6 m high, is filled with pure oxygen. One cubic meter contains 1000 L, and 22.4 L of any gas contains   molecules. How many molecules of oxygen are there in the room? molecules. How many molecules of oxygen are there in the room?
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
48
Simplify the expression and eliminate any negative exponents(s).
Assume that all letters denote positive numbers. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
49
Perform the indicated operations and simplify. 3(3x4)5(x1)3 ( 3 x - 4 ) - 5 ( x - 1 )

A) 4x134 x - 13
B) 2x132 x - 13
C) 4x74 x - 7
D) 2x+132 x + 13
E) 2x+292 x + 29
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
50
Rationalize the denominator. Rationalize the denominator.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
51
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
52
Write the number in the statement in scientific notation:
The mass of a proton is Write the number in the statement in scientific notation: The mass of a proton is   kg. kg.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
53
Rationalize the denominator. Rationalize the denominator.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
54
Simplify the expression. Assume the letters denote any real numbers. Simplify the expression. Assume the letters denote any real numbers.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
55
Which of the numbers Which of the numbers   and   is smaller? and Which of the numbers   and   is smaller? is smaller?
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
56
Write Write   in scientific notation. in scientific notation.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
57
Simplify the expression Simplify the expression   . .
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
58
Use scientific notation, laws of exponents, and a calculator to perform the indicated operations. State your answer correct to the number of significant digits indicated by the data. Use scientific notation, laws of exponents, and a calculator to perform the indicated operations. State your answer correct to the number of significant digits indicated by the data.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
59
Simplify the expression and eliminate any negative exponents(s).
Assume that all letters denote positive numbers. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
60
Perform the indicated operations and simplify. (2x3+6x24x+8)+(3x3+x4)\left( - 2 x ^ { 3 } + 6 x ^ { 2 } - 4 x + 8 \right) + \left( 3 x ^ { 3 } + x - 4 \right)

A) 2x3+6x2+3x+52 x ^ { 3 } + 6 x ^ { 2 } + 3 x + 5
B) 2x3+6x2+3x+122 x ^ { 3 } + 6 x ^ { 2 } + 3 x + 12
C) 2x3+6x2+3x12 x ^ { 3 } + 6 x ^ { 2 } + 3 x - 1
D) x3+6x2+3x4x ^ { 3 } + 6 x ^ { 2 } + 3 x - 4
E) x3+6x23x+4x ^ { 3 } + 6 x ^ { 2 } - 3 x + 4
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
61
Perform the indicated operations and simplify. (x+1y2)3\left( x + \frac { 1 } { y ^ { 2 } } \right) ^ { 3 }

A) x3+3x2y2+3xy4+1y6x ^ { 3 } + \frac { 3 x ^ { 2 } } { y ^ { 2 } } + \frac { 3 x } { y ^ { 4 } } + \frac { 1 } { y ^ { 6 } }
B) x3+3x2y2+xy2+1y6x ^ { 3 } + \frac { 3 x ^ { 2 } } { y ^ { 2 } } + \frac { x } { y ^ { 2 } } + \frac { 1 } { y ^ { 6 } }
C) x3+3x2y+3x2y4+3y3x ^ { 3 } + \frac { 3 x ^ { 2 } } { y } + \frac { 3 x ^ { 2 } } { y ^ { 4 } } + \frac { 3 } { y ^ { 3 } }
D) x3+3x2y+1y6x ^ { 3 } + \frac { 3 x ^ { 2 } } { y } + \frac { 1 } { y ^ { 6 } }
E) x3+1y6x ^ { 3 } + \frac { 1 } { y ^ { 6 } }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
62
Factor the expression. x2+7x8x ^ { 2 } + 7 x - 8

A) (x4)(x+2)( x - 4 ) ( x + 2 )
B) (x+4)(x+2)( x + 4 ) ( x + 2 )
C) (x8)(x1)( x - 8 ) ( x - 1 )
D) (x+8)(x1)( x + 8 ) ( x - 1 )
E) (x+4)(x2)( x + 4 ) ( x - 2 )
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
63
Perform the indicated operations and simplify. (αx2y2)(αx2+y2)\left( \alpha x ^ { 2 } - y ^ { 2 } \right) \left( \alpha x ^ { 2 } + y ^ { 2 } \right)

A) a2x2y2a ^ { 2 } x ^ { 2 } - y ^ { 2 }
B) a2x4+ax2y2y4a ^ { 2 } x ^ { 4 } + a x ^ { 2 } y ^ { 2 } - y ^ { 4 }
C) a2x4y4a ^ { 2 } x ^ { 4 } - y ^ { 4 }
D) a2x4ax2y2y4a ^ { 2 } x ^ { 4 } - a x ^ { 2 } y ^ { 2 } - y ^ { 4 }
E) a2x4+y4a ^ { 2 } x ^ { 4 } + y ^ { 4 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
64
Perform the indicated operations and simplify. (2uv)(2u+v)( 2 u - v ) ( 2 u + v )

A) 4u2v24 u ^ { 2 } - v ^ { 2 }
B) 8u2+4v28 u ^ { 2 } + 4 v ^ { 2 }
C) 16u2+4v216 u ^ { 2 } + 4 v ^ { 2 }
D) 16u2+2v216 u ^ { 2 } + 2 v ^ { 2 }
E) 16u24v216 u ^ { 2 } - 4 v ^ { 2 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
65
Perform the indicated operations and simplify. (1x2/3)(2+x1/3)\left( 1 - x ^ { 2 / 3 } \right) \left( 2 + x ^ { 1 / 3 } \right)

A) 2+x32(x3)3+x2 + \sqrt [ 3 ] { x } - 2 ( \sqrt [ 3 ] { x } ) ^ { 3 } + x
B) 1+x3(x3)2x1 + \sqrt [ 3 ] { x } - ( \sqrt [ 3 ] { x } ) ^ { 2 } - x
C) 2+x3x3x22 + \sqrt [ 3 ] { x } - \sqrt [ 3 ] { x } - x ^ { 2 }
D) 2+x32(x3)2x2 + \sqrt [ 3 ] { x } - 2 ( \sqrt [ 3 ] { x } ) ^ { 2 } - x
E) 2+x3+2(x3)22 + \sqrt [ 3 ] { x } + 2 ( \sqrt [ 3 ] { x } ) ^ { 2 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
66
Factor the expression. x2(x5)3+x3(x5)2x ^ { 2 } ( x - 5 ) ^ { 3 } + x ^ { 3 } ( x - 5 ) ^ { 2 }

A) x(2x+5)(x5)2x ( 2 x + 5 ) ( x - 5 ) ^ { 2 }
B) x2(2x+5)(x5)2x ^ { 2 } ( 2 x + 5 ) ( x - 5 ) ^ { 2 }
C) x(2x5)2(x5)2x ( 2 x - 5 ) ^ { 2 } ( x - 5 ) ^ { 2 }
D) x2(5x5)(2x5)x ^ { 2 } ( 5 x - 5 ) ( 2 x - 5 )
E) x2(2x5)(x5)2x ^ { 2 } ( 2 x - 5 ) ( x - 5 ) ^ { 2 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
67
Factor the expression. y2+xy2x2y ^ { 2 } + x y - 2 x ^ { 2 }

A) (2x+xy)(y2x)- ( 2 x + x y ) ( y - 2 x )
B) (2x+y)(xy)- ( 2 x + y ) ( x - y )
C) (2xy)(xy)( 2 x - y ) ( x - y )
D) (2x+y)(x+y)( 2 x + y ) ( x + y )
E) (2x+y)(x2y)- ( 2 x + y ) ( x - 2 y )
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
68
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
69
Factor out the common factor. Factor out the common factor.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
70
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
71
Factor the expression. x(ny)+(x1)(yn)x ( n - y ) + ( x - 1 ) ( y - n )

A) xnyxn - y
B) x+(x1)(yn)x + ( x - 1 ) ( y - n )
C) nyn - y
D) x+yx + y
E) xyx y
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
72
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
73
Use a Factoring Formula to factor the expression. Use a Factoring Formula to factor the expression.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
74
Multiply the algebraic expressions using a Special Product Formula and simplify. Multiply the algebraic expressions using a Special Product Formula and simplify.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
75
Find the sum, difference, or product. Find the sum, difference, or product.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
76
Multiply the algebraic expressions using the FOIL method and simplify. Multiply the algebraic expressions using the FOIL method and simplify.
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
77
Factor the expression. x2+8x+15x ^ { 2 } + 8 x + 15

A)
(x+3)(x+5)( x + 3 ) ( x + 5 )
B)
(x3)(x+5)( x - 3 ) ( x + 5 )
C)
(x3)(x5)( x - 3 ) ( x - 5 )
D)
(x+3)(x5)( x + 3 ) ( x - 5 )
E)
(x3)(x5)( - x - 3 ) ( x - 5 )
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
78
Perform the indicated operations and simplify. (t+3)(2t1)3(t+2)( t + 3 ) ( 2 t - 1 ) - 3 ( t + 2 )

A) 2t2+6t+42 t ^ { 2 } + 6 t + 4
B) 2t2+2t92 t ^ { 2 } + 2 t - 9
C) 2t22t102 t ^ { 2 } - 2 t - 10
D) 2t23t52 t ^ { 2 } - 3 t - 5
E) 2t2+5t+42 t ^ { 2 } + 5 t + 4
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
79
Factor the expression. 6x2+13x+66 x ^ { 2 } + 13 x + 6

A) (2x+3)2( 2 x + 3 ) ^ { 2 }
B) (x+3)(6x+2)( x + 3 ) ( 6 x + 2 )
C) (2x+1)(3x+6)( 2 x + 1 ) ( 3 x + 6 )
D) (6x+1)(x+6)( 6 x + 1 ) ( x + 6 )
E) (2x+3)(3x+2)( 2 x + 3 ) ( 3 x + 2 )
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
80
Perform the indicated operations and simplify. (x2b2y2)(x2cxy+ay2)\left( x ^ { 2 } - b ^ { 2 } y ^ { 2 } \right) \left( x ^ { 2 } - c x y + a y ^ { 2 } \right)

A) x4cx3y+ax2y2b2y2x2+b2cy3xab2y4x ^ { 4 } - c x ^ { 3 } y + a x ^ { 2 } y ^ { 2 } - b ^ { 2 } y ^ { 2 } x ^ { 2 } + b ^ { 2 } c y ^ { 3 } x - a b ^ { 2 } y ^ { 4 }
B) x4x3cy+x2ay2+b2y3cxb2y4ax ^ { 4 } - x ^ { 3 } c y + x ^ { 2 } a y ^ { 2 } + b ^ { 2 } y ^ { 3 } c x - b ^ { 2 } y ^ { 4 } a
C) x2x3y+x2ay2b2y3cxab2y4x ^ { 2 } - x ^ { 3 } y + x ^ { 2 } a y ^ { 2 } - b ^ { 2 } y ^ { 3 } c x - a b ^ { 2 } y ^ { 4 }
D) a2x4ax2y2y4a ^ { 2 } x ^ { 4 } - a x ^ { 2 } y ^ { 2 } - y ^ { 4 }
E) x4cx3y+ax2y2cy3xab2y4x ^ { 4 } - c x ^ { 3 } y + a x ^ { 2 } y ^ { 2 } - c y ^ { 3 } x - a b ^ { 2 } y ^ { 4 }
Unlock Deck
Unlock for access to all 229 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 229 flashcards in this deck.