Deck 12: Complex Experimental Design
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/46
Play
Full screen (f)
Deck 12: Complex Experimental Design
1
In a study examining the effects of gender (male or female)and major (psychology,computer science,philosophy,or biology)on college students' willingness to perform community service work,how many main effects are possible?
A)3
B)6
C)5
D)2
A)3
B)6
C)5
D)2
D
2
A 3x3x3x3 design has _____ potential main effects.
A)3
B)4
C)12
D)81
A)3
B)4
C)12
D)81
B
3
How many conditions would there be in a factorial design with 2 levels of factor A and three levels of factor B?
A)2
B)3
C)5
D)6
A)2
B)3
C)5
D)6
D
4
A main effect indicates
A)the mean differences among the levels of one variable.
B)the mean differences among the levels of all variables.
C)the mean difference between the two variables.
D)none of the above
A)the mean differences among the levels of one variable.
B)the mean differences among the levels of all variables.
C)the mean difference between the two variables.
D)none of the above
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
5
In a study examining the effects of gender (male or female)and major (psychology,computer science,philosophy,or biology)on college students' willingness to perform community service work,how many interaction effects are possible?
A)1
B)2
C)6
D)5
A)1
B)2
C)6
D)5
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
6
Two variables interact when
A)the effect of one independent variable depends on the level of the other independent variable.
B)both variables are affected equally by some third factor.
C)there are no main effects.
D)there are main effects.
A)the effect of one independent variable depends on the level of the other independent variable.
B)both variables are affected equally by some third factor.
C)there are no main effects.
D)there are main effects.
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
7
For a two-way factorial design there is the possibility of _____ main effect(s)and _____ interaction effect(s).
A)2; 2
B)1; 2
C)2; 1
D)2; 4
A)2; 2
B)1; 2
C)2; 1
D)2; 4
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
8
In a two-way factorial ANOVA,the formula for calculating SSTotal is
A) (X-
G)2.
B) (X-
g)2.
C) [(
g -
G)2n].
D) [(
g -
G)2].
A) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Total</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>n]. D) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_a16a_a0f6_c1f24d132799_TB4258_11.jpg)
B) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Total</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>n]. D) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_a16b_a0f6_89d6eddef7ef_TB4258_11.jpg)
C) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Total</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>n]. D) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_a16c_a0f6_f51ae9bdce7f_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Total</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>n]. D) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_a16d_a0f6_b1cc86088ac9_TB4258_11.jpg)
D) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Total</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>n]. D) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_c87e_a0f6_7da8f92db044_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Total</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>n]. D) \Sigma [( <sub>g</sub> - <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_c87f_a0f6_efc646596e27_TB4258_11.jpg)
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
9
In a two-way factorial ANOVA,the formula for calculating SSFactor A is
A) (X-
G)2.
B) (X-
g)2.
C) [(
A -
G)2nA].
D) [(
A -
g)2].
A) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor A</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>A</sub>]. D) \Sigma [( <sub>A</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_c880_a0f6_33680168d6aa_TB4258_11.jpg)
B) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor A</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>A</sub>]. D) \Sigma [( <sub>A</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_c881_a0f6_2f7b9ffc2fbc_TB4258_11.jpg)
C) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor A</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>A</sub>]. D) \Sigma [( <sub>A</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_ef92_a0f6_b3f0e3822153_TB4258_00.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor A</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>A</sub>]. D) \Sigma [( <sub>A</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_ef93_a0f6_27ae0a0dd31b_TB4258_00.jpg)
D) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor A</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>A</sub>]. D) \Sigma [( <sub>A</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_ef94_a0f6_a304cc5304ce_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor A</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>g</sub>)<sup>2</sup>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>A</sub>]. D) \Sigma [( <sub>A</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bb_ef95_a0f6_0d577defe851_TB4258_11.jpg)
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
10
An experiment with two variables each with three levels is a _____ design.
A)3x3
B)2x2
C)2x2x2
D)3x3x3
A)3x3
B)2x2
C)2x2x2
D)3x3x3
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
11
A two-way ANOVA means that the experimental design includes
A)two independent variables.
B)two dependent variables.
C)two types of variance.
D)all of the above
A)two independent variables.
B)two dependent variables.
C)two types of variance.
D)all of the above
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
12
For a 2 x 4 factorial design,there is the possibility of _____ main effect(s)and _____ interaction effect(s).
A)2; 4
B)2; 1
C)4; 8
D)8; 8
A)2; 4
B)2; 1
C)4; 8
D)8; 8
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
13
When graphed,a significant interaction will definitely have
A)parallel lines.
B)lines with markedly different slopes.
C)a crossover interaction.
D)none of the above
A)parallel lines.
B)lines with markedly different slopes.
C)a crossover interaction.
D)none of the above
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
14
In a study examining the effects of time of day (morning or afternoon)and temperature (cool,normal,warm)on worker productivity,the factorial notation would be
A)2 x 2.
B)2 x 3.
C)2 x 5.
D)1 x 6.
A)2 x 2.
B)2 x 3.
C)2 x 5.
D)1 x 6.
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
15
In a study examining the effects of time of day (morning or afternoon)and temperature (cool,normal,warm)on worker productivity,how many interaction effect(s)are possible?
A)1
B)2
C)6
D)5
A)1
B)2
C)6
D)5
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
16
An experiment with four variables each with two levels is a _____ design.
A)2x4
B)2x2
C)2x2x2x2
D)2x3x4
A)2x4
B)2x2
C)2x2x2x2
D)2x3x4
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
17
In a matrix for a factorial design,the row means and column means represent the effects of
A)extraneous factors.
B)individual differences.
C)an interaction.
D)a single factor (variable).
A)extraneous factors.
B)individual differences.
C)an interaction.
D)a single factor (variable).
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
18
A 2x3x4 factorial design has _____ potential main effects.
A)2
B)3
C)4
D)24
A)2
B)3
C)4
D)24
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
19
In a study examining the effects of gender (male or female)and major (psychology,computer science,philosophy,or biology)on college students' willingness to perform community service work,what is the factorial notation?
A)2 x 2.
B)2 x 3.
C)2 x 4.
D)1 x 6.
A)2 x 2.
B)2 x 3.
C)2 x 4.
D)1 x 6.
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
20
In a study examining the effects of time of day (morning or afternoon)and temperature (cool,normal,warm)on worker productivity,how many main effects are possible?
A)3
B)6
C)5
D)2
A)3
B)6
C)5
D)2
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
21
In a two-way factorial ANOVA,the formula for calculating SSFactor B is
A) (X-
G)2.
B) (X-
B)2.
C) [(
B -
G)2nB].
D) [(
B -
g)2].
A) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor B</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>B</sub>)<sup>2</sup>. C) \Sigma [( <sub>B</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D) \Sigma [( <sub>B</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_16a6_a0f6_4fa23c7c0800_TB4258_11.jpg)
B) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor B</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>B</sub>)<sup>2</sup>. C) \Sigma [( <sub>B</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D) \Sigma [( <sub>B</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_16a7_a0f6_61774ad555be_TB4258_11.jpg)
C) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor B</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>B</sub>)<sup>2</sup>. C) \Sigma [( <sub>B</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D) \Sigma [( <sub>B</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_16a8_a0f6_9b886837adf1_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor B</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>B</sub>)<sup>2</sup>. C) \Sigma [( <sub>B</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D) \Sigma [( <sub>B</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_16a9_a0f6_992a6715fb34_TB4258_11.jpg)
D) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor B</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>B</sub>)<sup>2</sup>. C) \Sigma [( <sub>B</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D) \Sigma [( <sub>B</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_16aa_a0f6_7b46eabf86f7_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Factor B</sub> is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>B</sub>)<sup>2</sup>. C) \Sigma [( <sub>B</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D) \Sigma [( <sub>B</sub> - <sub>g</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_3dbb_a0f6_dd70e1bf1549_TB4258_11.jpg)
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
22
In a two-way factorial ANOVA,the formula for calculating dfError is
A)AB(n - 1).
B)n - AB.
C)(A - 1)(B - 1).
D)(AB - 1)(N - 1).
A)AB(n - 1).
B)n - AB.
C)(A - 1)(B - 1).
D)(AB - 1)(N - 1).
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
23
In a two-way factorial ANOVA,the formula for calculating dfFactor B is
A)N - 1.
B)B - 1.
C)k- 1.
D)(k - 1)(N - 1).
A)N - 1.
B)B - 1.
C)k- 1.
D)(k - 1)(N - 1).
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
24
In a two-way factorial ANOVA,the final F ratio for Factor B is determined by dividing _____ by _____.
A)MSFactor B; MSError
B)MSError; MSBetween
C)MSBetween; dfBetween
D)MSFactor B; dfWithin
A)MSFactor B; MSError
B)MSError; MSBetween
C)MSBetween; dfBetween
D)MSFactor B; dfWithin
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
25
In a two-way factorial ANOVA,to calculate MSA×B we divide _____ by _____.
A)SSFactor B; dfFactor B
B)SSTotal; dfTotal
C)SSA×B; dfA×B
D)SSA×B; dfError
A)SSFactor B; dfFactor B
B)SSTotal; dfTotal
C)SSA×B; dfA×B
D)SSA×B; dfError
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
26
A factorial design has two levels of factor A and three levels of factor B with 6 participants in each condition.The F-ratio for the interaction of A x B would have _____ degrees of freedom.
A)2,35
B)2,30
C)6,35
D)6,30
A)2,35
B)2,30
C)6,35
D)6,30
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
27
In a study with 3 levels of factor A,three levels of factor B,and 6 participants in each condition,the dfs for factors A and B respectively would be _____ and _____.
A)3; 3
B)2; 3
C)3; 2
D)2; 2
A)3; 3
B)2; 3
C)3; 2
D)2; 2
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
28
In a two-way factorial ANOVA,the formula for calculating dfFactor A is
A)A - 1.
B)N - A.
C)k - 1.
D)N - (k - 1).
A)A - 1.
B)N - A.
C)k - 1.
D)N - (k - 1).
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
29
In a study with three levels of factor A,three levels of factor B,and 6 participants in each condition,the df for the interaction of A x B would be
A)9.
B)6.
C)4.
D)3.
A)9.
B)6.
C)4.
D)3.
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
30
In a two-way factorial ANOVA,to calculate MSFactor A we divide _____ by _____.
A)SSTotal; dfTotal
B)SSFactor A; dfFactor A
C)SSWithin; dfWithin
D)SSFactor A; dfError
A)SSTotal; dfTotal
B)SSFactor A; dfFactor A
C)SSWithin; dfWithin
D)SSFactor A; dfError
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
31
In a two-way factorial ANOVA,the formula for calculating SSError is
A) (X -
C)2.
B) (X-
C)2 -SSP.
C) [(
C -
G)2n] -SSP.
D) [(
C-
G)2].
A) (X -
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Error</sub> is</strong> A) \Sigma (X - <sub>C</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>C</sub>)<sup>2</sup><sup> </sup>-SS<sub>P</sub>. C) \Sigma [( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n] -SS<sub>P</sub>. D) \Sigma [( <sub>C</sub>- <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_8be3_a0f6_fdbb82bbc4c9_TB4258_11.jpg)
B) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Error</sub> is</strong> A) \Sigma (X - <sub>C</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>C</sub>)<sup>2</sup><sup> </sup>-SS<sub>P</sub>. C) \Sigma [( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n] -SS<sub>P</sub>. D) \Sigma [( <sub>C</sub>- <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_8be4_a0f6_cdb03447769e_TB4258_11.jpg)
C) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Error</sub> is</strong> A) \Sigma (X - <sub>C</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>C</sub>)<sup>2</sup><sup> </sup>-SS<sub>P</sub>. C) \Sigma [( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n] -SS<sub>P</sub>. D) \Sigma [( <sub>C</sub>- <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_8be5_a0f6_3350ad5c562f_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Error</sub> is</strong> A) \Sigma (X - <sub>C</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>C</sub>)<sup>2</sup><sup> </sup>-SS<sub>P</sub>. C) \Sigma [( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n] -SS<sub>P</sub>. D) \Sigma [( <sub>C</sub>- <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_8be6_a0f6_99430874837a_TB4258_11.jpg)
D) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Error</sub> is</strong> A) \Sigma (X - <sub>C</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>C</sub>)<sup>2</sup><sup> </sup>-SS<sub>P</sub>. C) \Sigma [( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n] -SS<sub>P</sub>. D) \Sigma [( <sub>C</sub>- <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_b2f7_a0f6_5b86f1a4b61c_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>Error</sub> is</strong> A) \Sigma (X - <sub>C</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup> \Sigma (X- <sub>C</sub>)<sup>2</sup><sup> </sup>-SS<sub>P</sub>. C) \Sigma [( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n] -SS<sub>P</sub>. D) \Sigma [( <sub>C</sub>- <sub>G</sub>)<sup>2</sup>].](https://storage.examlex.com/TB4258/11eaa565_59bc_b2f8_a0f6_13a63908d58f_TB4258_11.jpg)
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
32
In a two-way factorial ANOVA,to calculate MSFactor B we divide _____ by _____.
A)SSFactor B; dfFactor B
B)SSTotal; dfTotal
C)SSWithin; dfWithin
D)SSFactor B; dfError
A)SSFactor B; dfFactor B
B)SSTotal; dfTotal
C)SSWithin; dfWithin
D)SSFactor B; dfError
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
33
A factorial design has two levels of factor A and three levels of factor B with 6 participants in each condition.The F-ratio for factor B would have _____ degrees of freedom.
A)1,35
B)1,30
C)2,35
D)2,30
A)1,35
B)1,30
C)2,35
D)2,30
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
34
A factorial design has two levels of factor A and three levels of factor B with 6 participants in each condition.The F-ratio for factor A would have _____ degrees of freedom.
A)1,35
B)1,30
C)2,35
D)2,30
A)1,35
B)1,30
C)2,35
D)2,30
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
35
In a two-way factorial ANOVA,the formula for calculating dfA×B is
A)n - 1.
B)n - AB.
C)(A - 1)(B - 1).
D)(AB - 1)(N - 1).
A)n - 1.
B)n - AB.
C)(A - 1)(B - 1).
D)(AB - 1)(N - 1).
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
36
In a two-way factorial ANOVA,the final F ratio for Factor A is determined by dividing _____ by _____.
A)MSError; MSBetween
B)MSFactor A; MSError
C)MSBetween; dfBetween
D)MSError; dfWithin
A)MSError; MSBetween
B)MSFactor A; MSError
C)MSBetween; dfBetween
D)MSError; dfWithin
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
37
In a two-way factorial ANOVA,to calculate MSError we divide _____ by _____.
A)SSTotal; dfTotal
B)SSBetween; dfBetween
C)SSError; dfError
D)SSBetween; dfWithin
A)SSTotal; dfTotal
B)SSBetween; dfBetween
C)SSError; dfError
D)SSBetween; dfWithin
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
38
In a two-way factorial ANOVA,the formula for calculating dfTotal is
A)N - 1.
B)N - k.
C)k -1.
D)N - (k - 1).
A)N - 1.
B)N - k.
C)k -1.
D)N - (k - 1).
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
39
In a two-way factorial ANOVA,the formula for calculating SSA×B is
A) (X-
G)2.
B) [ (
C -
G)2nC] - SSA - SSB.
C) [(
A -
G)2nB].
D)[ (
C -
G)2nC].
A) (X-
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>A×B </sub>is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup>[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>] - SS<sub>A</sub> - SS<sub>B</sub>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D)[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>].](https://storage.examlex.com/TB4258/11eaa565_59bc_3dbc_a0f6_87993ca8f2a9_TB4258_00.jpg)
B) [ (
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>A×B </sub>is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup>[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>] - SS<sub>A</sub> - SS<sub>B</sub>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D)[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>].](https://storage.examlex.com/TB4258/11eaa565_59bc_3dbd_a0f6_c1ee747650f3_TB4258_00.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>A×B </sub>is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup>[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>] - SS<sub>A</sub> - SS<sub>B</sub>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D)[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>].](https://storage.examlex.com/TB4258/11eaa565_59bc_64ce_a0f6_b7fa05e7e6e7_TB4258_11.jpg)
C) [(
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>A×B </sub>is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup>[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>] - SS<sub>A</sub> - SS<sub>B</sub>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D)[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>].](https://storage.examlex.com/TB4258/11eaa565_59bc_64cf_a0f6_9de5ee62792a_TB4258_11.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>A×B </sub>is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup>[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>] - SS<sub>A</sub> - SS<sub>B</sub>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D)[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>].](https://storage.examlex.com/TB4258/11eaa565_59bc_64d0_a0f6_63b9e0114335_TB4258_11.jpg)
D)[ (
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>A×B </sub>is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup>[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>] - SS<sub>A</sub> - SS<sub>B</sub>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D)[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>].](https://storage.examlex.com/TB4258/11eaa565_59bc_64d1_a0f6_93a1c5fa40c4_TB4258_00.jpg)
![<strong>In a two-way factorial ANOVA,the formula for calculating SS<sub>A×B </sub>is</strong> A) \Sigma (X- <sub>G</sub>)<sup>2</sup>.<sup> </sup> B)<sup> </sup>[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>] - SS<sub>A</sub> - SS<sub>B</sub>. C) \Sigma [( <sub>A</sub> - <sub>G</sub>)<sup>2</sup>n<sub>B</sub>]. D)[ \Sigma ( <sub>C</sub> - <sub>G</sub>)<sup>2</sup>n<sub>C</sub>].](https://storage.examlex.com/TB4258/11eaa565_59bc_64d2_a0f6_8f6fd5bb77d2_TB4258_11.jpg)
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
40
In a study with three levels of factor A,three levels of factor B,and 6 participants in each condition,the df error would be
A)45.
B)20.
C)53.
D)54.
A)45.
B)20.
C)53.
D)54.
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
41
Two-way ANOVA is to _____ variables as three-way ANOVA is to _____ variables.
A)two independent; three dependent
B)two dependent; three dependent
C)two independent; three independent
D)two dependent; three independent
A)two independent; three dependent
B)two dependent; three dependent
C)two independent; three independent
D)two dependent; three independent
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
42
In a two-way factorial ANOVA,the final F ratio for Factor A×B is determined by dividing _____ by _____.
A)MSError; MSBetween
B)MSFactor A; MSError
C)MSBetween; dfBetween
D)MSA×B; MSError
A)MSError; MSBetween
B)MSFactor A; MSError
C)MSBetween; dfBetween
D)MSA×B; MSError
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
43
Per the experiment discussed in the text (i.e.,2 IV's - Word Type-Concrete vs.Abstract and Rehearsal Type-Elaborative vs.Rote and one DV-% of words recalled correctly),show the graph for the experimental results of NO main effect of rehearsal,NO interaction effect,and NO main effect of Word Type.Hint: First,construct a matrix of what you think the cell means as that should be helpful to you.
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
44
How many main effects and interaction effects could you have in a 4 x 6 factorial design?
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
45
How many conditions (cells)are there in a 3 x 5 design?
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck
46
Provide the factorial notation for the following experimental design.Two independent variables:
1.Crust Type (thick,thin,pan,and hand-tossed)
2.Topping Type (plain,sausage,pepperoni,veggie,anchovy,and everything)
1.Crust Type (thick,thin,pan,and hand-tossed)
2.Topping Type (plain,sausage,pepperoni,veggie,anchovy,and everything)
Unlock Deck
Unlock for access to all 46 flashcards in this deck.
Unlock Deck
k this deck